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Abstract

Damage initiates a pleiotropic cellular response aimed at cellular survival when appropriate. To identify genes required for
damage survival, we used a cell-based RNAi screen against the Drosophila genome and the alkylating agent methyl
methanesulphonate (MMS). Similar studies performed in other model organisms report that damage response may involve
pleiotropic cellular processes other than the central DNA repair components, yet an intuitive systems level view of the
cellular components required for damage survival, their interrelationship, and contextual importance has been lacking.
Further, by comparing data from different model organisms, identification of conserved and presumably core survival
components should be forthcoming. We identified 307 genes, representing 13 signaling, metabolic, or enzymatic pathways,
affecting cellular survival of MMS–induced damage. As expected, the majority of these pathways are involved in DNA repair;
however, several pathways with more diverse biological functions were also identified, including the TOR pathway,
transcription, translation, proteasome, glutathione synthesis, ATP synthesis, and Notch signaling, and these were equally
important in damage survival. Comparison with genomic screen data from Saccharomyces cerevisiae revealed no overlap
enrichment of individual genes between the species, but a conservation of the pathways. To demonstrate the functional
conservation of pathways, five were tested in Drosophila and mouse cells, with each pathway responding to alkylation
damage in both species. Using the protein interactome, a significant level of connectivity was observed between Drosophila
MMS survival proteins, suggesting a higher order relationship. This connectivity was dramatically improved by incorporating
the components of the 13 identified pathways within the network. Grouping proteins into ‘‘pathway nodes’’ qualitatively
improved the interactome organization, revealing a highly organized ‘‘MMS survival network.’’ We conclude that
identification of pathways can facilitate comparative biology analysis when direct gene/orthologue comparisons fail. A
biologically intuitive, highly interconnected MMS survival network was revealed after we incorporated pathway data in our
interactome analysis.
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Introduction

Cellular damage is a normal component of life, with constant

damage exposure from both endogenous and exogenous sources.

Damage to DNA is considered to be the most biologically relevant

lesion with the potential of mutagenic results, though most

exogenous agents have the potential to damage many components

of the cell. Responding appropriately to such insults, either

mitigating cellular toxicity or initiating an appropriate cell death

response, is critical, particularly in multi-cellular organisms.

Inappropriate responses may facilitate deleterious effects, such as

a destabilized genome and diseases such as cancer [1]. As such,

DNA damage response (DDR) components are critical suppressors

of deleterious effects of genotoxic agents by controlling cell cycle

progression, DNA repair, and apoptosis [2]. For this reason, there

have been many investigations using a variety of model organisms

to identify components of DDR and subsequently to determine

how they function and the consequences of their dysfunction.

Recent reports suggest that DDR may involve pleiotropic cellular

processes other than the central DDR components [3,4], yet an

intuitive systems level view of the cellular components required for

damage survival, their interrelationship, and their contextual

importance has been lacking. The most comprehensive attempt at

understanding the interrelationship of damage response and

survival components in yeast at a systems level has been mapping

identified genes to a network by integrating the general biological

processes as distinct modules [5]. It has been suggested that the

inclusion of well-defined biological pathways in protein networks

might provide a better understanding of biological interactions

therein [6,7].

In order to identify genes involved in damage response in an

unbiased manner and to put them in a functional context, we used

an RNAi library [8] to knock-down every predicted protein in the

Drosophila melanogaster genome and assessed whether knock-down of
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individual proteins significantly altered cell viability following

methyl methanesulfonate (MMS) exposure. MMS is a prototypical

alkylating agent that attacks nucleophilic groups, such as those

found in nucleic acid [9]. The resultant base methylation

destabilizes the glycosidic bond, facilitating the production of the

most biologically relevant cellular lesion of MMS, an abasic site in

DNA. Other common sources of alkylation damage include

endogenous S-adenoysyl methionine [10], the tobacco carcinogen

N-nitorsoamine [11] and chemotherapeutics such as temozolo-

mide [12], carmustine (BCNU) [9], and cyclophosphamide [13].

