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Supplementary Methods 

Data Normalization and Dimensionality Reduction 

Normalization and dimensionality reduction was performed for the 273-TC dataset as follows.  

Each of the 145 raw features was normalized to have mean 0 and variance 1 across the full set of 

12601 single cells.  Normalization of the raw features was done to avoid inappropriately 

weighting some features over others (for example, because of arbitrary differences in unit 

measurements).  Following normalization, dimensionality reduction was performed by 

computing principal components (PCs) for the full set of single-cell data, and then projecting 

each data point onto the first three PCs.  Working in reduced feature space avoided 

inappropriately weighting particular morphological feature classes that are overrepresented in the 

set of raw features (for example, redundant measurements of nucleus shape). 

Similarly, normalization was performed for the 90-TC dataset.  Dimensionality reduction was 

performed using the first three PCs computed using the 273-TC dataset.  We used principal 

components from the 273-TC dataset in order to readily compare RhoGAP knockdowns and 

RhoGTPase overexpression TCs; we used the larger dataset because it contained knockdown, 

overexpression, and control test data.  We conducted robustness testing by varying the number of 

dimensions of reduced feature space and re-running the entire classification algorithm.  Using 

greater than five principal components resulted in greatly decreased specificity for the 

classification algorithm, likely because the RhoGTPase overexpression TC point clusters are 

separated by large distances, causing the classifier to overfit upstream TCs.  Using between two 

and five principal components resulted in the same predictions at optimal threshold, with the 

following (minor) differences from the 3-PC case.  For two PCs, RhoGAP5A/Rac1 and 



	 3	

CdGAPr/Rac1 were also predicted; for four PCs, RhoGAP100F/Rac1 and RacGAP84C/Rho1 

were not predicted; and for five PCs, RhoGAP5A/Rac1, CdGAPr/Rac1, and RhoGAPp190/Rac1 

were also predicted, but RacGAP84C/Rho1 was not predicted.  For definiteness, we chose to use 

three PCs for our final analysis and the exposition here, though it is possible in theory to 

optimize for the number of dimensions using the training data.  In particular, the false positive 

rate was improved for the case of four or five PCs versus three PCs.  

 

Mapping RhoGAP double-knockdowns to single-knockdowns to identify within-pathway 

genetic interactions 

As an additional application of our classification model, we mapped the set of RhoGAP double-

knockdowns (U) to RhoGAP single-knockdowns (D).  Applying the model directly to the entire 

set, D, was not possible, because each element of D was not correctly mapped to itself.  To 

remedy this, we clustered the single-knockdown TCs using a variant of EM designed to 

guarantee that, under the final clustering, all single-knockdown TCs would be correctly 

classified.  The algorithm proceeds by iterating the following two steps, beginning with 

€ 

k = 0 

and 

€ 

D0 = D. 

Iteration k: 

(i) Map each element of 

! 

D into 

€ 

Dk  using the classification.  If each element of 

! 

D is mapped 

to the cluster containing it, set 

€ 

˜ D = Dk  and exit. 
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(ii) Define 

€ 

Dk+1 as follows.  Let 

€ 

f (D) = Rk = rl{ } denote the range of the classification of 

! 

D 

mapped into 

€ 

Dk  (i.e. the subset of 

€ 

Dk  onto which elements of 

! 

D were mapped in (i)).  

Then set 

€ 

Dk+1 = ∪ f −1(rl ){ }. 

At each iteration, the elements of 

! 

D mapped to the same target in 

€ 

Dk  are grouped (by taking the 

union of single cells comprising each such element) into a single element of 

€ 

Dk+1.  Note that 

upon termination of the algorithm, the clustering 

! 

˜ D  necessarily has the property that every 

element of 

€ 

D is classified to the cluster containing it.  It is theoretically possible for the 

algorithm to enter a cycle (though this did not occur for our test data), in which case all elements 

forming a cycle are clustered together, thus allowing the algorithm to continue.  In the worst 

case, the algorithm terminates by grouping all elements of 

! 

D into a single element, which has to 

be mapped to itself. 

For single-knockdown RhoGAP TCs, the clustering algorithm terminates with 

€ 

˜ D = D2, yielding a 

total of 5 clusters.  (By way of comparison, for RhoGTPase overexpression TCs, the clustering 

algorithm terminates immediately, i.e. 

