Cytoskeletal proteins

Joseph Dopie, Eeva K Rajakylä, Merja S Joensuu, Guillaume Huet, Evelina Ferrantelli, Tiao Xie, Harri Jäälinoja, Eija Jokitalo, and Maria K Vartiainen. 2015. “Genome-wide RNAi screen for nuclear actin reveals a network of cofilin regulators.” J Cell Sci, 128, 13, Pp. 2388-400.Abstract

Nuclear actin plays an important role in many processes that regulate gene expression. Cytoplasmic actin dynamics are tightly controlled by numerous actin-binding proteins, but regulation of nuclear actin has remained unclear. Here, we performed a genome-wide RNA interference (RNAi) screen in Drosophila cells to identify proteins that influence either nuclear polymerization or import of actin. We validate 19 factors as specific hits, and show that Chinmo (known as Bach2 in mammals), SNF4Aγ (Prkag1 in mammals) and Rab18 play a role in nuclear localization of actin in both fly and mammalian cells. We identify several new regulators of cofilin activity, and characterize modulators of both cofilin kinases and phosphatase. For example, Chinmo/Bach2, which regulates nuclear actin levels also in vivo, maintains active cofilin by repressing the expression of the kinase Cdi (Tesk in mammals). Finally, we show that Nup98 and lamin are candidates for regulating nuclear actin polymerization. Our screen therefore reveals new aspects of actin regulation and links nuclear actin to many cellular processes.

2015_J Cell Sci_Dopie.pdf Supplement.pdf
Joshua M Shulman, Selina Imboywa, Nikolaos Giagtzoglou, Martin P Powers, Yanhui Hu, Danelle Devenport, Portia Chipendo, Lori B Chibnik, Allison Diamond, Norbert Perrimon, Nicholas H Brown, Philip L De Jager, and Mel B Feany. 2014. “Functional screening in Drosophila identifies Alzheimer's disease susceptibility genes and implicates Tau-mediated mechanisms.” Hum Mol Genet, 23, 4, Pp. 870-7.Abstract

Using a Drosophila model of Alzheimer's disease (AD), we systematically evaluated 67 candidate genes based on AD-associated genomic loci (P < 10(-4)) from published human genome-wide association studies (GWAS). Genetic manipulation of 87 homologous fly genes was tested for modulation of neurotoxicity caused by human Tau, which forms neurofibrillary tangle pathology in AD. RNA interference (RNAi) targeting 9 genes enhanced Tau neurotoxicity, and in most cases reciprocal activation of gene expression suppressed Tau toxicity. Our screen implicates cindr, the fly ortholog of the human CD2AP AD susceptibility gene, as a modulator of Tau-mediated disease mechanisms. Importantly, we also identify the fly orthologs of FERMT2 and CELF1 as Tau modifiers, and these loci have been independently validated as AD susceptibility loci in the latest GWAS meta-analysis. Both CD2AP and FERMT2 have been previously implicated with roles in cell adhesion, and our screen additionally identifies a fly homolog of the human integrin adhesion receptors, ITGAM and ITGA9, as a modifier of Tau neurotoxicity. Our results highlight cell adhesion pathways as important in Tau toxicity and AD susceptibility and demonstrate the power of model organism genetic screens for the functional follow-up of human GWAS.

2014_Human Mol Gene_Shulman.pdf Supplemetnal
Joseph Dopie, Kari-Pekka Skarp, Eeva Kaisa Rajakylä, Kimmo Tanhuanpää, and Maria K Vartiainen. 2012. “Active maintenance of nuclear actin by importin 9 supports transcription.” Proc Natl Acad Sci U S A, 109, 9, Pp. E544-52.Abstract

Besides its essential and well established role as a component of the cytoskeleton, actin is also present in the cell nucleus, where it has been linked to many processes that control gene expression. For example, nuclear actin regulates the activity of specific transcription factors, associates with all three RNA polymerases, and is a component of many chromatin remodelling complexes. Despite the fact that two export receptors, Crm1 and exportin 6, have been linked to nuclear export of actin, the mechanism by which actin enters the nucleus to elicit these essential functions has not been determined. It is also unclear whether actin is actively exchanged between the nucleus and the cytoplasm, and whether this connection has any functional significance for the cell. By applying a variety of live-cell imaging techniques we revealed that actin constantly shuttles in and out of the nucleus. The fast transport rates, which depend on the availability of actin monomers, suggest an active transport mechanism in both directions. Importantly, we identified importin 9 as the nuclear import factor for actin. Furthermore, our RNAi experiments showed that the active maintenance of nuclear actin levels by importin 9 is required for maximal transcriptional activity. Measurements of nuclear export rates and depletion studies also clarified that nuclear export of actin is mediated by exportin 6, and not by Crm1. These results demonstrate that cytoplasmic and nuclear actin pools are dynamically connected and identify the nuclear import and export mechanisms of actin.

