Publications

2020
Jonathan Zirin, Yanhui Hu, Luping Liu, Donghui Yang-Zhou, Ryan Colbeth, Dong Yan, Ben Ewen-Campen, Rong Tao, Eric Vogt, Sara VanNest, Cooper Cavers, Christians Villalta, Aram Comjean, Jin Sun, Xia Wang, Yu Jia, Ruibao Zhu, Ping Peng, Jinchao Yu, Da Shen, Yuhao Qiu, Limmond Ayisi, Henna Ragoowansi, Ethan Fenton, Senait Efrem, Annette Parks, Kuniaki Saito, Shu Kondo, Liz Perkins, Stephanie E Mohr, Jianquan Ni, and Norbert Perrimon. 2020. “Large-Scale Transgenic Resource Collections for Loss- and Gain-of-Function Studies.” Genetics.Abstract
The Transgenic RNAi Project (TRiP), a functional genomics platform at Harvard Medical School, was initiated in 2008 to generate and distribute a genome-scale collection of RNAi fly stocks. To date, the TRiP has generated >15,000 RNAi fly stocks. As this covers most genes, we have largely transitioned to development of new resources based on CRISPR technology. Here, we present an update on our libraries of publicly available RNAi and CRISPR fly stocks, and focus on the TRiP-CRISPR overexpression (TRiP-OE) and TRiP-CRISPR knockout (TRiP-KO) collections. TRiP-OE stocks express sgRNAs targeting upstream of a gene transcription start site. Gene activation is triggered by co-expression of catalytically dead Cas9 (dCas9) fused to an activator domain, either VP64-p65-Rta (VPR) or Synergistic Activation Mediator (SAM). TRiP-KO stocks express one or two sgRNAs targeting the coding sequence of a gene or genes. Cutting is triggered by co-expression of Cas9, allowing for generation of indels in both germline and somatic tissue. To date, we have generated more than 5,000 CRISPR-OE or -KO stocks for the community. These resources provide versatile, transformative tools for gene activation, gene repression, and genome engineering.
Yanhui Hu, Verena Chung, Aram Comjean, Jonathan Rodiger, Fnu Nipun, Norbert Perrimon, and Stephanie E Mohr. 2020. “BioLitMine: Advanced Mining of Biomedical and Biological Literature About Human Genes and Genes from Major Model Organisms.” G3 (Bethesda).Abstract
The accumulation of biological and biomedical literature outpaces the ability of most researchers and clinicians to stay abreast of their own immediate fields, let alone a broader range of topics. Although available search tools support identification of relevant literature, finding relevant and key publications is not always straightforward. For example, important publications might be missed in searches with an official gene name due to gene synonyms. Moreover, ambiguity of gene names can result in retrieval of a large number of irrelevant publications. To address these issues and help researchers and physicians quickly identify relevant publications, we developed BioLitMine, an advanced literature mining tool that takes advantage of the medical subject heading (MeSH) index and gene-to-publication annotations already available for PubMed literature. Using BioLitMine, a user can identify what MeSH terms are represented in the set of publications associated with a given gene of the interest, or start with a term and identify relevant publications. Users can also use the tool to find co-cited genes and a build a literature co-citation network. In addition, BioLitMine can help users build a gene list relevant to a MeSH terms, such as a list of genes relevant to "stem cells" or "breast neoplasms." Users can also start with a gene or pathway of interest and identify authors associated with that gene or pathway, a feature that makes it easier to identify experts who might serve as collaborators or reviewers. Altogether, BioLitMine extends the value of PubMed-indexed literature and its existing expert curation by providing a robust and gene-centric approach to retrieval of relevant information.
