Jennifer L Rohn, David Sims, Tao Liu, Marina Fedorova, Frieder Schöck, Joseph Dopie, Maria K Vartiainen, Amy A Kiger, Norbert Perrimon, and Buzz Baum. 2011. “
Comparative RNAi screening identifies a conserved core metazoan actinome by phenotype.” J Cell Biol, 194, 5, Pp. 789-805.
AbstractAlthough a large number of actin-binding proteins and their regulators have been identified through classical approaches, gaps in our knowledge remain. Here, we used genome-wide RNA interference as a systematic method to define metazoan actin regulators based on visual phenotype. Using comparative screens in cultured Drosophila and human cells, we generated phenotypic profiles for annotated actin regulators together with proteins bearing predicted actin-binding domains. These phenotypic clusters for the known metazoan "actinome" were used to identify putative new core actin regulators, together with a number of genes with conserved but poorly studied roles in the regulation of the actin cytoskeleton, several of which we studied in detail. This work suggests that although our search for new components of the core actin machinery is nearing saturation, regulation at the level of nuclear actin export, RNA splicing, ubiquitination, and other upstream processes remains an important but unexplored frontier of actin biology.
2011_J Cell Bio_Rohn.pdf
Supplemental Files.zip Shu Kondo and Norbert Perrimon. 2011. “
A genome-wide RNAi screen identifies core components of the G₂-M DNA damage checkpoint.” Sci Signal, 4, 154, Pp. rs1.
AbstractThe DNA damage checkpoint, the first pathway known to be activated in response to DNA damage, is a mechanism by which the cell cycle is temporarily arrested to allow DNA repair. The checkpoint pathway transmits signals from the sites of DNA damage to the cell cycle machinery through the evolutionarily conserved ATM (ataxia telangiectasia mutated) and ATR (ATM- and Rad3-related) kinase cascades. We conducted a genome-wide RNAi (RNA interference) screen in Drosophila cells to identify previously unknown genes and pathways required for the G₂-M checkpoint induced by DNA double-strand breaks (DSBs). Our large-scale analysis provided a systems-level view of the G₂-M checkpoint and revealed the coordinated actions of particular classes of proteins, which include those involved in DNA repair, DNA replication, cell cycle control, chromatin regulation, and RNA processing. Further, from the screen and in vivo analysis, we identified previously unrecognized roles of two DNA damage response genes, mus101 and mus312. Our results suggest that the DNA replication preinitiation complex, which includes MUS101, and the MUS312-containing nuclease complexes, which are important for DSB repair, also function in the G₂-M checkpoint. Our results provide insight into the diverse mechanisms that link DNA damage and the checkpoint signaling pathway.
2011_Sci Sig_Kondo.pdf
Supplement.pdf