Considering the physiological relevance of alkylation damage,

several recent studies using yeast as model organism investigated

the global effects of alkylation damage induced by MMS. Viability

[14], gene transcription [15] and protein expression [16] were

measured in these studies, all of which provided insights into the

diverse nature of biological responses to alkylation damage.

However when transcriptional responses to various environmen-

tal stresses were compared between mammalian and yeast cells

[17], Murray et al. reported clear distinctions and suggested that

this might be the result of different selective pressures between

multi-cellular organisms and single-cell organisms. In the

attempt to understand diverse responses required for damage

survival in a system that is evolutionarily closer to mammals

than yeast, we performed a genome-wide, RNAi-based screen

using cells derived from Drosophila melanogaster. Our experiments

were based on ‘‘loss of function’’ and an assessment for cellular

viability following exposure to MMS. Here we present results

from this MMS survival screen, the pathways that were

identified, and a comparative analysis of pathways to understand

conservation of these pathways in yeast and mouse cells.

Additionally, we present a novel approach of assembling a

protein interaction network based on defined biological path-

ways, which facilitates network consolidation. By including

biological pathways in our genomic data and protein network

analysis, we were able to determine the commonality across

species, which was obscured by direct orthologue comparison,

and provide a simplified representation of the global survival

responses that we identified.

Results

Genome-wide RNAi screen and validation
An RNAi screen was designed to identify those genes that

modulate cellular survival following exposure to a level of MMS-

induced damage that resulted in only a limited amount of cell

death. A linear decrease in cell viability was observed from 0.002%

(w/v) of MMS to 0.008% (w/v) of MMS (Figure S1). A dose of

0.004% (w/v; 40 mg/mL) MMS was chosen, which resulted in a

statistically significant decrease to approximately 65% viability,

while allowing an additional, measurable decrease in cell survival.

RNAi screens were performed using the Drosophila RNAi

Screening Center (DRSC) version 1 library (about 23,000 D.

melanogaster open reading frames) [8]. Kc167 Drosophila cells were

exposed to three days of dsRNA to allow protein knock-down,

followed by three days of growth in either the absence or presence

of MMS exposure (Figure 1A).

To identify those genes required for cell viability following

MMS treatment, viability results from the MMS treated RNAi

screen were compared with that of the untreated (control) screen

as previously described [18]. 1,398 different open reading frames

were identified that affected MMS survival in a continuous

distribution of cell survival values (see [18] and http://gccri.

uthscsa.edu/ABPublished_Data.asp for original data), of which

996 had a unique assigned FlyBase gene number (FBgn; denotes

known genes) (see Figure 1B and Table 1). Of these 996 genes, the

top 537 were selected for validation analysis by a previously

described, stringent validation method [18]. Whereas in [18] we

validated normalization methods, here we independently validated

individual genes using dsRNA targeting a different region of each

gene. 202 protein knock-downs validated with a significant MMS

viability effect, while 55 more had a notable trend effect without

meeting our stringent statistical criteria (Table S1 and Table S2).

An examination of gene ontology (GO) on the 202 validated MMS

survival genes revealed a significant enrichment for genes involved

in DNA metabolism, gene transcription, and cellular metabolism

(Table 2). The overall variety of GO categories observed was quite

broad, consistent with the findings reported for an analogous yeast

screen [3] (data not shown). Surprisingly though, no significant

enrichment between the gene orthologues for the two organisms

was observed (G-test p-values of 0.29 and 0.057 or Fisher Exact

test p-values of 0.37 and 0.08, yeast and fly, respectively). To

further test this, we examined the MMS sensitivity following

knock-down of 183 fly genes that were orthologues of to 118 yeast

MMS survival genes [3], but only found conservation of MMS

survival phenotype with 20 (Table S3). This apparent lack of gene

enrichment between species has also been reported when

comparing transcriptional profiles between mammalian and yeast

cells in response to a variety of stresses [17]. Overall, these results

suggest that there may be conservation of the biological processes

that respond to MMS rather than the individual genes.