2012_PNAS_Dopie.pdf Supplement.pdf
Jennifer L Rohn, David Sims, Tao Liu, Marina Fedorova, Frieder Schöck, Joseph Dopie, Maria K Vartiainen, Amy A Kiger, Norbert Perrimon, and Buzz Baum. 2011. “Comparative RNAi screening identifies a conserved core metazoan actinome by phenotype.” J Cell Biol, 194, 5, Pp. 789-805.Abstract

Although a large number of actin-binding proteins and their regulators have been identified through classical approaches, gaps in our knowledge remain. Here, we used genome-wide RNA interference as a systematic method to define metazoan actin regulators based on visual phenotype. Using comparative screens in cultured Drosophila and human cells, we generated phenotypic profiles for annotated actin regulators together with proteins bearing predicted actin-binding domains. These phenotypic clusters for the known metazoan "actinome" were used to identify putative new core actin regulators, together with a number of genes with conserved but poorly studied roles in the regulation of the actin cytoskeleton, several of which we studied in detail. This work suggests that although our search for new components of the core actin machinery is nearing saturation, regulation at the level of nuclear actin export, RNA splicing, ubiquitination, and other upstream processes remains an important but unexplored frontier of actin biology.

2011_J Cell Bio_Rohn.pdf Supplemental
Jun Wang, Xiaobo Zhou, Pamela L Bradley, Shih-Fu Chang, Norbert Perrimon, and Stephen TC Wong. 2008. “Cellular phenotype recognition for high-content RNA interference genome-wide screening.” J Biomol Screen, 13, 1, Pp. 29-39.Abstract

Genome-wide, cell-based screens using high-content screening (HCS) techniques and automated fluorescence microscopy generate thousands of high-content images that contain an enormous wealth of cell biological information. Such screens are key to the analysis of basic cell biological principles, such as control of cell cycle and cell morphology. However, these screens will ultimately only shed light on human disease mechanisms and potential cures if the analysis can keep up with the generation of data. A fundamental step toward automated analysis of high-content screening is to construct a robust platform for automatic cellular phenotype identification. The authors present a framework, consisting of microscopic image segmentation and analysis components, for automatic recognition of cellular phenotypes in the context of the Rho family of small GTPases. To implicate genes involved in Rac signaling, RNA interference (RNAi) was used to perturb gene functions, and the corresponding cellular phenotypes were analyzed for changes. The data used in the experiments are high-content, 3-channel, fluorescence microscopy images of Drosophila Kc167 cultured cells stained with markers that allow visualization of DNA, polymerized actin filaments, and the constitutively activated Rho protein Rac(V12). The performance of this approach was tested using a cellular database that contained more than 1000 samples of 3 predefined cellular phenotypes, and the generalization error was estimated using a cross-validation technique. Moreover, the authors applied this approach to analyze the whole high-content fluorescence images of Drosophila cells for further HCS-based gene function analysis.

2008_J Biomol Screen_Wang.pdf
Sylvia Erhardt, Barbara G Mellone, Craig M Betts, Weiguo Zhang, Gary H Karpen, and Aaron F Straight. 2008. “Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation.” J Cell Biol, 183, 5, Pp. 805-18.Abstract

Centromeres are the structural and functional foundation for kinetochore formation, spindle attachment, and chromosome segregation. In this study, we isolated factors required for centromere propagation using genome-wide RNA interference screening for defects in centromere protein A (CENP-A; centromere identifier [CID]) localization in Drosophila melanogaster. We identified the proteins CAL1 and CENP-C as essential factors for CID assembly at the centromere. CID, CAL1, and CENP-C coimmunoprecipitate and are mutually dependent for centromere localization and function. We also identified the mitotic cyclin A (CYCA) and the anaphase-promoting complex (APC) inhibitor RCA1/Emi1 as regulators of centromere propagation. We show that CYCA is centromere localized and that CYCA and RCA1/Emi1 couple centromere assembly to the cell cycle through regulation of the fizzy-related/CDH1 subunit of the APC. Our findings identify essential components of the epigenetic machinery that ensures proper specification and propagation of the centromere and suggest a mechanism for coordinating centromere inheritance with cell division.