Baolong Xia, Gabriel Amador, Raghuvir Viswanatha, Jonathan Zirin, Stephanie E Mohr, and Norbert Perrimon. 2020. “CRISPR-based engineering of gene knockout cells by homology-directed insertion in polyploid Drosophila S2R+ cells.” Nat Protoc, 15, 10, Pp. 3478-3498.Abstract
Precise and efficient genome modifications provide powerful tools for biological studies. Previous CRISPR gene knockout methods in cell lines have relied on frameshifts caused by stochastic insertion/deletion in all alleles. However, this method is inefficient for genes with high copy number due to polyploidy or gene amplification because frameshifts in all alleles can be difficult to generate and detect. Here we describe a homology-directed insertion method to knockout genes in the polyploid Drosophila S2R+ cell line. This protocol allows generation of homozygous mutant cell lines using an insertion cassette which autocatalytically generates insertion mutations in all alleles. Knockout cells generated using this method can be directly identified by PCR without a need for DNA sequencing. This protocol takes 2-3 months and can be applied to other polyploid cell lines or high-copy-number genes.
Yanhui Hu, Aram Comjean, Jonathan Rodiger, Yifang Liu, Yue Gao, Verena Chung, Jonathan Zirin, Norbert Perrimon, and Stephanie E Mohr. 2020. “FlyRNAi.org-the database of the Drosophila RNAi screening center and transgenic RNAi project: 2021 update.” Nucleic Acids Res.Abstract
The FlyRNAi database at the Drosophila RNAi Screening Center and Transgenic RNAi Project (DRSC/TRiP) provides a suite of online resources that facilitate functional genomics studies with a special emphasis on Drosophila melanogaster. Currently, the database provides: gene-centric resources that facilitate ortholog mapping and mining of information about orthologs in common genetic model species; reagent-centric resources that help researchers identify RNAi and CRISPR sgRNA reagents or designs; and data-centric resources that facilitate visualization and mining of transcriptomics data, protein modification data, protein interactions, and more. Here, we discuss updated and new features that help biological and biomedical researchers efficiently identify, visualize, analyze, and integrate information and data for Drosophila and other species. Together, these resources facilitate multiple steps in functional genomics workflows, from building gene and reagent lists to management, analysis, and integration of data.
gkaa936.pdf
Justin A Bosch, Shannon Knight, Oguz Kanca, Jonathan Zirin, Donghui Yang-Zhou, Yanhui Hu, Jonathan Rodiger, Gabriel Amador, Hugo J Bellen, Norbert Perrimon, and Stephanie E Mohr. 2020. “Use of the CRISPR-Cas9 System in Drosophila Cultured Cells to Introduce Fluorescent Tags into Endogenous Genes.” Curr Protoc Mol Biol, 130, 1, Pp. e112.Abstract
The CRISPR-Cas9 system makes it possible to cause double-strand breaks in specific regions, inducing repair. In the presence of a donor construct, repair can involve insertion or 'knock-in' of an exogenous cassette. One common application of knock-in technology is to generate cell lines expressing fluorescently tagged endogenous proteins. The standard approach relies on production of a donor plasmid with ∼500 to 1000 bp of homology on either side of an insertion cassette that contains the fluorescent protein open reading frame (ORF). We present two alternative methods for knock-in of fluorescent protein ORFs into Cas9-expressing Drosophila S2R+ cultured cells, the single-stranded DNA (ssDNA) Drop-In method and the CRISPaint universal donor method. Both methods eliminate the need to clone a large plasmid donor for each target. We discuss the advantages and limitations of the standard, ssDNA Drop-In, and CRISPaint methods for fluorescent protein tagging in Drosophila cultured cells. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Knock-in into Cas9-positive S2R+ cells using the ssDNA Drop-In approach Basic Protocol 2: Knock-in into Cas9-positive S2R+ cells by homology-independent insertion of universal donor plasmids that provide mNeonGreen (CRISPaint method) Support Protocol 1: sgRNA design and cloning Support Protocol 2: ssDNA donor synthesis Support Protocol 3: Transfection using Effectene Support Protocol 4: Electroporation of S2R+-MT::Cas9 Drosophila cells Support Protocol 5: Single-cell isolation of fluorescent cells using FACS.