Identification of pathways responsive to MMS
Assuming that biological function is a more informative

measure of damage response than a requirement of individual

genes, we therefore endeavoured to identify those MMS survival

proteins within known signaling, metabolic, and enzymatic

pathways. Using both a priori knowledge and KegArray, we

identified 13 pathways that together included 41 MMS survival

proteins (Figures 1, 2, 3 and Figures S2, S3, S4, S5), among them,

five DNA repair pathways (Base Excision Repair; Nucleotide

Excision Repair; Mismatch Repair; Homologous Recombination

Repair; and RECQ). Many of these pathways have a statistically

significant number of MMS survival proteins (Table S5), and this

Author Summary

Cellular damage is known to elicit a pleiotropic response,
but the relative importance of the constituent compo-
nents in cell survival is poorly understood. To provide an
unbiased identification of the proteins utilized in damage
survival, we performed an RNAi survival screen in fly cells
with methyl methanesulfonate (MMS). The genes identi-
fied are involved in 13 biologically diverse pathways.
Comparison with analogous yeast data demonstrated a
lack of conservation of the individual MMS survival genes
but a conservation of pathways. We went on to
demonstrate the MMS responsiveness for five representa-
tive pathways in both fly and mouse cells. We conclude
that identification of pathways can facilitate comparative
biology analysis when direct gene/orthologue compari-
sons fail. Incorporation of pathway data in interactome
analysis also improved connectivity and, more importantly,
revealed a biologically intuitive, highly inter-connected
‘‘MMS survival network.’’ This pathway conservation and
inter-connectivity implies extensive interaction between
pathways; for diseases such as cancer, such crosstalk may
dictate disparate cellular responses not necessarily expect-
ed and confound treatments that are not tailored to the
individual molecular context.

Damage Survival Pathways
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is without accounting for pathway ‘‘branching’’ or ‘‘subdivision.’’

Considering the likely role of these pathways in MMS survival, we

used an RNAi assay method, which is both more sensitive and

stringent than the original screen [18], to determine whether other

members of the 13 identified pathway also affected MMS survival

(Table S1). By individually interrogating the 346 pathway

members of the 13 pathways that were not identified in the

original screen, an additional 105 MMS survival genes were

discovered. This observation significantly enriched the number of

MMS survival genes in each of the 13 pathways (Figures 1, 2, 3

and Figures S2, S3, S4, S5) and provides additional support to the

hypothesis that each of the identified pathways are involved in

MMS survival. Though this result highlights the possibility of false

negative screen data, compared to our previous false negative rate

of 23.6% from randomly selected data, we observe a significant

enrichment for false negatives within pertinent pathways ((x2

p = 3.9E-5). In total we identified 146 MMS survival genes in 13

‘‘MMS survival pathways,’’ encompassing 25% to 86% of all non-

essential genes within each pathway (Table S4).

Using the genes we mapped to the MMS survival pathways, we

then compared pathways identified from our Drosophila MMS

screen with the analogous screen performed in yeast [14] using

Figure 1. The experimental design of the Drosophila RNAi MMS survival screen and summary of the workflow and results. (A) A
schematic representation of the experimental design used to screen for genes involved in survival of an MMS exposure using RNAi in Drosophila. (B) A
schematic representation of the workflow from the initial RNAi screen, the normalization and validation of results, and the follow-up work conducted,
with a summary of the number of dsRNA amplicons and genes (FBgn; FlyBase gene number) involved at each step in the process. Also provided are
the final numbers of MMS survival proteins and MMS survival pathways (BER: base excision repair; NER: nucleotide excision repair; MMR: mismatch
repair; HRR: homologous recombination repair; RECQ: RecQ helicases; DDR: DNA damage response; Proteasome; GSH: glutathione synthesis; TOR:
TOR pathway; Transcription: basal transcription; Ribosome; ATPase; Notch: Notch signaling pathway).
doi:10.1371/journal.pgen.1000527.g001
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genes they found to be responsive to MMS. As previously noted,

