High-throughput data analysis

2021
Hans M. Dalton, Raghuvir Viswanatha, Ricky Brathwaite Jr., Jae Sophia Zuno, Stephanie E Mohr, Norbert Perrimon, and Clement Y. Chow. 12/4/2021. “A genome-wide CRISPR screen identifies the glycosylation enzyme DPM1 as a modifier of DPAGT1 deficiency and ER stress.” BioRxiv. Publisher's VersionAbstract
Partial loss-of-function mutations in glycosylation pathways underlie a set of rare diseases called Congenital Disorders of Glycosylation (CDGs). In particular, DPAGT1 CDG is caused by mutations in the gene encoding the first step in N-glycosylation, DPAGT1, and this disorder currently lacks effective therapies. To identify potential therapeutic targets for DPAGT1-CDG, we performed CRISPR knockout screens in Drosophila cells for genes associated with better survival and glycoprotein levels under DPAGT1 inhibition. We identified hundreds of candidate genes that may be of therapeutic benefit. Intriguingly, inhibition of the mannosyltransferase Dpm1, or its downstream glycosylation pathways, could rescue two in vivo models of DPAGT1 inhibition and ER stress, even though impairment of these pathways alone usually cause CDGs. While both in vivo models ostensibly cause ER stress (through DPAGT1 inhibition or a misfolded protein), we found a novel difference in fructose metabolism that may indicate glycolysis as a modulator of DPAGT1-CDG. Our results provide new therapeutic targets for DPAGT1-CDG, include the unique finding of Dpm1-related pathways rescuing DPAGT1 inhibition, and reveal a novel interaction between fructose metabolism and ER stress.
2021.12.03.471178v1.full_.pdf
2020
Yanhui Hu, Aram Comjean, Jonathan Rodiger, Yifang Liu, Yue Gao, Verena Chung, Jonathan Zirin, Norbert Perrimon, and Stephanie E Mohr. 2020. “FlyRNAi.org-the database of the Drosophila RNAi screening center and transgenic RNAi project: 2021 update.” Nucleic Acids Res.Abstract
The FlyRNAi database at the Drosophila RNAi Screening Center and Transgenic RNAi Project (DRSC/TRiP) provides a suite of online resources that facilitate functional genomics studies with a special emphasis on Drosophila melanogaster. Currently, the database provides: gene-centric resources that facilitate ortholog mapping and mining of information about orthologs in common genetic model species; reagent-centric resources that help researchers identify RNAi and CRISPR sgRNA reagents or designs; and data-centric resources that facilitate visualization and mining of transcriptomics data, protein modification data, protein interactions, and more. Here, we discuss updated and new features that help biological and biomedical researchers efficiently identify, visualize, analyze, and integrate information and data for Drosophila and other species. Together, these resources facilitate multiple steps in functional genomics workflows, from building gene and reagent lists to management, analysis, and integration of data.
gkaa936.pdf
2018
R. Hung, Y. Hu, R. Kirchner, Fengge Li, C. Xu, A. Comjean, S.G. Tattikota, W.R. Song, S. Ho Sui, and N. Perrimon. 9/8/2018. “Data portal for "A cell atlas of the adult Drosophila midgut" (BioRxiv)”. Click here to access data portal.
2016
Arunachalam Vinayagam, Meghana M Kulkarni, Richelle Sopko, Xiaoyun Sun, Yanhui Hu, Ankita Nand, Christians Villalta, Ahmadali Moghimi, Xuemei Yang, Stephanie E Mohr, Pengyu Hong, John M Asara, and Norbert Perrimon. 9/13/2016. “An Integrative Analysis of the InR/PI3K/Akt Network Identifies the Dynamic Response to Insulin Signaling.” Cell Reports, 16, 11, Pp. 3062-3074.Abstract

Insulin regulates an essential conserved signaling pathway affecting growth, proliferation, and meta- bolism. To expand our understanding of the insulin pathway, we combine biochemical, genetic, and computational approaches to build a comprehensive Drosophila InR/PI3K/Akt network. First, we map the dynamic protein-protein interaction network sur- rounding the insulin core pathway using bait-prey interactions connecting 566 proteins. Combining RNAi screening and phospho-specific antibodies, we find that 47% of interacting proteins affect pathway activity, and, using quantitative phospho- proteomics, we demonstrate that $10% of interact- ing proteins are regulated by insulin stimulation at the level of phosphorylation. Next, we integrate these orthogonal datasets to characterize the structure and dynamics of the insulin network at the level of protein complexes and validate our method by iden- tifying regulatory roles for the Protein Phosphatase 2A (PP2A) and Reptin-Pontin chromatin-remodeling complexes as negative and positive regulators of ribosome biogenesis, respectively. Altogether, our study represents a comprehensive resource for the study of the evolutionary conserved insulin network. 