2019
Stephanie E. Mohr and Norbert Perrimon. 9/27/2019. “Drosophila melanogaster: a simple system for understanding complexity.” Dis Model Mech, 12, 10. Publisher's VersionAbstract

Understanding human gene function is fundamental to understanding and treating diseases. Research using the model organism Drosophila melanogaster benefits from a wealth of molecular genetic resources and information useful for efficient in vivo experimentation. Moreover, Drosophila offers a balance as a relatively simple organism that nonetheless exhibits complex multicellular activities. Recent examples demonstrate the power and continued promise of Drosophila research to further our understanding of conserved gene functions.

2019_DMM_Mohr.pdf
Justin A. Bosch, Ryan Colbeth, Jonathan Zirin, and Norbert Perrimon. 5/16/2019. “Gene knock-ins in Drosophila using homology-independent insertion of universal donor plasmids.” BioRxiv. Publisher's Version 2019_BioRxiv_Bosch .pdf
Spencer E. Escobedo, Jonathan Zirin, and Vikki M. Weake. 4/4/2019. “TRiP stocks contain a previously uncharacterized loss-of-function sevenless allele.” microPublication Biology. Publisher's Version escobedotripsev_lof_2019_final.pdf
Oguz Kanca, Jonathan Zirin, Jorge Garcia-Marques, Shannon Marie Knight, Donghui Yang-Zhou, Gabriel Amador, Hyunglok Chung, Zhongyuan Zuo, Liwen Ma, Yuchun He, Wen-Wen Lin, Ying Fang, Ming Ge, Shinya Yamamoto, Karen L Schulze, Yanhui Hu, Allan C Spradling, Stephanie E Mohr, Norbert Perrimon, and Hugo J Bellen. 2019. “An efficient CRISPR-based strategy to insert small and large fragments of DNA using short homology arms.” Elife, 8.Abstract
We previously reported a CRISPR-mediated knock-in strategy into introns of genes, generating an - transgenic library for multiple uses (Lee et al., 2018b). The method relied on double stranded DNA (dsDNA) homology donors with ~1 kb homology arms. Here, we describe three new simpler ways to edit genes in flies. We create single stranded DNA (ssDNA) donors using PCR and add 100 nt of homology on each side of an integration cassette, followed by enzymatic removal of one strand. Using this method, we generated GFP-tagged proteins that mark organelles in S2 cells. We then describe two dsDNA methods using cheap synthesized donors flanked by 100 nt homology arms and gRNA target sites cloned into a plasmid. Upon injection, donor DNA (1 to 5 kb) is released from the plasmid by Cas9. The cassette integrates efficiently and precisely . The approach is fast, cheap, and scalable.
elife-51539-v2.pdf
Hilary E Nicholson, Zeshan Tariq, Benjamin E Housden, Rebecca B Jennings, Laura A Stransky, Norbert Perrimon, Sabina Signoretti, and William G Kaelin. 2019. “HIF-independent synthetic lethality between CDK4/6 inhibition and VHL loss across species.” Sci Signal, 12, 601.Abstract
Inactivation of the tumor suppressor gene is the signature initiating event in clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, and causes the accumulation of hypoxia-inducible factor 2α (HIF-2α). HIF-2α inhibitors are effective in some ccRCC cases, but both de novo and acquired resistance have been observed in the laboratory and in the clinic. Here, we identified synthetic lethality between decreased activity of cyclin-dependent kinases 4 and 6 (CDK4/6) and inactivation in two species (human and ) and across diverse human ccRCC cell lines in culture and xenografts. Although HIF-2α transcriptionally induced the CDK4/6 partner cyclin D1, HIF-2α was not required for the increased CDK4/6 requirement of ccRCC cells. Accordingly, the antiproliferative effects of CDK4/6 inhibition were synergistic with HIF-2α inhibition in HIF-2α-dependent ccRCC cells and not antagonistic with HIF-2α inhibition in HIF-2α-independent cells. These findings support testing CDK4/6 inhibitors as treatments for ccRCC, alone and in combination with HIF-2α inhibitors.