Katharine J Sepp, Pengyu Hong, Sofia B Lizarraga, Judy S Liu, Luis A Mejia, Christopher A Walsh, and Norbert Perrimon. 2008. “Identification of neural outgrowth genes using genome-wide RNAi.” PLoS Genet, 4, 7, Pp. e1000111.Abstract

While genetic screens have identified many genes essential for neurite outgrowth, they have been limited in their ability to identify neural genes that also have earlier critical roles in the gastrula, or neural genes for which maternally contributed RNA compensates for gene mutations in the zygote. To address this, we developed methods to screen the Drosophila genome using RNA-interference (RNAi) on primary neural cells and present the results of the first full-genome RNAi screen in neurons. We used live-cell imaging and quantitative image analysis to characterize the morphological phenotypes of fluorescently labelled primary neurons and glia in response to RNAi-mediated gene knockdown. From the full genome screen, we focused our analysis on 104 evolutionarily conserved genes that when downregulated by RNAi, have morphological defects such as reduced axon extension, excessive branching, loss of fasciculation, and blebbing. To assist in the phenotypic analysis of the large data sets, we generated image analysis algorithms that could assess the statistical significance of the mutant phenotypes. The algorithms were essential for the analysis of the thousands of images generated by the screening process and will become a valuable tool for future genome-wide screens in primary neurons. Our analysis revealed unexpected, essential roles in neurite outgrowth for genes representing a wide range of functional categories including signalling molecules, enzymes, channels, receptors, and cytoskeletal proteins. We also found that genes known to be involved in protein and vesicle trafficking showed similar RNAi phenotypes. We confirmed phenotypes of the protein trafficking genes Sec61alpha and Ran GTPase using Drosophila embryo and mouse embryonic cerebral cortical neurons, respectively. Collectively, our results showed that RNAi phenotypes in primary neural culture can parallel in vivo phenotypes, and the screening technique can be used to identify many new genes that have important functions in the nervous system.

2008_PLOS Gen_Sepp.pdf Supp. Info.pdf Table S1.xls Table S2.xls
Mijung Kwon, Susana A Godinho, Namrata S Chandhok, Neil J Ganem, Ammar Azioune, Manuel Thery, and David Pellman. 2008. “Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes.” Genes Dev, 22, 16, Pp. 2189-203.Abstract

Multiple centrosomes in tumor cells create the potential for multipolar divisions that can lead to aneuploidy and cell death. Nevertheless, many cancer cells successfully divide because of mechanisms that suppress multipolar mitoses. A genome-wide RNAi screen in Drosophila S2 cells and a secondary analysis in cancer cells defined mechanisms that suppress multipolar mitoses. In addition to proteins that organize microtubules at the spindle poles, we identified novel roles for the spindle assembly checkpoint, cortical actin cytoskeleton, and cell adhesion. Using live cell imaging and fibronectin micropatterns, we found that interphase cell shape and adhesion pattern can determine the success of the subsequent mitosis in cells with extra centrosomes. These findings may identify cancer-selective therapeutic targets: HSET, a normally nonessential kinesin motor, was essential for the viability of certain extra centrosome-containing cancer cells. Thus, morphological features of cancer cells can be linked to unique genetic requirements for survival.

2008_Genes Dev_Kwon.pdf Supplement.pdf Supplemental
Ulrike S Eggert, Amy A Kiger, Constance Richter, Zachary E Perlman, Norbert Perrimon, Timothy J Mitchison, and Christine M Field. 2004. “Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and targets.” PLoS Biol, 2, 12, Pp. e379.Abstract

Cytokinesis involves temporally and spatially coordinated action of the cell cycle and cytoskeletal and membrane systems to achieve separation of daughter cells. To dissect cytokinesis mechanisms it would be useful to have a complete catalog of the proteins involved, and small molecule tools for specifically inhibiting them with tight temporal control. Finding active small molecules by cell-based screening entails the difficult step of identifying their targets. We performed parallel chemical genetic and genome-wide RNA interference screens in Drosophila cells, identifying 50 small molecule inhibitors of cytokinesis and 214 genes important for cytokinesis, including a new protein in the Aurora B pathway (Borr). By comparing small molecule and RNAi phenotypes, we identified a small molecule that inhibits the Aurora B kinase pathway. Our protein list provides a starting point for systematic dissection of cytokinesis, a direction that will be greatly facilitated by also having diverse small molecule inhibitors, which we have identified. Dissection of the Aurora B pathway, where we found a new gene and a specific small molecule inhibitor, should benefit particularly. Our study shows that parallel RNA interference and small molecule screening is a generally useful approach to identifying active small molecules and their target pathways.

2004_PLOS Bio_Eggert.pdf Supplemental