A genome-wide RNA interference screen reveals that variant histones are necessary for replication-dependent histone pre-mRNA processing.

Citation:

Eric J Wagner, Brandon D Burch, Ashley C Godfrey, Harmony R Salzler, Robert J Duronio, and William F Marzluff. 2007. “A genome-wide RNA interference screen reveals that variant histones are necessary for replication-dependent histone pre-mRNA processing.” Mol Cell, 28, 4, Pp. 692-9.

Abstract:

Metazoan replication-dependent histone mRNAs are not polyadenylated and instead end in a conserved stem loop that is the cis element responsible for coordinate posttranscriptional regulation of these mRNAs. Using biochemical approaches, only a limited number of factors required for cleavage of histone pre-mRNA have been identified. We therefore performed a genome-wide RNA interference screen in Drosophila cells using a GFP reporter that is expressed only when histone pre-mRNA processing is disrupted. Four of the 24 genes identified encode proteins also necessary for cleavage/polyadenylation, indicating mechanistic conservation in formation of different mRNA 3' ends. We also unexpectedly identified the histone variants H2Av and H3.3A/B. In H2Av mutant cells, U7 snRNP remains active but fails to accumulate at the histone locus, suggesting there is a regulatory pathway that coordinates the production of variant and canonical histones that acts via localization of essential histone pre-mRNA processing factors.

Last updated on 08/29/2016