Screening technologies

2017
Eui Jae Sung, Masasuke Ryuda, Hitoshi Matsumoto, Outa Uryu, Masanori Ochiai, Molly E Cook, Na Young Yi, Huanchen Wang, James W Putney, Gary S Bird, Stephen B Shears, and Yoichi Hayakawa. 12/11/2017. “Cytokine signaling through Drosophila Mthl10 ties lifespan to environmental stress.” Proc Natl Acad Sci U S A.Abstract
A systems-level understanding of cytokine-mediated, intertissue signaling is one of the keys to developing fundamental insight into the links between aging and inflammation. Here, we employed Drosophila, a routine model for analysis of cytokine signaling pathways in higher animals, to identify a receptor for the growth-blocking peptide (GBP) cytokine. Having previously established that the phospholipase C/Ca2+ signaling pathway mediates innate immune responses to GBP, we conducted a dsRNA library screen for genes that modulate Ca2+ mobilization in Drosophila S3 cells. A hitherto orphan G protein coupled receptor, Methuselah-like receptor-10 (Mthl10), was a significant hit. Secondary screening confirmed specific binding of fluorophore-tagged GBP to both S3 cells and recombinant Mthl10-ectodomain. We discovered that the metabolic, immunological, and stress-protecting roles of GBP all interconnect through Mthl10. This we established by Mthl10 knockdown in three fly model systems: in hemocyte-like Drosophila S2 cells, Mthl10 knockdown decreases GBP-mediated innate immune responses; in larvae, Mthl10 knockdown decreases expression of antimicrobial peptides in response to low temperature; in adult flies, Mthl10 knockdown increases mortality rate following infection with Micrococcus luteus and reduces GBP-mediated secretion of insulin-like peptides. We further report that organismal fitness pays a price for the utilization of Mthl10 to integrate all of these various homeostatic attributes of GBP: We found that elevated GBP expression reduces lifespan. Conversely, Mthl10 knockdown extended lifespan. We describe how our data offer opportunities for further molecular interrogation of yin and yang between homeostasis and longevity.
Stephanie E Mohr, Kirstin Rudd, Yanhui Hu, Wei R Song, Quentin Gilly, Michael Buckner, Benjamin E Housden, Colleen Kelley, Jonathan Zirin, Rong Tao, Gabriel Amador, Katarzyna Sierzputowska, Aram Comjean, and Norbert Perrimon. 12/9/2017. “Zinc Detoxification: A Functional Genomics and Transcriptomics Analysis in Drosophila melanogaster Cultured Cells.” G3 (Bethesda).Abstract
Cells require some metals, such as zinc and manganese, but excess levels of these metals can be toxic. As a result, cells have evolved complex mechanisms for maintaining metal homeostasis and surviving metal intoxication. Here, we present the results of a large-scale functional genomic screen in Drosophila cultured cells for modifiers of zinc chloride toxicity, together with transcriptomics data for wildtype or genetically zinc-sensitized cells challenged with mild zinc chloride supplementation. Altogether, we identified 47 genes for which knockdown conferred sensitivity or resistance to toxic zinc or manganese chloride treatment, and more than 1800 putative zinc-responsive genes. Analysis of the 'omics data points to the relevance of ion transporters, glutathione-related factors, and conserved disease-associated genes in zinc detoxification. Specific genes identified in the zinc screen include orthologs of human disease-associated genes CTNS, PTPRN (also known as IA-2), and ATP13A2 (also known as PARK9). We show that knockdown of red dog mine (rdog; CG11897), a candidate zinc detoxification gene encoding an ABCC-type transporter family protein related to yeast cadmium factor (YCF1), confers sensitivity to zinc intoxication in cultured cells and that rdog is transcriptionally up-regulated in response to zinc stress. As there are many links between the biology of zinc and other metals and human health, the 'omics datasets presented here provide a resource that will allow researchers to explore metal biology in the context of diverse health-relevant processes.
2016
Benjamin E Housden, Matthias Muhar, Matthew Gemberling, Charles A Gersbach, Didier YR Stainier, Geraldine Seydoux, Stephanie E Mohr, Johannes Zuber, and Norbert Perrimon. 10/31/2016. “Loss-of-function genetic tools for animal models: cross-species and cross-platform differences.” Nat Rev Genet. Publisher's VersionAbstract

