Data visualization

2017
Yanhui Hu, Arunachalam Vinayagam, Ankita Nand, Aram Comjean, Verena Chung, Tong Hao, Stephanie E Mohr, and Norbert Perrimon. 11/16/2017. “Molecular Interaction Search Tool (MIST): an integrated resource for mining gene and protein interaction data.” Nucleic Acids Res, 46, D1, Pp. D567-D574.Abstract
Model organism and human databases are rich with information about genetic and physical interactions. These data can be used to interpret and guide the analysis of results from new studies and develop new hypotheses. Here, we report the development of the Molecular Interaction Search Tool (MIST; http://fgrtools.hms.harvard.edu/MIST/). The MIST database integrates biological interaction data from yeast, nematode, fly, zebrafish, frog, rat and mouse model systems, as well as human. For individual or short gene lists, the MIST user interface can be used to identify interacting partners based on protein-protein and genetic interaction (GI) data from the species of interest as well as inferred interactions, known as interologs, and to view a corresponding network. The data, interologs and search tools at MIST are also useful for analyzing 'omics datasets. In addition to describing the integrated database, we also demonstrate how MIST can be used to identify an appropriate cut-off value that balances false positive and negative discovery, and present use-cases for additional types of analysis. Altogether, the MIST database and search tools support visualization and navigation of existing protein and GI data, as well as comparison of new and existing data.
gkx1116.pdf
Yanhui Hu, Aram Comjean, Stephanie E Mohr, The FlyBase Consortium, and Norbert Perrimon. 8/7/2017. “Gene2Function: An Integrated Online Resource for Gene Function Discovery.” G3 (Bethesda).Abstract
One of the most powerful ways to develop hypotheses regarding biological functions of conserved genes in a given species, such as in humans, is to first look at what is known about function in another species. Model organism databases (MODs) and other resources are rich with functional information but difficult to mine. Gene2Function (G2F) addresses a broad need by integrating information about conserved genes in a single online resource.
2017_G3_Hu.pdf Supplemental Methods.pdf Table S1.xlsx
AJ Copeland, A Comjean, N Perrimon, and SE Mohr. 5/15/2017. “Online view of high-content image data generated in the genome-wide screen described in Neumüller et al. 2013, "Conserved regulators of nucleolar size revealed by global phenotypic analyses," made possible using OMERO at HMS”.
2016
Arunachalam Vinayagam, Meghana M Kulkarni, Richelle Sopko, Xiaoyun Sun, Yanhui Hu, Ankita Nand, Christians Villalta, Ahmadali Moghimi, Xuemei Yang, Stephanie E Mohr, Pengyu Hong, John M Asara, and Norbert Perrimon. 9/13/2016. “An Integrative Analysis of the InR/PI3K/Akt Network Identifies the Dynamic Response to Insulin Signaling.” Cell Reports, 16, 11, Pp. 3062-3074.Abstract

Insulin regulates an essential conserved signaling pathway affecting growth, proliferation, and meta- bolism. To expand our understanding of the insulin pathway, we combine biochemical, genetic, and computational approaches to build a comprehensive Drosophila InR/PI3K/Akt network. First, we map the dynamic protein-protein interaction network sur- rounding the insulin core pathway using bait-prey interactions connecting 566 proteins. Combining RNAi screening and phospho-specific antibodies, we find that 47% of interacting proteins affect pathway activity, and, using quantitative phospho- proteomics, we demonstrate that $10% of interact- ing proteins are regulated by insulin stimulation at the level of phosphorylation. Next, we integrate these orthogonal datasets to characterize the structure and dynamics of the insulin network at the level of protein complexes and validate our method by iden- tifying regulatory roles for the Protein Phosphatase 2A (PP2A) and Reptin-Pontin chromatin-remodeling complexes as negative and positive regulators of ribosome biogenesis, respectively. Altogether, our study represents a comprehensive resource for the study of the evolutionary conserved insulin network. 