€ 

˜ D = D0.)  The classification model was used to map all 

double-knockdown RhoGAP TCs into the set 

! 

˜ D  of clustered single-knockdown TCs. 

 

Supplementary Results 

Comparison with alternate methods 

Mean scores and clustering-based approaches 
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It should be noted that using mean scores is isomorphic to certain clustering-based approaches.  

One can imagine constructing a classification scheme by defining cutoffs for linkage distances in 

a hierarchical clustering, for instance.  Such an approach is equivalent to computing pairwise 

distances between mean TC feature scores and identifying the closest pairs.  Clustering carries an 

added disadvantage, namely the possibility of conflating the classification of upstream TCs to 

downstream TCs; in clustering, all pairwise distances are considered and may influence the final 

clustering, whereas only pairwise distances between an upstream and downstream TC factor into 

the mean score method described above (and in our classification model). 

 

Incorporating other classifiers 

In the main text, we described an alternative classification model based on computing Z-scores 

for each double RNAi TC for each neural network classifier.  TCs with large Z-scores (as 

determined by Bonferroni correction at 

€ 

p = .05) for a given GTPase neural network were 

mapped to the GTPase under this classification model. 

We also considered a more intricate model based on using neural network classifiers to perform 

a dimensionality reduction, as opposed to using PCA. In particular, using the two neural network 

classifiers for RacF28L and RhoF30L to represent single-cell morphology, we applied our 

classification model directly (with just Rac1 and Rho1 as potential downstream TCs); this was 

equivalent to performing a dimensionality reduction using scores from these two neural network 

classifiers as the basis for reduced-dimensional space, rather than principal components.  

However, at optimal threshold, this method attains 60% sensitivity and 67% specificity 
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(Supplementary Fig. 1).  As with the neural network Z-score method, this performance is 

poorer than that achieved by our classification model applied to PC-based data. 
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Supplementary Figure 1 

 

Supplementary Fig. 1.  ROC curve for neural network-based alternative classification model.  

An alternative classification model was constructed using neural network classifiers for 

RhoF30L and RacF28L to perform dimensionality reduction, in contrast to dimensionality 

reduction based on principal components, as in the main classification model proposed in this 

paper).  The figure shows the ROC curve for the main classification model (blue) and for the 

alternative model (green).  The neural network-based model cannot achieve greater than 60% 

sensitivity, and can only do so at 67% specificity.  The PC-based model outperforms it and all 

other alternatives considered (see main text for discussion of alternative methods). 
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Supplementary Figure 2 

 

Supplementary Fig. 2.  Classification-based clustering algorithm for downstream TCs.  The 

first iteration (

€ 

k = 0,

€ 

D0 = D) of the algorithm is shown for hypothetical data consisting of a set, 

€ 

D, of five downstream TCs (DTCs).  On the left, the single cells for all DTCs are shown in 

reduced feature space.  In the middle (step (i) of the algorithm), the classification model is used 

to map each of the DTCs to the set 

€ 

D0 .  In this example, each of DTC1, DTC3, and DTC4 is 

mapped to itself, but the other two DTCs are not.  On the right (step (ii) of the algorithm), DTCs 

classified to the same target are consolidated into growing clusters.  For the next iteration of the 

algorithm (

€ 

k =1), each of the five original DTCs is classified, but this time the target set consists 

of only three elements, as   

€ 

D1 = DTC1∪DTC2,DTC3∪DTC5,DTC4{ }. 
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Supplementary Table 1 

Supplementary Table 1A: 

RhoGAP RhoGTPase 
RacGAP50C Rac1 
RacGAP84C Rac1 
RhoGAP93B Rac1 
RhoGAPp190 Rho1 
RacGAP50C Cdc42 
 

Supplementary Table 1B: 

RhoGAP RhoGTPase 
RhoGAP5A Rho1 
RacGAP84C Rho1 
CdGAPr Rho1 
 

Supplementary Table 1.  (A) Biologically validated RhoGAP/GTPase interactions among the 

13 RhoGAPs and 3 RhoGTPases in our morphological datasets, taken from Flybase and 

BioGRID.  (B) Biologically validated RhoGAP/GTPase non-interactions among the 13 

RhoGAPs and 3 RhoGTPases in our morphological datasets taken from the literature. 
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Supplementary Table 2 