Yanhui Hu, Richelle Sopko, Verena Chung, Marianna Foos, Romain A Studer, Sean D Landry, Daniel Liu, Leonard Rabinow, Florian Gnad, Pedro Beltrao, and Norbert Perrimon. 2019. “iProteinDB: An Integrative Database of Post-translational Modifications.” G3 (Bethesda), 9, 1, Pp. 1-11.Abstract
Post-translational modification (PTM) serves as a regulatory mechanism for protein function, influencing their stability, interactions, activity and localization, and is critical in many signaling pathways. The best characterized PTM is phosphorylation, whereby a phosphate is added to an acceptor residue, most commonly serine, threonine and tyrosine in metazoans. As proteins are often phosphorylated at multiple sites, identifying those sites that are important for function is a challenging problem. Considering that any given phosphorylation site might be non-functional, prioritizing evolutionarily conserved phosphosites provides a general strategy to identify the putative functional sites. To facilitate the identification of conserved phosphosites, we generated a large-scale phosphoproteomics dataset from embryos collected from six closely-related species. We built iProteinDB (https://www.flyrnai.org/tools/iproteindb/), a resource integrating these data with other high-throughput PTM datasets, including vertebrates, and manually curated information for At iProteinDB, scientists can view the PTM landscape for any protein and identify predicted functional phosphosites based on a comparative analysis of data from closely-related species. Further, iProteinDB enables comparison of PTM data from to that of orthologous proteins from other model organisms, including human, mouse, rat, , , and .
iProteinDB-G3-journal.pdf
Andrey A Parkhitko, Patrick Jouandin, Stephanie E Mohr, and Norbert Perrimon. 2019. “Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species.” Aging Cell, Pp. e13034.Abstract
Methionine restriction (MetR) extends lifespan across different species and exerts beneficial effects on metabolic health and inflammatory responses. In contrast, certain cancer cells exhibit methionine auxotrophy that can be exploited for therapeutic treatment, as decreasing dietary methionine selectively suppresses tumor growth. Thus, MetR represents an intervention that can extend lifespan with a complementary effect of delaying tumor growth. Beyond its function in protein synthesis, methionine feeds into complex metabolic pathways including the methionine cycle, the transsulfuration pathway, and polyamine biosynthesis. Manipulation of each of these branches extends lifespan; however, the interplay between MetR and these branches during regulation of lifespan is not well understood. In addition, a potential mechanism linking the activity of methionine metabolism and lifespan is regulation of production of the methyl donor S-adenosylmethionine, which, after transferring its methyl group, is converted to S-adenosylhomocysteine. Methylation regulates a wide range of processes, including those thought to be responsible for lifespan extension by MetR. Although the exact mechanisms of lifespan extension by MetR or methionine metabolism reprogramming are unknown, it may act via reducing the rate of translation, modifying gene expression, inducing a hormetic response, modulating autophagy, or inducing mitochondrial function, antioxidant defense, or other metabolic processes. Here, we review the mechanisms of lifespan extension by MetR and different branches of methionine metabolism in different species and the potential for exploiting the regulation of methyltransferases to delay aging.
Raghuvir Viswanatha, Roderick Brathwaite, Yanhui Hu, Zhongchi Li, Jonathan Rodiger, Pierre Merckaert, Verena Chung, Stephanie E Mohr, and Norbert Perrimon. 2019. “Pooled CRISPR Screens in Drosophila Cells.” Curr Protoc Mol Biol, 129, 1, Pp. e111.Abstract
High-throughput screens in Drosophila melanogaster cell lines have led to discovery of conserved gene functions related to signal transduction, host-pathogen interactions, ion transport, and more. CRISPR/Cas9 technology has opened the door to new types of large-scale cell-based screens. Whereas array-format screens require liquid handling automation and assay miniaturization, pooled-format screens, in which reagents are introduced at random and in bulk, can be done in a standard lab setting. We provide a detailed protocol for conducting and evaluating genome-wide CRISPR single guide RNA (sgRNA) pooled screens in Drosophila S2R+ cultured cells. Specifically, we provide step-by-step instructions for library design and production, optimization of cytotoxin-based selection assays, genome-scale screening, and data analysis. This type of project takes ∼3 months to complete. Results can be used in follow-up studies performed in vivo in Drosophila, mammalian cells, and/or other systems. © 2019 by John Wiley & Sons, Inc. Basic Protocol: Pooled-format screening with Cas9-expressing Drosophila S2R+ cells in the presence of cytotoxin Support Protocol 1: Optimization of cytotoxin concentration for Drosophila cell screening Support Protocol 2: CRISPR sgRNA library design and production for Drosophila cell screening Support Protocol 3: Barcode deconvolution and analysis of screening data.