2016_Cell Rep_Vinayagam.pdf Supplement.pdf
Arunachalam Vinayagam, Travis E Gibson, Ho-Joon Lee, Bahar Yilmazel, Charles Roesel, Yanhui Hu, Young Kwon, Amitabh Sharma, Yang-Yu Liu, Norbert Perrimon, and Albert-László Barabási. 5/3/2016. “Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets.” Proc Natl Acad Sci U S A, 113, 18, Pp. 4976-81.Abstract

The protein-protein interaction (PPI) network is crucial for cellular information processing and decision-making. With suitable inputs, PPI networks drive the cells to diverse functional outcomes such as cell proliferation or cell death. Here, we characterize the structural controllability of a large directed human PPI network comprising 6,339 proteins and 34,813 interactions. This network allows us to classify proteins as "indispensable," "neutral," or "dispensable," which correlates to increasing, no effect, or decreasing the number of driver nodes in the network upon removal of that protein. We find that 21% of the proteins in the PPI network are indispensable. Interestingly, these indispensable proteins are the primary targets of disease-causing mutations, human viruses, and drugs, suggesting that altering a network's control property is critical for the transition between healthy and disease states. Furthermore, analyzing copy number alterations data from 1,547 cancer patients reveals that 56 genes that are frequently amplified or deleted in nine different cancers are indispensable. Among the 56 genes, 46 of them have not been previously associated with cancer. This suggests that controllability analysis is very useful in identifying novel disease genes and potential drug targets.

2016_PNAS_Vinayagam.pdf
2014
Richelle Sopko, Marianna Foos, Arunachalam Vinayagam, Bo Zhai, Richard Binari, Yanhui Hu, Sakara Randklev, Lizabeth A Perkins, Steven P Gygi, and Norbert Perrimon. 2014. “Combining genetic perturbations and proteomics to examine kinase-phosphatase networks in Drosophila embryos.” Dev Cell, 31, 1, Pp. 114-27.Abstract

Connecting phosphorylation events to kinases and phosphatases is key to understanding the molecular organization and signaling dynamics of networks. We have generated a validated set of transgenic RNA-interference reagents for knockdown and characterization of all protein kinases and phosphatases present during early Drosophila melanogaster development. These genetic tools enable collection of sufficient quantities of embryos depleted of single gene products for proteomics. As a demonstration of an application of the collection, we have used multiplexed isobaric labeling for quantitative proteomics to derive global phosphorylation signatures associated with kinase-depleted embryos to systematically link phosphosites with relevant kinases. We demonstrate how this strategy uncovers kinase consensus motifs and prioritizes phosphoproteins for kinase target validation. We validate this approach by providing auxiliary evidence for Wee kinase-directed regulation of the chromatin regulator Stonewall. Further, we show how correlative phosphorylation at the site level can indicate function, as exemplified by Sterile20-like kinase-dependent regulation of Stat92E.

2014_Dev Cell_Sopko.pdf Supplement.pdf
Arunachalam Vinayagam, Jonathan Zirin, Charles Roesel, Yanhui Hu, Bahar Yilmazel, Anastasia A Samsonova, Ralph A Neumüller, Stephanie E Mohr, and Norbert Perrimon. 2014. “Integrating protein-protein interaction networks with phenotypes reveals signs of interactions.” Nat Methods, 11, 1, Pp. 94-9.Abstract

A major objective of systems biology is to organize molecular interactions as networks and to characterize information flow within networks. We describe a computational framework to integrate protein-protein interaction (PPI) networks and genetic screens to predict the 'signs' of interactions (i.e., activation-inhibition relationships). We constructed a Drosophila melanogaster signed PPI network consisting of 6,125 signed PPIs connecting 3,352 proteins that can be used to identify positive and negative regulators of signaling pathways and protein complexes. We identified an unexpected role for the metabolic enzymes enolase and aldo-keto reductase as positive and negative regulators of proteolysis, respectively. Characterization of the activation-inhibition relationships between physically interacting proteins within signaling pathways will affect our understanding of many biological functions, including signal transduction and mechanisms of disease.