Our understanding of the genetic mechanisms that underlie biological processes has relied extensively on loss-of-function (LOF) analyses. LOF methods target DNA, RNA or protein to reduce or to ablate gene function. By analysing the phenotypes that are caused by these perturbations the wild-type function of genes can be elucidated. Although all LOF methods reduce gene activity, the choice of approach (for example, mutagenesis, CRISPR-based gene editing, RNA interference, morpholinos or pharmacological inhibition) can have a major effect on phenotypic outcomes. Interpretation of the LOF phenotype must take into account the biological process that is targeted by each method. The practicality and efficiency of LOF methods also vary considerably between model systems. We describe parameters for choosing the optimal combination of method and system, and for interpreting phenotypes within the constraints of each method.

2016_Nat Rev Gene_Housden.pdf
Chen X and Xu L. 2016. “Genome-Wide RNAi Screening to Dissect the TGF-β Signal Transduction Pathway.” Methods in Molecular Biology. Publisher's VersionAbstract

The transforming growth factor-β (TGF-β) family of cytokines figures prominently in regulation of embryonic development and adult tissue homeostasis from Drosophila to mammals. Genetic defects affecting TGF-β signaling underlie developmental disorders and diseases such as cancer in human. Therefore, delineating the molecular mechanism by which TGF-β regulates cell biology is critical for understanding normal biology and disease mechanisms. Forward genetic screens in model organisms and biochemical approaches in mammalian tissue culture were instrumental in initial characterization of the TGF-β signal transduction pathway. With complete sequence information of the genomes and the advent of RNA interference (RNAi) technology, genome-wide RNAi screening emerged as a powerful functional genomics approach to systematically delineate molecular components of signal transduction pathways. Here, we describe a protocol for image-based whole-genome RNAi screening aimed at identifying molecules required for TGF-β signaling into the nucleus. Using this protocol we examined >90 % of annotated Drosophila open reading frames (ORF) individually and successfully uncovered several novel factors serving critical roles in the TGF-β pathway. Thus cell-based high-throughput functional genomics can uncover new mechanistic insights on signaling pathways beyond what the classical genetics had revealed.

2015
2015. “DRSC: RNA Binding Protein Library S2R+ Baseline Data (data support page for Mohr et al. 2015 "Reagent and Data Resources for Investigation of RNA Binding Protein Functions in Drosophila melanogaster Cultured Cells" in G3)”. Publisher's Version
Benjamin E Housden, Alexander J Valvezan, Colleen Kelley, Richelle Sopko, Yanhui Hu, Charles Roesel, Shuailiang Lin, Michael Buckner, Rong Tao, Bahar Yilmazel, Stephanie E Mohr, Brendan D Manning, and Norbert Perrimon. 2015. “Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi.” Sci Signal, 8, 393, Pp. rs9.Abstract

The tuberous sclerosis complex (TSC) family of tumor suppressors, TSC1 and TSC2, function together in an evolutionarily conserved protein complex that is a point of convergence for major cell signaling pathways that regulate mTOR complex 1 (mTORC1). Mutation or aberrant inhibition of the TSC complex is common in various human tumor syndromes and cancers. The discovery of novel therapeutic strategies to selectively target cells with functional loss of this complex is therefore of clinical relevance to patients with nonmalignant TSC and those with sporadic cancers. We developed a CRISPR-based method to generate homogeneous mutant Drosophila cell lines. By combining TSC1 or TSC2 mutant cell lines with RNAi screens against all kinases and phosphatases, we identified synthetic interactions with TSC1 and TSC2. Individual knockdown of three candidate genes (mRNA-cap, Pitslre, and CycT; orthologs of RNGTT, CDK11, and CCNT1 in humans) reduced the population growth rate of Drosophila cells lacking either TSC1 or TSC2 but not that of wild-type cells. Moreover, individual knockdown of these three genes had similar growth-inhibiting effects in mammalian TSC2-deficient cell lines, including human tumor-derived cells, illustrating the power of this cross-species screening strategy to identify potential drug targets.