RhoGAP RhoGTPase P-Score 
RhoGAP92B Rho1 

  1   1 

     1 

     1 

     2 

     2 

     2 

     1 

     3 

     1 

     1 

     2 

   

0.000 
RacGAP84C Rho1 0.011 
RhoGAPp190 Rho1 0.021 
RhoGAP19D Rho1 0.046 
CdGAPr Rac1 0.167 
RhoGAP54D Rac1 0.205 
RacGAP50C Rac1 0.231 
RhoGAP93B Rho1 0.437 
RhoGAP5A Cdc42 0.542 
RhoGAP16F Rho1 0.657 
RhoGAP1A Rho1 0.701 
RhoGAP100F Rac1 0.891 
RhoGAP71E Rho1 0.980 
 

Supplementary Table 2.  Classification of single-knockdown RhoGAP TCs into RhoGTPase 

overexpression TCs.  The confidence scores shown here were computed using bootstrapping by 

drawing samples just from the 13 single-knockdown RhoGAP 13 TCs.  Following Bonferroni 

correction, only the mapping of RhoGAP92B to Rho1 is significant at 

€ 

p = .05 (heavy shading).  

By considering the ROC curve (Fig. 5C), this model has optimal predictive power at a threshold 

of 

€ 

p = .231 (light shading), at which it correctly predicts 2/5 biologically validated interactions 

and 2/3 non-interactions.  At this threshold, the model makes a total of 7 predictions.  The 

probability of correctly predicting at least 2 out of 5 biologically validated interactions when 

making 7 predictions (out of 39 possibly) is 

€ 

p = .21. 
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Supplementary Table 3 

Supplementary Table 3A 

 Cd.r 100F 16F p190 19D 1A 50C 54D 5A 71E 84C 92B 93B 
Cd.r Rac1 Rho1 Rho1 Rho1 Rho1 Rac1 Rac1 Cdc42 Rac1 Rho1 Rac1 Rho1 Rho1 
100F  Rac1 Cdc42 Rho1 Rho1 Rho1 Rac1 Rho1 Rho1 Rac1 Rho1 Rho1 Rho1 
16F   Rho1 Rho1 Rho1 Rac1 Rac1 Cdc42 Cdc42 Rac1 Rho1 Rho1 Rho1 
p190    Rho1 Rho1 Rho1 Rac1 Rho1 Cdc42 Rho1 Rho1 Rho1 Rho1 
19D     Rho1 Rho1 Rac1 n/a Rac1 Rac1 Rho1 Rho1 Rho1 
1A      Rho1 Rac1 Cdc42 Rho1 Rac1 Rho1 Rho1 Rho1 
50C       Rac1 Rac1 Rac1 Rac1 Rac1 Rho1 Rac1 
54D        Rac1 Rac1 Rac1 Rho1 Rho1 Rac1 
5A         Cdc42 Rac1 Rho1 Rho1 Rho1 
71E          Rho1 Rho1 Rho1 Rho1 
84C           Rho1 Rho1 Rac1 
92B            Rho1 Rho1 
93B             Rho1 

 

Supplementary Table 3B 

 Cd.r 100F 16F p190 19D 1A 50C 54D 5A 71E 84C 92B 93B 
Cd.r 0.055 0.789 0.947 0.078 0.851 0.500 0.601 0.941 0.197 0.584 0.988 0.010 0.725 
100F  0.749 0.103 0.869 0.112 0.405 0.026 0.822 0.360 0.006 0.349 0.003 0.312 
16F   0.368 0.278 0.157 0.984 0.000 0.860 0.621 0.424 0.235 0.000 0.998 
p190    0.001 0.854 0.886 0.047 0.410 0.743 0.316 0.174 0.000 0.681 
19D     0.012 0.092 0.175 n/a 0.666 0.607 0.122 0.000 0.107 
1A      0.505 0.000 0.541 0.635 0.109 0.274 0.003 0.846 
50C       0.086 0.000 0.135 0.000 0.000 0.000 0.023 
54D        0.091 0.087 0.468 0.239 0.000 0.643 
5A         0.309 0.143 0.517 0.000 0.747 
71E          0.965 0.186 0.146 0.313 
84C           0.003 0.000 0.958 
92B            0.000 0.000 
93B             0.213 

 

Supplementary Table 3. (A) Classification of single- and double-knockdown RhoGAP TCs into 