2014_Nat Methods_Vinayagam.pdf Supplemental Files.zip
Stephanie E Mohr. 2014. “RNAi screening in Drosophila cells and in vivo.” Methods, 68, 1, Pp. 82-8.Abstract

Here, I discuss how RNAi screening can be used effectively to uncover gene function. Specifically, I discuss the types of high-throughput assays that can be done in Drosophila cells and in vivo, RNAi reagent design and available reagent collections, automated screen pipelines, analysis of screen results, and approaches to RNAi results verification.

2014_Methods_Mohr.pdf
2013
Ralph A Neumüller, Thomas Gross, Anastasia A Samsonova, Arunachalam Vinayagam, Michael Buckner, Karen Founk, Yanhui Hu, Sara Sharifpoor, Adam P Rosebrock, Brenda Andrews, Fred Winston, and Norbert Perrimon. 2013. “Conserved regulators of nucleolar size revealed by global phenotypic analyses.” Sci Signal, 6, 289, Pp. ra70.Abstract

Regulation of cell growth is a fundamental process in development and disease that integrates a vast array of extra- and intracellular information. A central player in this process is RNA polymerase I (Pol I), which transcribes ribosomal RNA (rRNA) genes in the nucleolus. Rapidly growing cancer cells are characterized by increased Pol I-mediated transcription and, consequently, nucleolar hypertrophy. To map the genetic network underlying the regulation of nucleolar size and of Pol I-mediated transcription, we performed comparative, genome-wide loss-of-function analyses of nucleolar size in Saccharomyces cerevisiae and Drosophila melanogaster coupled with mass spectrometry-based analyses of the ribosomal DNA (rDNA) promoter. With this approach, we identified a set of conserved and nonconserved molecular complexes that control nucleolar size. Furthermore, we characterized a direct role of the histone information regulator (HIR) complex in repressing rRNA transcription in yeast. Our study provides a full-genome, cross-species analysis of a nuclear subcompartment and shows that this approach can identify conserved molecular modules.

2013_Sci Sig_Neumuller.pdf Supplemental Files.zip
Young Kwon, Arunachalam Vinayagam, Xiaoyun Sun, Noah Dephoure, Steven P Gygi, Pengyu Hong, and Norbert Perrimon. 2013. “The Hippo signaling pathway interactome.” Science, 342, 6159, Pp. 737-40.Abstract

The Hippo pathway controls metazoan organ growth by regulating cell proliferation and apoptosis. Many components have been identified, but our knowledge of the composition and structure of this pathway is still incomplete. Using existing pathway components as baits, we generated by mass spectrometry a high-confidence Drosophila Hippo protein-protein interaction network (Hippo-PPIN) consisting of 153 proteins and 204 interactions. Depletion of 67% of the proteins by RNA interference regulated the transcriptional coactivator Yorkie (Yki) either positively or negatively. We selected for further characterization a new member of the alpha-arrestin family, Leash, and show that it promotes degradation of Yki through the lysosomal pathway. Given the importance of the Hippo pathway in tumor development, the Hippo-PPIN will contribute to our understanding of this network in both normal growth and cancer.

2013_Science_Kwon.pdf Supplemental Files.zip
Arunachalam Vinayagam, Yanhui Hu, Meghana Kulkarni, Charles Roesel, Richelle Sopko, Stephanie E Mohr, and Norbert Perrimon. 2013. “Protein complex-based analysis framework for high-throughput data sets.” Sci Signal, 6, 264, Pp. rs5.Abstract

Analysis of high-throughput data increasingly relies on pathway annotation and functional information derived from Gene Ontology. This approach has limitations, in particular for the analysis of network dynamics over time or under different experimental conditions, in which modules within a network rather than complete pathways might respond and change. We report an analysis framework based on protein complexes, which are at the core of network reorganization. We generated a protein complex resource for human, Drosophila, and yeast from the literature and databases of protein-protein interaction networks, with each species having thousands of complexes. We developed COMPLEAT (http://www.flyrnai.org/compleat), a tool for data mining and visualization for complex-based analysis of high-throughput data sets, as well as analysis and integration of heterogeneous proteomics and gene expression data sets. With COMPLEAT, we identified dynamically regulated protein complexes among genome-wide RNA interference data sets that used the abundance of phosphorylated extracellular signal-regulated kinase in cells stimulated with either insulin or epidermal growth factor as the output. The analysis predicted that the Brahma complex participated in the insulin response.