Michael D Rotelli, Anna M Bolling, Andrew W Killion, Abraham J Weinberg, Michael J Dixon, and Brian R Calvi. 2019. “An RNAi Screen for Genes Required for Growth of Wing Tissue.” G3 (Bethesda), 9, 10, Pp. 3087-3100.Abstract
Cell division and tissue growth must be coordinated with development. Defects in these processes are the basis for a number of diseases, including developmental malformations and cancer. We have conducted an unbiased RNAi screen for genes that are required for growth in the wing, using GAL4-inducible short hairpin RNA (shRNA) fly strains made by the Drosophila RNAi Screening Center. shRNA expression down the center of the larval wing disc using , and the central region of the adult wing was then scored for tissue growth and wing hair morphology. Out of 4,753 shRNA crosses that survived to adulthood, 18 had impaired wing growth. FlyBase and the new Alliance of Genome Resources knowledgebases were used to determine the known or predicted functions of these genes and the association of their human orthologs with disease. The function of eight of the genes identified has not been previously defined in The genes identified included those with known or predicted functions in cell cycle, chromosome segregation, morphogenesis, metabolism, steroid processing, transcription, and translation. All but one of the genes are similar to those in humans, and many are associated with disease. Knockdown of , a subunit of the Myb-MuvB transcription factor, or β, a gene involved in protein folding and trafficking, resulted in a switch from cell proliferation to an endoreplication growth program through which wing tissue grew by an increase in cell size (hypertrophy). It is anticipated that further analysis of the genes that we have identified will reveal new mechanisms that regulate tissue growth during development.
3087.full_.pdf
Chiao-Lin Chen, Jonathan Rodiger, Verena Chung, Raghuvir Viswanatha, Stephanie E Mohr, Yanhui Hu, and Norbert Perrimon. 2019. “SNP-CRISPR: A Web Tool for SNP-Specific Genome Editing.” G3 (Bethesda).Abstract
CRISPR-Cas9 is a powerful genome editing technology in which a short guide RNA (sgRNA) confers target site specificity to achieve Cas9-mediated genome editing. Numerous sgRNA design tools have been developed based on reference genomes for humans and model organisms. However, existing resources are not optimal as genetic mutations or single nucleotide polymorphisms (SNPs) within the targeting region affect the efficiency of CRISPR-based approaches by interfering with guide-target complementarity. To facilitate identification of sgRNAs (1) in non-reference genomes, (2) across varying genetic backgrounds, or (3) for specific targeting of SNP-containing alleles, for example, disease relevant mutations, we developed a web tool, SNP-CRISPR (https://www.flyrnai.org/tools/snp_crispr/). SNP-CRISPR can be used to design sgRNAs based on public variant data sets or user-identified variants. In addition, the tool computes efficiency and specificity scores for sgRNA designs targeting both the variant and the reference. Moreover, SNP-CRISPR provides the option to upload multiple SNPs and target single or multiple nearby base changes simultaneously with a single sgRNA design. Given these capabilities, SNP-CRISPR has a wide range of potential research applications in model systems and potential applications for design of sgRNAs for disease-associated mutant correction.
2018
R. Hung, Y. Hu, R. Kirchner, Fengge Li, C. Xu, A. Comjean, S.G. Tattikota, W.R. Song, S. Ho Sui, and N. Perrimon. 9/8/2018. “Data portal for "A cell atlas of the adult Drosophila midgut" (BioRxiv)”. Click here to access data portal.