RhoGTPase overexpression TCs. (B) P-scores associated with classifications, as determined by 

bootstrapping with 1000 iterations.  Classifications significant at 

€ 

p = .0232 are lightly shaded.  
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Double-knockdowns with RhoGAP92B as one of the knocked-down genes (the heavily shaded 

cells in the upper right of the matrix) were excluded, due to the fact that RhoGAP92B single-

knockdown was mapped to Rho1 overexpression at Bonferroni-corrected 

€ 

p = .05 (see 

Supplementary Table 2).  The threshold of 

€ 

p = .0232 was chosen based on ROC analysis to 

yield maximum sensitivity while simultaneously minimizing the false positive rate (see Fig. 5C). 
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Supplementary Table 4 

Single-knockdown RhoGAP TC Cluster Index 
CdGAPr 1 
RhoGAP92B 2 
RhoGAPp190 3 
RhoGAP19D 3 
RacGAP84C 3 
RhoGAP100F 4 
RhoGAP16F 4 
RhoGAP5A 4 
RhoGAP93B 4 
RhoGAP1A 5 
RacGAP50C 5 
RhoGAP54D 5 
RhoGAP71E 5 
 

Supplementary Table 4.  Clustering of single-knockdown RhoGAP TCs.  A clustering 

algorithm was designed was used to ensure that, following clustering, each single-knockdown 

RhoGAP TC would be mapped to the cluster containing it under the classification model.  See 

text for details.  
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Supplementary Table 5 

Supplementary Table 5A 

 Cd.r 100F 16F p190 19D 1A 50C 54D 5A 71E 84C 92B 93B 
Cd.r 1 5 5 4 5 5 5 4 5 5 5 5 5 
100F  4 4 4 3 5 4 5 4 5 3 2 5 
16F   4 4 5 5 5 4 1 1 2 2 4 
p190    3 4 4 5 4 4 5 4 2 4 
19D     3 5 5 n/a 5 5 4 2 1 
1A      5 5 4 4 5 5 2 5 
50C       5 5 5 5 5 3 5 
54D        5 4 5 4 2 5 
5A         4 5 4 2 4 
71E          5 5 5 5 
84C           3 2 5 
92B            2 3 
93B             4 

 

Supplementary Table 5B 

 Cd.r 100F 16F p190 19D 1A 50C 54D 5A 71E 84C 92B 93B 
Cd.r 0.192 0.676 0.022 0.888 0.003 0.045 0.195 0.064 0.008 0.548 0.071 0.260 0.073 
100F  0.277 0.000 0.795 0.502 0.778 0.059 0.820 0.798 0.052 0.756 0.911 0.485 
16F   0.631 0.081 0.418 0.259 0.005 0.092 0.069 0.159 0.789 0.000 0.506 
p190    0.300 0.491 0.429 0.446 0.792 0.097 0.031 0.640 0.000 0.092 
19D     0.146 0.700 0.002 n/a 0.129 0.299 0.160 0.311 0.905 
1A      0.597 0.014 0.005 0.538 0.001 0.824 0.283 0.334 
50C       0.113 0.000 0.010 0.000 0.000 0.592 0.213 
54D        0.000 0.012 0.464 0.489 0.888 0.002 
5A         0.000 0.364 0.219 0.000 0.141 
71E          0.013 0.673 0.791 0.000 
84C           0.895 0.017 0.390 
92B            0.000 0.265 
93B             0.261 

 

Supplementary Table 5.  (A) Classification of double-knockdown RhoGAP TCs into single-

knockdown RhoGAP TCs.  The code (1-5) corresponds to the cluster index given in 

Supplementary Table 4.   (B) P-scores associated with classifications, as determined by 
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bootstrapping with 1000 iterations.  Classifications significant after Bonferroni correction at 

€ 

p = .05 are shaded.  For discussion, see main text and Table 3.  
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Supplementary Table 6 

RhoGAP RhoGTPase P-Score (Bootstrapping from 
single-knockdowns only) 

P-Score (Bootstrapping 
from single- and double-
knockdowns) 

RhoGAP92B Rho1 

  1   1 

     1 

     1 

     2 

     2 

     2 

     1 

     3 

     1 

     1 

     2 

   