2015_Sci Sig_Housden.pdf Supplemental Files.zip
J Zanet, E Benrabah, T Li, A Pélissier-Monier, H Chanut-Delalande, B Ronsin, HJ Bellen, F Payre, and S Plaza. 2015. “Pri sORF peptides induce selective proteasome-mediated protein processing.” Science, 349, 6254, Pp. 1356-8.Abstract

A wide variety of RNAs encode small open-reading-frame (smORF/sORF) peptides, but their functions are largely unknown. Here, we show that Drosophila polished-rice (pri) sORF peptides trigger proteasome-mediated protein processing, converting the Shavenbaby (Svb) transcription repressor into a shorter activator. A genome-wide RNA interference screen identifies an E2-E3 ubiquitin-conjugating complex, UbcD6-Ubr3, which targets Svb to the proteasome in a pri-dependent manner. Upon interaction with Ubr3, Pri peptides promote the binding of Ubr3 to Svb. Ubr3 can then ubiquitinate the Svb N terminus, which is degraded by the proteasome. The C-terminal domains protect Svb from complete degradation and ensure appropriate processing. Our data show that Pri peptides control selectivity of Ubr3 binding, which suggests that the family of sORF peptides may contain an extended repertoire of protein regulators.

1356.full_.pdf
Stephanie E Mohr, Yanhui Hu, Kirstin Rudd, Michael Buckner, Quentin Gilly, Blake Foster, Katarzyna Sierzputowska, Aram Comjean, Bing Ye, and Norbert Perrimon. 2015. “Reagent and Data Resources for Investigation of RNA Binding Protein Functions in Drosophila melanogaster Cultured Cells.” G3 (Bethesda), 5, 9, Pp. 1919-24.Abstract

RNA binding proteins (RBPs) are involved in many cellular functions. To facilitate functional characterization of RBPs, we generated an RNA interference (RNAi) library for Drosophila cell-based screens comprising reagents targeting known or putative RBPs. To test the quality of the library and provide a baseline analysis of the effects of the RNAi reagents on viability, we screened the library using a total ATP assay and high-throughput imaging in Drosophila S2R+ cultured cells. The results are consistent with production of a high-quality library that will be useful for functional genomics studies using other assays. Altogether, we provide resources in the form of an initial curated list of Drosophila RBPs; an RNAi screening library we expect to be used with additional assays that address more specific biological questions; and total ATP and image data useful for comparison of those additional assay results with fundamental information such as effects of a given reagent in the library on cell viability. Importantly, we make the baseline data, including more than 200,000 images, easily accessible online.

2015_G3_Mohr.pdf Reagent Table S1.xlsx
2014
Benjamin E Housden, Shuailiang Lin, and Norbert Perrimon. 2014. “Cas9-based genome editing in Drosophila.” Methods Enzymol, 546, Pp. 415-39.Abstract

Our ability to modify the Drosophila genome has recently been revolutionized by the development of the CRISPR system. The simplicity and high efficiency of this system allows its widespread use for many different applications, greatly increasing the range of genome modification experiments that can be performed. Here, we first discuss some general design principles for genome engineering experiments in Drosophila and then present detailed protocols for the production of CRISPR reagents and screening strategies to detect successful genome modification events in both tissue culture cells and animals.

2014_Methods Enzymol_Housden.pdf
Richelle Sopko, Marianna Foos, Arunachalam Vinayagam, Bo Zhai, Richard Binari, Yanhui Hu, Sakara Randklev, Lizabeth A Perkins, Steven P Gygi, and Norbert Perrimon. 2014. “Combining genetic perturbations and proteomics to examine kinase-phosphatase networks in Drosophila embryos.” Dev Cell, 31, 1, Pp. 114-27.Abstract

Connecting phosphorylation events to kinases and phosphatases is key to understanding the molecular organization and signaling dynamics of networks. We have generated a validated set of transgenic RNA-interference reagents for knockdown and characterization of all protein kinases and phosphatases present during early Drosophila melanogaster development. These genetic tools enable collection of sufficient quantities of embryos depleted of single gene products for proteomics. As a demonstration of an application of the collection, we have used multiplexed isobaric labeling for quantitative proteomics to derive global phosphorylation signatures associated with kinase-depleted embryos to systematically link phosphosites with relevant kinases. We demonstrate how this strategy uncovers kinase consensus motifs and prioritizes phosphoproteins for kinase target validation. We validate this approach by providing auxiliary evidence for Wee kinase-directed regulation of the chromatin regulator Stonewall. Further, we show how correlative phosphorylation at the site level can indicate function, as exemplified by Sterile20-like kinase-dependent regulation of Stat92E.

