Protein interactions

Yanhui Hu, Arunachalam Vinayagam, Ankita Nand, Aram Comjean, Verena Chung, Tong Hao, Stephanie E Mohr, and Norbert Perrimon. 11/16/2017. “Molecular Interaction Search Tool (MIST): an integrated resource for mining gene and protein interaction data.” Nucleic Acids Res, 46, D1, Pp. D567-D574.Abstract
Model organism and human databases are rich with information about genetic and physical interactions. These data can be used to interpret and guide the analysis of results from new studies and develop new hypotheses. Here, we report the development of the Molecular Interaction Search Tool (MIST; The MIST database integrates biological interaction data from yeast, nematode, fly, zebrafish, frog, rat and mouse model systems, as well as human. For individual or short gene lists, the MIST user interface can be used to identify interacting partners based on protein-protein and genetic interaction (GI) data from the species of interest as well as inferred interactions, known as interologs, and to view a corresponding network. The data, interologs and search tools at MIST are also useful for analyzing 'omics datasets. In addition to describing the integrated database, we also demonstrate how MIST can be used to identify an appropriate cut-off value that balances false positive and negative discovery, and present use-cases for additional types of analysis. Altogether, the MIST database and search tools support visualization and navigation of existing protein and GI data, as well as comparison of new and existing data.
Arunachalam Vinayagam, Meghana M Kulkarni, Richelle Sopko, Xiaoyun Sun, Yanhui Hu, Ankita Nand, Christians Villalta, Ahmadali Moghimi, Xuemei Yang, Stephanie E Mohr, Pengyu Hong, John M Asara, and Norbert Perrimon. 9/13/2016. “An Integrative Analysis of the InR/PI3K/Akt Network Identifies the Dynamic Response to Insulin Signaling.” Cell Reports, 16, 11, Pp. 3062-3074.Abstract

Insulin regulates an essential conserved signaling pathway affecting growth, proliferation, and meta- bolism. To expand our understanding of the insulin pathway, we combine biochemical, genetic, and computational approaches to build a comprehensive Drosophila InR/PI3K/Akt network. First, we map the dynamic protein-protein interaction network sur- rounding the insulin core pathway using bait-prey interactions connecting 566 proteins. Combining RNAi screening and phospho-specific antibodies, we find that 47% of interacting proteins affect pathway activity, and, using quantitative phospho- proteomics, we demonstrate that $10% of interact- ing proteins are regulated by insulin stimulation at the level of phosphorylation. Next, we integrate these orthogonal datasets to characterize the structure and dynamics of the insulin network at the level of protein complexes and validate our method by iden- tifying regulatory roles for the Protein Phosphatase 2A (PP2A) and Reptin-Pontin chromatin-remodeling complexes as negative and positive regulators of ribosome biogenesis, respectively. Altogether, our study represents a comprehensive resource for the study of the evolutionary conserved insulin network. 

2016_Cell Rep_Vinayagam.pdf Supplement.pdf
Amy M Wiles, Mark Doderer, Jianhua Ruan, Ting-Ting Gu, Dashnamoorthy Ravi, Barron Blackman, and Alexander JR Bishop. 2010. “Building and analyzing protein interactome networks by cross-species comparisons.” BMC Syst Biol, 4, Pp. 36.Abstract

BACKGROUND: A genomic catalogue of protein-protein interactions is a rich source of information, particularly for exploring the relationships between proteins. Numerous systems-wide and small-scale experiments have been conducted to identify interactions; however, our knowledge of all interactions for any one species is incomplete, and alternative means to expand these network maps is needed. We therefore took a comparative biology approach to predict protein-protein interactions across five species (human, mouse, fly, worm, and yeast) and developed InterologFinder for research biologists to easily navigate this data. We also developed a confidence score for interactions based on available experimental evidence and conservation across species. RESULTS: The connectivity of the resultant networks was determined to have scale-free distribution, small-world properties, and increased local modularity, indicating that the added interactions do not disrupt our current understanding of protein network structures. We show examples of how these improved interactomes can be used to analyze a genome-scale dataset (RNAi screen) and to assign new function to proteins. Predicted interactions within this dataset were tested by co-immunoprecipitation, resulting in a high rate of validation, suggesting the high quality of networks produced. CONCLUSIONS: Protein-protein interactions were predicted in five species, based on orthology. An InteroScore, a score accounting for homology, number of orthologues with evidence of interactions, and number of unique observations of interactions, is given to each known and predicted interaction. Our website provides research biologists intuitive access to this data.

2010_BMC Sys Bio_Wiles.pdf Supplemental