2016_Cell Rep_Vinayagam.pdf Supplement.pdf
2015
9/11/2015. “MitoMax data set and annotations (data portal for Chen et al. 2015 "Proteomic mapping in live Drosophila tissues using an engineeredascorbate peroxidase," Proc Natl Acad Sci U S A. vol. 112(39):12093-8. PMID: 26362788; PMCID: PMC4593093.)”.
2015. “DRSC: RNA Binding Protein Library S2R+ Baseline Data (data support page for Mohr et al. 2015 "Reagent and Data Resources for Investigation of RNA Binding Protein Functions in Drosophila melanogaster Cultured Cells" in G3)”. Publisher's Version
J Zanet, E Benrabah, T Li, A Pélissier-Monier, H Chanut-Delalande, B Ronsin, HJ Bellen, F Payre, and S Plaza. 2015. “Pri sORF peptides induce selective proteasome-mediated protein processing.” Science, 349, 6254, Pp. 1356-8.Abstract

A wide variety of RNAs encode small open-reading-frame (smORF/sORF) peptides, but their functions are largely unknown. Here, we show that Drosophila polished-rice (pri) sORF peptides trigger proteasome-mediated protein processing, converting the Shavenbaby (Svb) transcription repressor into a shorter activator. A genome-wide RNA interference screen identifies an E2-E3 ubiquitin-conjugating complex, UbcD6-Ubr3, which targets Svb to the proteasome in a pri-dependent manner. Upon interaction with Ubr3, Pri peptides promote the binding of Ubr3 to Svb. Ubr3 can then ubiquitinate the Svb N terminus, which is degraded by the proteasome. The C-terminal domains protect Svb from complete degradation and ensure appropriate processing. Our data show that Pri peptides control selectivity of Ubr3 binding, which suggests that the family of sORF peptides may contain an extended repertoire of protein regulators.

1356.full_.pdf
2014
Arunachalam Vinayagam, Jonathan Zirin, Charles Roesel, Yanhui Hu, Bahar Yilmazel, Anastasia A Samsonova, Ralph A Neumüller, Stephanie E Mohr, and Norbert Perrimon. 2014. “Integrating protein-protein interaction networks with phenotypes reveals signs of interactions.” Nat Methods, 11, 1, Pp. 94-9.Abstract

A major objective of systems biology is to organize molecular interactions as networks and to characterize information flow within networks. We describe a computational framework to integrate protein-protein interaction (PPI) networks and genetic screens to predict the 'signs' of interactions (i.e., activation-inhibition relationships). We constructed a Drosophila melanogaster signed PPI network consisting of 6,125 signed PPIs connecting 3,352 proteins that can be used to identify positive and negative regulators of signaling pathways and protein complexes. We identified an unexpected role for the metabolic enzymes enolase and aldo-keto reductase as positive and negative regulators of proteolysis, respectively. Characterization of the activation-inhibition relationships between physically interacting proteins within signaling pathways will affect our understanding of many biological functions, including signal transduction and mechanisms of disease.

2014_Nat Methods_Vinayagam.pdf Supplemental Files.zip
2014. “Protein kinase shRNA phosphoproteomics data from D. melanogaster embryos (data portal for Sopko et al. "Combining genetic perturbations and proteomics to examine kinase-phosphatase networks in Drosophila embryos" in Dev Cell)”.
Stephanie E Mohr, Jennifer A Smith, Caroline E Shamu, Ralph A Neumüller, and Norbert Perrimon. 2014. “RNAi screening comes of age: improved techniques and complementary approaches.” Nat Rev Mol Cell Biol, 15, 9, Pp. 591-600.Abstract

Gene silencing through sequence-specific targeting of mRNAs by RNAi has enabled genome-wide functional screens in cultured cells and in vivo in model organisms. These screens have resulted in the identification of new cellular pathways and potential drug targets. Considerable progress has been made to improve the quality of RNAi screen data through the development of new experimental and bioinformatics approaches. The recent availability of genome-editing strategies, such as the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system, when combined with RNAi, could lead to further improvements in screen data quality and follow-up experiments, thus promoting our understanding of gene function and gene regulatory networks.