0.000 0.000 
RacGAP84C Rho1 0.011 0.003 
RhoGAPp190 Rho1 0.021 0.001 
RhoGAP19D Rho1 0.046 0.012 
CdGAPr Rac1 0.167 0.055 
RhoGAP54D Rac1 0.205 0.091 
RacGAP50C Rac1 0.231 0.086 
RhoGAP93B Rho1 0.437 0.213 
RhoGAP5A Cdc42 0.542 0.309 
RhoGAP16F Rho1 0.657 0.368 
RhoGAP1A Rho1 0.701 0.505 
RhoGAP100F Rac1 0.891 0.749 
RhoGAP71E Rho1 0.980 0.965 
 

Supplementary Table 6.  Alternative bootstrapping for mapping single-knockdown RhoGAP 

TCs to RhoGTPase overexpression TCs.  P-scores were calculated for classifications using two 

alternate methods: bootstrapping by drawing samples from single-knockdown TCs only (third 

column) and by drawing samples from both single- and double-knockdown TCs (fourth column).  

Sampling from both single- and double-knockdowns results in uniformly smaller p-scores, 

because including double-knockdowns increases the range of single-cell morphological 

phenotypes available.  The ordering of the 13 RhoGAPs by p-score was maintained by shifting 

between the two bootstrapping schemes, save for a swap in the order of two adjacent pairs of 

interactions; the ROC curve is unchanged overall. 



	 17	

Supplementary Table 7 

“Upstream” TC Classification (“Downstream” TC) P-Score 

RhoF30L RhoF30L 0.000 

RacF28L RacF28L 0.000 

Cdc42Y32A Cdc42Y32A 0.000 

 

Supplementary Table 7.  Classification of the set of RhoGTPase overexpression TCs to itself.  

Each of the three RhoGTPase overexpression TCs is correctly mapped.  P-scores were calculated 

using bootstrapping with 1000 iterations, with samples drawn from the union (of single cells) of 

the three RhoGTPase overexpression TCs.  The fact that 

€ 

p < .001 means that, for all three TCs, 

no bootstrapped samples of equal cell number were classified with greater confidence (mode 

frequency of the classification vector) than the actual set of cells.  This provides significant 

confidence in the ability of the classification model to discriminate between the GTPase 

overexpression TCs.  (In contrast, a preliminary clustering step was necessary when mapping 

(double-knockdown RhoGAP TCs) to the set of single-knockdown RhoGAP TCs).  
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Supplementary Table 8 

Supplementary Table 8A 

Group Definition Group Size 
Group 1 (p < .05/90) 14 
Group 2 (.05/90 < p < .05) 10 
Group 3 (.05 < p < .20) 19 
Group 4 (.20 < p < .50) 16 
Group 5 (.50 < p < .80) 16 
Group 6 (.80 < p) 15 
Total 90 
 
Supplementary Table 8B 

 90% 70% 50% 30% 
Group 1 (p < .05/90) 0.999  (0.003) 0.999  (0.003) 0.998  (0.004) 0.984  (0.026) 
Group 2 (.05/90 < p < .05) 0.997  (0.010) 0.984  (0.029) 0.959  (0.058) 0.928  (0.054) 
Group 3 (.05 < p < .20) 0.954  (0.041) 0.927  (0.052) 0.907  (0.047) 0.823  (0.055) 
Group 4 (.20 < p < .50) 0.856  (0.078) 0.813  (0.080) 0.784  (0.073) 0.735  (0.065) 
Group 5 (.50 < p < .80) 0.724  (0.112) 0.707  (0.112) 0.679  (0.102) 0.598  (0.098) 
Group 6 (.80 < p) 0.566  (0.116) 0.532  (0.096) 0.511  (0.077) 0.499  (0.053) 
 
 
Supplementary Table 8.  Robustness of classification to exclusion of data using jackknifing.  

For each single- and double-knockdown, 100 random samples consisting of X% (X = 30, 50, 70, 

90) of the cells from that TC were selected and classified to the set of overexpression TCs.  A 

consistency score was assigned based on the fraction of random samples correctly classified.  (A) 

Single- and double-knockdowns were binned into groups depending on p-score of the true 

classification.  (B) Mean consistency scores are shown here for all groups (standard deviations 

are shown in parentheses).  Most importantly, classifications of the TCs that were classified at 

the optimal threshold of 

€ 

p = .0232 are extremely robust to data exclusion (top two lines in table). 

See also Fig. 4D. 

	