Raghuvir Viswanatha, Aram Comjean, and Norbert Perrimon. 8/10/2018. “Raw data download access for: Viswanatha et al. 2018 eLife "Pooled genome-wide CRISPR screening .."”. Click here to access links to raw data files
Raghuvir Viswanatha, Zhongchi Li, Yanhui Hu, and Norbert Perrimon. 7/27/2018. “Pooled genome-wide CRISPR screening for basal and context-specific fitness gene essentiality in cells.” Elife, 7.Abstract
Genome-wide screens in cells have offered numerous insights into gene function, yet a major limitation has been the inability to stably deliver large multiplexed DNA libraries to cultured cells allowing barcoded pooled screens. Here, we developed a site-specific integration strategy for library delivery and performed a genome-wide CRISPR knockout screen in S2R+ cells. Under basal growth conditions, 1235 genes were essential for cell fitness at a false-discovery rate of 5%, representing the highest-resolution fitness gene set yet assembled for , including 407 genes which likely duplicated along the vertebrate lineage and whose orthologs were underrepresented in human CRISPR screens. We additionally performed context-specific fitness screens for resistance to or synergy with trametinib, a Ras/ERK/ETS inhibitor, or rapamycin, an mTOR inhibitor, and identified key regulators of each pathway. The results present a novel, scalable, and versatile platform for functional genomic screens in invertebrate cells.
elife-36333-v1.pdf
Jeffrey J Hodgson, Nicolas Buchon, and Gary W Blissard. 2018. “Identification of insect genes involved in baculovirus AcMNPV entry into insect cells.” Virology, 527, Pp. 1-11.Abstract
The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a model enveloped DNA virus that infects and replicates in lepidopteran insect cells, and can efficiently enter a wide variety of non-host cells. Budded virions of AcMNPV enter cells by endocytosis and traffic to the nucleus where the virus initiates gene expression and genome replication. While trafficking of nucleocapsids by actin propulsion has been studied in detail, other important components of trafficking during entry remain poorly understood. We used a recombinant AcMNPV virus expressing an EGFP reporter in combination with an RNAi screen in Drosophila DL1 cells, to identify host proteins involved in AcMNPV entry. The RNAi screen targeted 86 genes involved in vesicular trafficking, including genes coding for VPS and ESCRT proteins, Rab GTPases, Exocyst proteins, and Clathrin adaptor proteins. We identified 24 genes required for efficient virus entry and reporter expression, and 4 genes that appear to restrict virus entry.
Naoki Okamoto, Raghuvir Viswanatha, Riyan Bittar, Zhongchi Li, Sachiko Haga-Yamanaka, Norbert Perrimon, and Naoki Yamanaka. 2018. “A Membrane Transporter Is Required for Steroid Hormone Uptake in Drosophila.” Dev Cell, 47, 3, Pp. 294-305.e7.Abstract
Steroid hormones are a group of lipophilic hormones that are believed to enter cells by simple diffusion to regulate diverse physiological processes through intracellular nuclear receptors. Here, we challenge this model in Drosophila by demonstrating that Ecdysone Importer (EcI), a membrane transporter identified from two independent genetic screens, is involved in cellular uptake of the steroid hormone ecdysone. EcI encodes an organic anion transporting polypeptide of the evolutionarily conserved solute carrier organic anion superfamily. In vivo, EcI loss of function causes phenotypes indistinguishable from ecdysone- or ecdysone receptor (EcR)-deficient animals, and EcI knockdown inhibits cellular uptake of ecdysone. Furthermore, EcI regulates ecdysone signaling in a cell-autonomous manner and is both necessary and sufficient for inducing ecdysone-dependent gene expression in culture cells expressing EcR. Altogether, our results challenge the simple diffusion model for cellular uptake of ecdysone and may have wide implications for basic and medical aspects of steroid hormone studies.

Pages