2014_Nat Rev Mol Cell Bio_Mohr.pdf
2013
Ralph A Neumüller, Thomas Gross, Anastasia A Samsonova, Arunachalam Vinayagam, Michael Buckner, Karen Founk, Yanhui Hu, Sara Sharifpoor, Adam P Rosebrock, Brenda Andrews, Fred Winston, and Norbert Perrimon. 2013. “Conserved regulators of nucleolar size revealed by global phenotypic analyses.” Sci Signal, 6, 289, Pp. ra70.Abstract

Regulation of cell growth is a fundamental process in development and disease that integrates a vast array of extra- and intracellular information. A central player in this process is RNA polymerase I (Pol I), which transcribes ribosomal RNA (rRNA) genes in the nucleolus. Rapidly growing cancer cells are characterized by increased Pol I-mediated transcription and, consequently, nucleolar hypertrophy. To map the genetic network underlying the regulation of nucleolar size and of Pol I-mediated transcription, we performed comparative, genome-wide loss-of-function analyses of nucleolar size in Saccharomyces cerevisiae and Drosophila melanogaster coupled with mass spectrometry-based analyses of the ribosomal DNA (rDNA) promoter. With this approach, we identified a set of conserved and nonconserved molecular complexes that control nucleolar size. Furthermore, we characterized a direct role of the histone information regulator (HIR) complex in repressing rRNA transcription in yeast. Our study provides a full-genome, cross-species analysis of a nuclear subcompartment and shows that this approach can identify conserved molecular modules.

2013_Sci Sig_Neumuller.pdf Supplemental Files.zip
Clemens Bergwitz, Mark J Wee, Sumi Sinha, Joanne Huang, Charles DeRobertis, Lawrence B Mensah, Jonathan Cohen, Adam Friedman, Meghana Kulkarni, Yanhui Hu, Arunachalam Vinayagam, Michael Schnall-Levin, Bonnie Berger, Lizabeth A Perkins, Stephanie E Mohr, and Norbert Perrimon. 2013. “Genetic determinants of phosphate response in Drosophila.” PLoS One, 8, 3, Pp. e56753.Abstract

Phosphate is required for many important cellular processes and having too little phosphate or too much can cause disease and reduce life span in humans. However, the mechanisms underlying homeostatic control of extracellular phosphate levels and cellular effects of phosphate are poorly understood. Here, we establish Drosophila melanogaster as a model system for the study of phosphate effects. We found that Drosophila larval development depends on the availability of phosphate in the medium. Conversely, life span is reduced when adult flies are cultured on high phosphate medium or when hemolymph phosphate is increased in flies with impaired malpighian tubules. In addition, RNAi-mediated inhibition of MAPK-signaling by knockdown of Ras85D, phl/D-Raf or Dsor1/MEK affects larval development, adult life span and hemolymph phosphate, suggesting that some in vivo effects involve activation of this signaling pathway by phosphate. To identify novel genetic determinants of phosphate responses, we used Drosophila hemocyte-like cultured cells (S2R+) to perform a genome-wide RNAi screen using MAPK activation as the readout. We identified a number of candidate genes potentially important for the cellular response to phosphate. Evaluation of 51 genes in live flies revealed some that affect larval development, adult life span and hemolymph phosphate levels.

2013_PLOS One_Bergwitz.pdf Supplemental Files.zip
Arunachalam Vinayagam, Yanhui Hu, Meghana Kulkarni, Charles Roesel, Richelle Sopko, Stephanie E Mohr, and Norbert Perrimon. 2013. “Protein complex-based analysis framework for high-throughput data sets.” Sci Signal, 6, 264, Pp. rs5.Abstract

Analysis of high-throughput data increasingly relies on pathway annotation and functional information derived from Gene Ontology. This approach has limitations, in particular for the analysis of network dynamics over time or under different experimental conditions, in which modules within a network rather than complete pathways might respond and change. We report an analysis framework based on protein complexes, which are at the core of network reorganization. We generated a protein complex resource for human, Drosophila, and yeast from the literature and databases of protein-protein interaction networks, with each species having thousands of complexes. We developed COMPLEAT (http://www.flyrnai.org/compleat), a tool for data mining and visualization for complex-based analysis of high-throughput data sets, as well as analysis and integration of heterogeneous proteomics and gene expression data sets. With COMPLEAT, we identified dynamically regulated protein complexes among genome-wide RNA interference data sets that used the abundance of phosphorylated extracellular signal-regulated kinase in cells stimulated with either insulin or epidermal growth factor as the output. The analysis predicted that the Brahma complex participated in the insulin response.