2014_Dev Cell_Sopko.pdf Supplement.pdf
2014. “Protein kinase shRNA phosphoproteomics data from D. melanogaster embryos (data portal for Sopko et al. "Combining genetic perturbations and proteomics to examine kinase-phosphatase networks in Drosophila embryos" in Dev Cell)”.
Stephanie E Mohr, Jennifer A Smith, Caroline E Shamu, Ralph A Neumüller, and Norbert Perrimon. 2014. “RNAi screening comes of age: improved techniques and complementary approaches.” Nat Rev Mol Cell Biol, 15, 9, Pp. 591-600.Abstract

Gene silencing through sequence-specific targeting of mRNAs by RNAi has enabled genome-wide functional screens in cultured cells and in vivo in model organisms. These screens have resulted in the identification of new cellular pathways and potential drug targets. Considerable progress has been made to improve the quality of RNAi screen data through the development of new experimental and bioinformatics approaches. The recent availability of genome-editing strategies, such as the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system, when combined with RNAi, could lead to further improvements in screen data quality and follow-up experiments, thus promoting our understanding of gene function and gene regulatory networks.

2014_Nat Rev Mol Cell Bio_Mohr.pdf
Stephanie E Mohr. 2014. “RNAi screening in Drosophila cells and in vivo.” Methods, 68, 1, Pp. 82-8.Abstract

Here, I discuss how RNAi screening can be used effectively to uncover gene function. Specifically, I discuss the types of high-throughput assays that can be done in Drosophila cells and in vivo, RNAi reagent design and available reagent collections, automated screen pipelines, analysis of screen results, and approaches to RNAi results verification.

2014_Methods_Mohr.pdf
2013
Clément Carré, Caroline Jacquier, Anne-Laure Bougé, Fabrice de Chaumont, Corinne Besnard-Guerin, Hélène Thomassin, Josette Pidoux, Bruno Da Silva, Eleftheria Chalatsi, Sarah Zahra, Jean-Christophe Olivo-Marin, Hélène Munier-Lehmann, and Christophe Antoniewski. 2013. “AutomiG, a biosensor to detect alterations in miRNA biogenesis and in small RNA silencing guided by perfect target complementarity.” PLoS One, 8, 9, Pp. e74296.Abstract

Defects in miRNA biogenesis or activity are associated to development abnormalities and diseases. In Drosophila, miRNAs are predominantly loaded in Argonaute-1, which they guide for silencing of target RNAs. The miRNA pathway overlaps the RNAi pathway in this organism, as miRNAs may also associate with Argonaute-2, the mediator of RNAi. We set up a gene construct in which a single inducible promoter directs the expression of the GFP protein as well as two miRNAs perfectly matching the GFP sequences. We show that self-silencing of the resulting automiG gene requires Drosha, Pasha, Dicer-1, Dicer-2 and Argonaute-2 loaded with the anti-GFP miRNAs. In contrast, self-silencing of the automiG gene does not involve Argonaute-1. Thus, automiG reports in vivo for both miRNA biogenesis and Ago-2 mediated silencing, providing a powerful biosensor to identify situations where miRNA or siRNA pathways are impaired. As a proof of concept, we used automiG as a biosensor to screen a chemical library and identified 29 molecules that strongly inhibit miRNA silencing, out of which 5 also inhibit RNAi triggered by long double-stranded RNA. Finally, the automiG sensor is also self-silenced by the anti-GFP miRNAs in HeLa cells and might be easily used to identify factors involved in miRNA biogenesis and silencing guided by perfect target complementarity in mammals.