2013_Sci Sig_Vinayagam.pdf Supplemental Files.zip
2012
Mar Arias Garcia, Miguel Sanchez Alvarez, Heba Sailem, Vicky Bousgouni, Julia Sero, and Chris Bakal. 2012. “Differential RNAi screening provides insights into the rewiring of signalling networks during oxidative stress.” Mol Biosyst, 8, 10, Pp. 2605-13.Abstract

Reactive Oxygen Species (ROS) are a natural by-product of cellular growth and proliferation, and are required for fundamental processes such as protein-folding and signal transduction. However, ROS accumulation, and the onset of oxidative stress, can negatively impact cellular and genomic integrity. Signalling networks have evolved to respond to oxidative stress by engaging diverse enzymatic and non-enzymatic antioxidant mechanisms to restore redox homeostasis. The architecture of oxidative stress response networks during periods of normal growth, and how increased ROS levels dynamically reconfigure these networks are largely unknown. In order to gain insight into the structure of signalling networks that promote redox homeostasis we first performed genome-scale RNAi screens to identify novel suppressors of superoxide accumulation. We then infer relationships between redox regulators by hierarchical clustering of phenotypic signatures describing how gene inhibition affects superoxide levels, cellular viability, and morphology across different genetic backgrounds. Genes that cluster together are likely to act in the same signalling pathway/complex and thus make "functional interactions". Moreover we also calculate differential phenotypic signatures describing the difference in cellular phenotypes following RNAi between untreated cells and cells submitted to oxidative stress. Using both phenotypic signatures and differential signatures we construct a network model of functional interactions that occur between components of the redox homeostasis network, and how such interactions become rewired in the presence of oxidative stress. This network model predicts a functional interaction between the transcription factor Jun and the IRE1 kinase, which we validate in an orthogonal assay. We thus demonstrate the ability of systems-biology approaches to identify novel signalling events.

2012_Mol BioSys_Garcia.pdf Supplemental Files.zip
Ian T Flockhart, Matthew Booker, Yanhui Hu, Benjamin McElvany, Quentin Gilly, Bernard Mathey-Prevot, Norbert Perrimon, and Stephanie E Mohr. 2012. “FlyRNAi.org--the database of the Drosophila RNAi screening center: 2012 update.” Nucleic Acids Res, 40, Database issue, Pp. D715-9.Abstract

FlyRNAi (http://www.flyrnai.org), the database and website of the Drosophila RNAi Screening Center (DRSC) at Harvard Medical School, serves a dual role, tracking both production of reagents for RNA interference (RNAi) screening in Drosophila cells and RNAi screen results. The database and website is used as a platform for community availability of protocols, tools, and other resources useful to researchers planning, conducting, analyzing or interpreting the results of Drosophila RNAi screens. Based on our own experience and user feedback, we have made several changes. Specifically, we have restructured the database to accommodate new types of reagents; added information about new RNAi libraries and other reagents; updated the user interface and website; and added new tools of use to the Drosophila community and others. Overall, the result is a more useful, flexible and comprehensive website and database.

2012_Nuc Acids Res_Flockhart.pdf
Stephanie E Mohr and Norbert Perrimon. 2012. “RNAi screening: new approaches, understandings, and organisms.” Wiley Interdiscip Rev RNA, 3, 2, Pp. 145-58.Abstract

RNA interference (RNAi) leads to sequence-specific knockdown of gene function. The approach can be used in large-scale screens to interrogate function in various model organisms and an increasing number of other species. Genome-scale RNAi screens are routinely performed in cultured or primary cells or in vivo in organisms such as C. elegans. High-throughput RNAi screening is benefitting from the development of sophisticated new instrumentation and software tools for collecting and analyzing data, including high-content image data. The results of large-scale RNAi screens have already proved useful, leading to new understandings of gene function relevant to topics such as infection, cancer, obesity, and aging. Nevertheless, important caveats apply and should be taken into consideration when developing or interpreting RNAi screens. Some level of false discovery is inherent to high-throughput approaches and specific to RNAi screens, false discovery due to off-target effects (OTEs) of RNAi reagents remains a problem. The need to improve our ability to use RNAi to elucidate gene function at large scale and in additional systems continues to be addressed through improved RNAi library design, development of innovative computational and analysis tools and other approaches.