2013_Sci Sig_Vinayagam.pdf Supplemental Files.zip
2012
Marcelo Perez-Pepe, Victoria Slomiansky, Mariela Loschi, Luciana Luchelli, Maximiliano Neme, María Gabriela Thomas, and Graciela Lidia Boccaccio. 2012. “BUHO: a MATLAB script for the study of stress granules and processing bodies by high-throughput image analysis.” PLoS One, 7, 12, Pp. e51495.Abstract

The spontaneous and reversible formation of foci and filaments that contain proteins involved in different metabolic processes is common in both the nucleus and the cytoplasm. Stress granules (SGs) and processing bodies (PBs) belong to a novel family of cellular structures collectively known as mRNA silencing foci that harbour repressed mRNAs and their associated proteins. SGs and PBs are highly dynamic and they form upon stress and dissolve thus releasing the repressed mRNAs according to changes in cell physiology. In addition, aggregates containing abnormal proteins are frequent in neurodegenerative disorders. In spite of the growing relevance of these supramolecular aggregates to diverse cellular functions a reliable automated tool for their systematic analysis is lacking. Here we report a MATLAB Script termed BUHO for the high-throughput image analysis of cellular foci. We used BUHO to assess the number, size and distribution of distinct objects with minimal deviation from manually obtained parameters. BUHO successfully addressed the induction of both SGs and PBs in mammalian and insect cells exposed to different stress stimuli. We also used BUHO to assess the dynamics of specific mRNA-silencing foci termed Smaug 1 foci (S-foci) in primary neurons upon synaptic stimulation. Finally, we used BUHO to analyze the role of candidate genes on SG formation in an RNAi-based experiment. We found that FAK56D, GCN2 and PP1 govern SG formation. The role of PP1 is conserved in mammalian cells as judged by the effect of the PP1 inhibitor salubrinal, and involves dephosphorylation of the translation factor eIF2α. All these experiments were analyzed manually and by BUHO and the results differed in less than 5% of the average value. The automated analysis by this user-friendly method will allow high-throughput image processing in short times by providing a robust, flexible and reliable alternative to the laborious and sometimes unfeasible visual scrutiny.

2012_PLOS One_Perez-Pepe.pdf Supplemental Files.zip
Mar Arias Garcia, Miguel Sanchez Alvarez, Heba Sailem, Vicky Bousgouni, Julia Sero, and Chris Bakal. 2012. “Differential RNAi screening provides insights into the rewiring of signalling networks during oxidative stress.” Mol Biosyst, 8, 10, Pp. 2605-13.Abstract

Reactive Oxygen Species (ROS) are a natural by-product of cellular growth and proliferation, and are required for fundamental processes such as protein-folding and signal transduction. However, ROS accumulation, and the onset of oxidative stress, can negatively impact cellular and genomic integrity. Signalling networks have evolved to respond to oxidative stress by engaging diverse enzymatic and non-enzymatic antioxidant mechanisms to restore redox homeostasis. The architecture of oxidative stress response networks during periods of normal growth, and how increased ROS levels dynamically reconfigure these networks are largely unknown. In order to gain insight into the structure of signalling networks that promote redox homeostasis we first performed genome-scale RNAi screens to identify novel suppressors of superoxide accumulation. We then infer relationships between redox regulators by hierarchical clustering of phenotypic signatures describing how gene inhibition affects superoxide levels, cellular viability, and morphology across different genetic backgrounds. Genes that cluster together are likely to act in the same signalling pathway/complex and thus make "functional interactions". Moreover we also calculate differential phenotypic signatures describing the difference in cellular phenotypes following RNAi between untreated cells and cells submitted to oxidative stress. Using both phenotypic signatures and differential signatures we construct a network model of functional interactions that occur between components of the redox homeostasis network, and how such interactions become rewired in the presence of oxidative stress. This network model predicts a functional interaction between the transcription factor Jun and the IRE1 kinase, which we validate in an orthogonal assay. We thus demonstrate the ability of systems-biology approaches to identify novel signalling events.

2012_Mol BioSys_Garcia.pdf Supplemental Files.zip
Ian T Flockhart, Matthew Booker, Yanhui Hu, Benjamin McElvany, Quentin Gilly, Bernard Mathey-Prevot, Norbert Perrimon, and Stephanie E Mohr. 2012. “FlyRNAi.org--the database of the Drosophila RNAi screening center: 2012 update.” Nucleic Acids Res, 40, Database issue, Pp. D715-9.Abstract

FlyRNAi (http://www.flyrnai.org), the database and website of the Drosophila RNAi Screening Center (DRSC) at Harvard Medical School, serves a dual role, tracking both production of reagents for RNA interference (RNAi) screening in Drosophila cells and RNAi screen results. The database and website is used as a platform for community availability of protocols, tools, and other resources useful to researchers planning, conducting, analyzing or interpreting the results of Drosophila RNAi screens. Based on our own experience and user feedback, we have made several changes. Specifically, we have restructured the database to accommodate new types of reagents; added information about new RNAi libraries and other reagents; updated the user interface and website; and added new tools of use to the Drosophila community and others. Overall, the result is a more useful, flexible and comprehensive website and database.