2013_PLOS One_Carre.pdf Supplemental Files.zip
Max V Staller, Dong Yan, Sakara Randklev, Meghan D Bragdon, Zeba B Wunderlich, Rong Tao, Lizabeth A Perkins, Angela H Depace, and Norbert Perrimon. 2013. “Depleting gene activities in early Drosophila embryos with the "maternal-Gal4-shRNA" system.” Genetics, 193, 1, Pp. 51-61.Abstract

In a developing Drosophila melanogaster embryo, mRNAs have a maternal origin, a zygotic origin, or both. During the maternal-zygotic transition, maternal products are degraded and gene expression comes under the control of the zygotic genome. To interrogate the function of mRNAs that are both maternally and zygotically expressed, it is common to examine the embryonic phenotypes derived from female germline mosaics. Recently, the development of RNAi vectors based on short hairpin RNAs (shRNAs) effective during oogenesis has provided an alternative to producing germline clones. Here, we evaluate the efficacies of: (1) maternally loaded shRNAs to knockdown zygotic transcripts and (2) maternally loaded Gal4 protein to drive zygotic shRNA expression. We show that, while Gal4-driven shRNAs in the female germline very effectively generate phenotypes for genes expressed maternally, maternally loaded shRNAs are not very effective at generating phenotypes for early zygotic genes. However, maternally loaded Gal4 protein is very efficient at generating phenotypes for zygotic genes expressed during mid-embryogenesis. We apply this powerful and simple method to unravel the embryonic functions of a number of pleiotropic genes.

2013_Genetics_Staller.pdf Table S1.pdf
Zheng Yin, Amine Sadok, Heba Sailem, Afshan McCarthy, Xiaofeng Xia, Fuhai Li, Mar Arias Garcia, Louise Evans, Alexis R Barr, Norbert Perrimon, Christopher J Marshall, Stephen TC Wong, and Chris Bakal. 2013. “A screen for morphological complexity identifies regulators of switch-like transitions between discrete cell shapes.” Nat Cell Biol, 15, 7, Pp. 860-71.Abstract

The way in which cells adopt different morphologies is not fully understood. Cell shape could be a continuous variable or restricted to a set of discrete forms. We developed quantitative methods to describe cell shape and show that Drosophila haemocytes in culture are a heterogeneous mixture of five discrete morphologies. In an RNAi screen of genes affecting the morphological complexity of heterogeneous cell populations, we found that most genes regulate the transition between discrete shapes rather than generating new morphologies. In particular, we identified a subset of genes, including the tumour suppressor PTEN, that decrease the heterogeneity of the population, leading to populations enriched in rounded or elongated forms. We show that these genes have a highly conserved function as regulators of cell shape in both mouse and human metastatic melanoma cells.

2013_Nat Cell Bio_Yin.pdf Supplemental Files.zip
Yanhui Hu, Charles Roesel, Ian Flockhart, Lizabeth Perkins, Norbert Perrimon, and Stephanie E Mohr. 2013. “UP-TORR: online tool for accurate and Up-to-Date annotation of RNAi Reagents.” Genetics, 195, 1, Pp. 37-45.Abstract

RNA interference (RNAi) is a widely adopted tool for loss-of-function studies but RNAi results only have biological relevance if the reagents are appropriately mapped to genes. Several groups have designed and generated RNAi reagent libraries for studies in cells or in vivo for Drosophila and other species. At first glance, matching RNAi reagents to genes appears to be a simple problem, as each reagent is typically designed to target a single gene. In practice, however, the reagent-gene relationship is complex. Although the sequences of oligonucleotides used to generate most types of RNAi reagents are static, the reference genome and gene annotations are regularly updated. Thus, at the time a researcher chooses an RNAi reagent or analyzes RNAi data, the most current interpretation of the RNAi reagent-gene relationship, as well as related information regarding specificity (e.g., predicted off-target effects), can be different from the original interpretation. Here, we describe a set of strategies and an accompanying online tool, UP-TORR (for Updated Targets of RNAi Reagents; www.flyrnai.org/up-torr), useful for accurate and up-to-date annotation of cell-based and in vivo RNAi reagents. Importantly, UP-TORR automatically synchronizes with gene annotations daily, retrieving the most current information available, and for Drosophila, also synchronizes with the major reagent collections. Thus, UP-TORR allows users to choose the most appropriate RNAi reagents at the onset of a study, as well as to perform the most appropriate analyses of results of RNAi-based studies.