2012_Wiley Interdis Rev_Mohr.pdf
2011
Adam A Friedman, George Tucker, Rohit Singh, Dong Yan, Arunachalam Vinayagam, Yanhui Hu, Richard Binari, Pengyu Hong, Xiaoyun Sun, Maura Porto, Svetlana Pacifico, Thilakam Murali, Russell L Finley, John M Asara, Bonnie Berger, and Norbert Perrimon. 2011. “Proteomic and functional genomic landscape of receptor tyrosine kinase and ras to extracellular signal-regulated kinase signaling.” Sci Signal, 4, 196, Pp. rs10.Abstract

Characterizing the extent and logic of signaling networks is essential to understanding specificity in such physiological and pathophysiological contexts as cell fate decisions and mechanisms of oncogenesis and resistance to chemotherapy. Cell-based RNA interference (RNAi) screens enable the inference of large numbers of genes that regulate signaling pathways, but these screens cannot provide network structure directly. We describe an integrated network around the canonical receptor tyrosine kinase (RTK)-Ras-extracellular signal-regulated kinase (ERK) signaling pathway, generated by combining parallel genome-wide RNAi screens with protein-protein interaction (PPI) mapping by tandem affinity purification-mass spectrometry. We found that only a small fraction of the total number of PPI or RNAi screen hits was isolated under all conditions tested and that most of these represented the known canonical pathway components, suggesting that much of the core canonical ERK pathway is known. Because most of the newly identified regulators are likely cell type- and RTK-specific, our analysis provides a resource for understanding how output through this clinically relevant pathway is regulated in different contexts. We report in vivo roles for several of the previously unknown regulators, including CG10289 and PpV, the Drosophila orthologs of two components of the serine/threonine-protein phosphatase 6 complex; the Drosophila ortholog of TepIV, a glycophosphatidylinositol-linked protein mutated in human cancers; CG6453, a noncatalytic subunit of glucosidase II; and Rtf1, a histone methyltransferase.

2011_Sci Sig_Friedman.pdf Supplemental Files.zip
Ralph A Neumüller and Norbert Perrimon. 2011. “Where gene discovery turns into systems biology: genome-scale RNAi screens in Drosophila.” Wiley Interdiscip Rev Syst Biol Med, 3, 4, Pp. 471-8.Abstract

Systems biology aims to describe the complex interplays between cellular building blocks which, in their concurrence, give rise to the emergent properties observed in cellular behaviors and responses. This approach tries to determine the molecular players and the architectural principles of their interactions within the genetic networks that control certain biological processes. Large-scale loss-of-function screens, applicable in various different model systems, have begun to systematically interrogate entire genomes to identify the genes that contribute to a certain cellular response. In particular, RNA interference (RNAi)-based high-throughput screens have been instrumental in determining the composition of regulatory systems and paired with integrative data analyses have begun to delineate the genetic networks that control cell biological and developmental processes. Through the creation of tools for both, in vitro and in vivo genome-wide RNAi screens, Drosophila melanogaster has emerged as one of the key model organisms in systems biology research and over the last years has massively contributed to and hence shaped this discipline. WIREs Syst Biol Med 2011 3 471-478 DOI: 10.1002/wsbm.127

2011_Wiley_Neumuller.pdf
2010
Stephanie Mohr, Chris Bakal, and Norbert Perrimon. 2010. “Genomic screening with RNAi: results and challenges.” Annu Rev Biochem, 79, Pp. 37-64.Abstract

RNA interference (RNAi) is an effective tool for genome-scale, high-throughput analysis of gene function. In the past five years, a number of genome-scale RNAi high-throughput screens (HTSs) have been done in both Drosophila and mammalian cultured cells to study diverse biological processes, including signal transduction, cancer biology, and host cell responses to infection. Results from these screens have led to the identification of new components of these processes and, importantly, have also provided insights into the complexity of biological systems, forcing new and innovative approaches to understanding functional networks in cells. Here, we review the main findings that have emerged from RNAi HTS and discuss technical issues that remain to be improved, in particular the verification of RNAi results and validation of their biological relevance. Furthermore, we discuss the importance of multiplexed and integrated experimental data analysis pipelines to RNAi HTS.