2012_Nuc Acids Res_Flockhart.pdf
Eric F Joyce, Benjamin R Williams, Tiao Xie, and C-Ting Wu. 2012. “Identification of genes that promote or antagonize somatic homolog pairing using a high-throughput FISH-based screen.” PLoS Genet, 8, 5, Pp. e1002667.Abstract

The pairing of homologous chromosomes is a fundamental feature of the meiotic cell. In addition, a number of species exhibit homolog pairing in nonmeiotic, somatic cells as well, with evidence for its impact on both gene regulation and double-strand break (DSB) repair. An extreme example of somatic pairing can be observed in Drosophila melanogaster, where homologous chromosomes remain aligned throughout most of development. However, our understanding of the mechanism of somatic homolog pairing remains unclear, as only a few genes have been implicated in this process. In this study, we introduce a novel high-throughput fluorescent in situ hybridization (FISH) technology that enabled us to conduct a genome-wide RNAi screen for factors involved in the robust somatic pairing observed in Drosophila. We identified both candidate "pairing promoting genes" and candidate "anti-pairing genes," providing evidence that pairing is a dynamic process that can be both enhanced and antagonized. Many of the genes found to be important for promoting pairing are highly enriched for functions associated with mitotic cell division, suggesting a genetic framework for a long-standing link between chromosome dynamics during mitosis and nuclear organization during interphase. In contrast, several of the candidate anti-pairing genes have known interphase functions associated with S-phase progression, DNA replication, and chromatin compaction, including several components of the condensin II complex. In combination with a variety of secondary assays, these results provide insights into the mechanism and dynamics of somatic pairing.

2012_PLOS Gene_Joyce.pdf Supplemental Files.zip
Stephanie E Mohr and Norbert Perrimon. 2012. “RNAi screening: new approaches, understandings, and organisms.” Wiley Interdiscip Rev RNA, 3, 2, Pp. 145-58.Abstract

RNA interference (RNAi) leads to sequence-specific knockdown of gene function. The approach can be used in large-scale screens to interrogate function in various model organisms and an increasing number of other species. Genome-scale RNAi screens are routinely performed in cultured or primary cells or in vivo in organisms such as C. elegans. High-throughput RNAi screening is benefitting from the development of sophisticated new instrumentation and software tools for collecting and analyzing data, including high-content image data. The results of large-scale RNAi screens have already proved useful, leading to new understandings of gene function relevant to topics such as infection, cancer, obesity, and aging. Nevertheless, important caveats apply and should be taken into consideration when developing or interpreting RNAi screens. Some level of false discovery is inherent to high-throughput approaches and specific to RNAi screens, false discovery due to off-target effects (OTEs) of RNAi reagents remains a problem. The need to improve our ability to use RNAi to elucidate gene function at large scale and in additional systems continues to be addressed through improved RNAi library design, development of innovative computational and analysis tools and other approaches.

2012_Wiley Interdis Rev_Mohr.pdf
2011
Jennifer L Rohn, David Sims, Tao Liu, Marina Fedorova, Frieder Schöck, Joseph Dopie, Maria K Vartiainen, Amy A Kiger, Norbert Perrimon, and Buzz Baum. 2011. “Comparative RNAi screening identifies a conserved core metazoan actinome by phenotype.” J Cell Biol, 194, 5, Pp. 789-805.Abstract

Although a large number of actin-binding proteins and their regulators have been identified through classical approaches, gaps in our knowledge remain. Here, we used genome-wide RNA interference as a systematic method to define metazoan actin regulators based on visual phenotype. Using comparative screens in cultured Drosophila and human cells, we generated phenotypic profiles for annotated actin regulators together with proteins bearing predicted actin-binding domains. These phenotypic clusters for the known metazoan "actinome" were used to identify putative new core actin regulators, together with a number of genes with conserved but poorly studied roles in the regulation of the actin cytoskeleton, several of which we studied in detail. This work suggests that although our search for new components of the core actin machinery is nearing saturation, regulation at the level of nuclear actin export, RNA splicing, ubiquitination, and other upstream processes remains an important but unexplored frontier of actin biology.

2011_J Cell Bio_Rohn.pdf Supplemental Files.zip

Pages