2013_Genetics_Hu.pdf Supplement.pdf
2012
Stephanie C Stotz and David E Clapham. 2012. “Anion-sensitive fluorophore identifies the Drosophila swell-activated chloride channel in a genome-wide RNA interference screen.” PLoS One, 7, 10, Pp. e46865.Abstract

When cells swell in hypo-osmotic solutions, chloride-selective ion channels (Cl(swell)) activate to reduce intracellular osmolality and prevent catastrophic cell rupture. Despite intensive efforts to assign a molecular identity to the mammalian Cl(swell) channel, it remains unknown. In an unbiased genome-wide RNA interference (RNAi) screen of Drosophila cells stably expressing an anion-sensitive fluorescent indicator, we identify Bestrophin 1 (dBest1) as the Drosophila Cl(swell) channel. Of the 23 screen hits with mammalian homologs and predicted transmembrane domains, only RNAi specifically targeting dBest1 eliminated the Cl(swell) current (I(Clswell)). We further demonstrate the essential contribution of dBest1 to Drosophila I(Clswell) with the introduction of a human Bestrophin disease-associated mutation (W94C). Overexpression of the W94C construct in Drosophila cells significantly reduced the endogenous I(Clswell). We confirm that exogenous expression of dBest1 alone in human embryonic kidney (HEK293) cells creates a clearly identifiable Drosophila-like I(Clswell). In contrast, activation of mouse Bestrophin 2 (mBest2), the closest mammalian ortholog of dBest1, is swell-insensitive. The first 64 residues of dBest1 conferred swell activation to mBest2. The chimera, however, maintains mBest2-like pore properties, strongly indicating that the Bestrophin protein forms the Cl(swell) channel itself rather than functioning as an essential auxiliary subunit. dBest1 is an anion channel clearly responsive to swell; this activation depends upon its N-terminus.

2012_PLOS One_Stotz.pdf Supplemental Files.zip
Ian T Flockhart, Matthew Booker, Yanhui Hu, Benjamin McElvany, Quentin Gilly, Bernard Mathey-Prevot, Norbert Perrimon, and Stephanie E Mohr. 2012. “FlyRNAi.org--the database of the Drosophila RNAi screening center: 2012 update.” Nucleic Acids Res, 40, Database issue, Pp. D715-9.Abstract

FlyRNAi (http://www.flyrnai.org), the database and website of the Drosophila RNAi Screening Center (DRSC) at Harvard Medical School, serves a dual role, tracking both production of reagents for RNA interference (RNAi) screening in Drosophila cells and RNAi screen results. The database and website is used as a platform for community availability of protocols, tools, and other resources useful to researchers planning, conducting, analyzing or interpreting the results of Drosophila RNAi screens. Based on our own experience and user feedback, we have made several changes. Specifically, we have restructured the database to accommodate new types of reagents; added information about new RNAi libraries and other reagents; updated the user interface and website; and added new tools of use to the Drosophila community and others. Overall, the result is a more useful, flexible and comprehensive website and database.

2012_Nuc Acids Res_Flockhart.pdf
Eric F Joyce, Benjamin R Williams, Tiao Xie, and C-Ting Wu. 2012. “Identification of genes that promote or antagonize somatic homolog pairing using a high-throughput FISH-based screen.” PLoS Genet, 8, 5, Pp. e1002667.Abstract

The pairing of homologous chromosomes is a fundamental feature of the meiotic cell. In addition, a number of species exhibit homolog pairing in nonmeiotic, somatic cells as well, with evidence for its impact on both gene regulation and double-strand break (DSB) repair. An extreme example of somatic pairing can be observed in Drosophila melanogaster, where homologous chromosomes remain aligned throughout most of development. However, our understanding of the mechanism of somatic homolog pairing remains unclear, as only a few genes have been implicated in this process. In this study, we introduce a novel high-throughput fluorescent in situ hybridization (FISH) technology that enabled us to conduct a genome-wide RNAi screen for factors involved in the robust somatic pairing observed in Drosophila. We identified both candidate "pairing promoting genes" and candidate "anti-pairing genes," providing evidence that pairing is a dynamic process that can be both enhanced and antagonized. Many of the genes found to be important for promoting pairing are highly enriched for functions associated with mitotic cell division, suggesting a genetic framework for a long-standing link between chromosome dynamics during mitosis and nuclear organization during interphase. In contrast, several of the candidate anti-pairing genes have known interphase functions associated with S-phase progression, DNA replication, and chromatin compaction, including several components of the condensin II complex. In combination with a variety of secondary assays, these results provide insights into the mechanism and dynamics of somatic pairing.

2012_PLOS Gene_Joyce.pdf Supplemental Files.zip

Pages