2010_Annu Rev Biochem_Mohr.pdf
Philippos Mourikis, Robert J Lake, Christopher B Firnhaber, and Brian S DeDecker. 2010. “Modifiers of notch transcriptional activity identified by genome-wide RNAi.” BMC Dev Biol, 10, Pp. 107.Abstract

BACKGROUND: The Notch signaling pathway regulates a diverse array of developmental processes, and aberrant Notch signaling can lead to diseases, including cancer. To obtain a more comprehensive understanding of the genetic network that integrates into Notch signaling, we performed a genome-wide RNAi screen in Drosophila cell culture to identify genes that modify Notch-dependent transcription. RESULTS: Employing complementary data analyses, we found 399 putative modifiers: 189 promoting and 210 antagonizing Notch activated transcription. These modifiers included several known Notch interactors, validating the robustness of the assay. Many novel modifiers were also identified, covering a range of cellular localizations from the extracellular matrix to the nucleus, as well as a large number of proteins with unknown function. Chromatin-modifying proteins represent a major class of genes identified, including histone deacetylase and demethylase complex components and other chromatin modifying, remodeling and replacement factors. A protein-protein interaction map of the Notch-dependent transcription modifiers revealed that a large number of the identified proteins interact physically with these core chromatin components. CONCLUSIONS: The genome-wide RNAi screen identified many genes that can modulate Notch transcriptional output. A protein interaction map of the identified genes highlighted a network of chromatin-modifying enzymes and remodelers that regulate Notch transcription. Our results open new avenues to explore the mechanisms of Notch signal regulation and the integration of this pathway into diverse cellular processes.

2010_BMC Dev Bio_Mourikis.pdf Supplemental Files.zip
2009
Dashnamoorthy Ravi, Amy M Wiles, Selvaraj Bhavani, Jianhua Ruan, Philip Leder, and Alexander JR Bishop. 2009. “A network of conserved damage survival pathways revealed by a genomic RNAi screen.” PLoS Genet, 5, 6, Pp. e1000527.Abstract

Damage initiates a pleiotropic cellular response aimed at cellular survival when appropriate. To identify genes required for damage survival, we used a cell-based RNAi screen against the Drosophila genome and the alkylating agent methyl methanesulphonate (MMS). Similar studies performed in other model organisms report that damage response may involve pleiotropic cellular processes other than the central DNA repair components, yet an intuitive systems level view of the cellular components required for damage survival, their interrelationship, and contextual importance has been lacking. Further, by comparing data from different model organisms, identification of conserved and presumably core survival components should be forthcoming. We identified 307 genes, representing 13 signaling, metabolic, or enzymatic pathways, affecting cellular survival of MMS-induced damage. As expected, the majority of these pathways are involved in DNA repair; however, several pathways with more diverse biological functions were also identified, including the TOR pathway, transcription, translation, proteasome, glutathione synthesis, ATP synthesis, and Notch signaling, and these were equally important in damage survival. Comparison with genomic screen data from Saccharomyces cerevisiae revealed no overlap enrichment of individual genes between the species, but a conservation of the pathways. To demonstrate the functional conservation of pathways, five were tested in Drosophila and mouse cells, with each pathway responding to alkylation damage in both species. Using the protein interactome, a significant level of connectivity was observed between Drosophila MMS survival proteins, suggesting a higher order relationship. This connectivity was dramatically improved by incorporating the components of the 13 identified pathways within the network. Grouping proteins into "pathway nodes" qualitatively improved the interactome organization, revealing a highly organized "MMS survival network." We conclude that identification of pathways can facilitate comparative biology analysis when direct gene/orthologue comparisons fail. A biologically intuitive, highly interconnected MMS survival network was revealed after we incorporated pathway data in our interactome analysis.

2009_PLOS Gen_Dashnamoorthy.pdf Supplemental Files.zip

Pages