we did not observe a significant overlap between the two screens

when comparing MMS survival gene orthologues, however, with

this pathway comparison, we mapped orthologues of yeast MMS

survival genes to 10 of the 13 Drosophila MMS survival pathways

(Figures 2 and 3; Figures S2, S3, S4, S5; Table S6). The three

Drosophila MMS survival pathways without yeast MMS survival

genes either are not conserved in yeast or have almost all of the

pathway components are essential for viability in yeast, thus

making them refractory to MMS viability analysis (Table S5). The

gene enrichment with each pathway between species is highly

supportive of a conservation of processes involved in MMS

survival. A notable absentee in the Drosophila screen, which was

observed in yeast, is 3-methyladenine-DNA-glycosylase (MAG1/

AlkA), the principal protection against MMS-induced DNA

damage in yeast, but no direct orthologues exist in animals. One

of the two glycosylase found in Drosophila that act at the same step

in BER, namely Thd1, was found to be required for survival after

MMS treatment. Furthermore, several of the pathways observed

in both species, such as proteasome [19], the TOR pathway [20],

and DNA repair pathways [21], have been shown to be

functionally responsive to MMS in yeast. Altogether, these results

suggest a conservation of pathway function, if not individual genes,

in response to MMS between species.

To demonstrate that the identified Drosophila pathways are

functioning in the expected manner in response to MMS, five were

selected for further examination – base excision repair (BER),

DDR, glutathione metabolism, proteolysis by proteasomal degra-

dation (proteasome), and the TOR pathway. Two of these

pathways, BER and DDR, are expected to play a role in MMS

survival [9], while the others were selected for their apparent

breadth of function and their non-canonical role in damage

survival. For each pathway, an appropriate functional assay was

chosen, and when possible, an appropriate upstream MMS

survival protein within that pathway was knocked-down (Figure

S6A) to demonstrate modulation of the MMS induced response.

Functional conservation of MMS survival pathways in
Drosophila and mouse

First, we tested the two expected MMS survival pathways BER

and DDR. MMS-induced DNA damage results in the production

of apurinic/apyrimidic (AP) sites, a DNA damage typically

repaired by BER [9]. We therefore quantified the amount of AP

sites per microgram of genomic DNA following MMS treatment

and observed a statistically significant increase compared to

control (Figure 4A; p#7.6E-8). Knock-down of the BER

component XRCC1 resulted in an increased amount of AP sites

in and of itself (p#3E-3), but following MMS treatment, the

amount of AP sites in the absence of XRCC1 was increased

further (Figure 4A; compared with untreated XRCC1 knock-

down, p#3.3E-8; compared to MMS treated luciferase (Luc)

control, p#3.7E-3); MMS therefore produces the expected form

of DNA damage to which BER appropriately responds. p53, a

central component of the DDR pathway, is regulated at

expression, protein stabilization, and posttranslational modifica-

tion levels. As expected, p53 gene expression increased in response

to MMS exposure (Figure 4B; p#1.6E-3).

We then examined three MMS survival pathways that are not

part of the canonical DDR and DNA repair process: glutathione

metabolism, proteasome, and the TOR pathway. An increased

activity of the glutathione synthesis pathway following MMS

exposure was demonstrated by measuring total glutathione

content per milligram of protein lysate (Figure 4C; p#3.4E-3),

as well as by examining the expression of the rate-limiting enzyme

for glutathione synthesis, GCLc [22] (p#8.8E-4). Therefore, as

expected, knock-down of this same protein, GCLc, significantly

reduced the total amount of glutathione present compared with

control (p#3.4E-3), but its knock-down also prevented the cells

from increasing the level of glutathione in response to MMS

exposure (Figure 4C). Since glutathione synthesis is considered to

be an oxidative stress response, we demonstrated that MMS

resulted in a dose-dependent increase in the level of 8-oxoguanine,

a DNA lesion normally associated with oxidative damage (Figure

S7 and Text S1). Thus it appears that MMS results in not only

alkylation damage but also damage from oxidative stress.

For the analysis of the proteasome degradation pathway, we

measured proteasome activity and found that it increased

following MMS treatment (Figure 4D; p#4.2E-2). Protein

knock-down of the proteasome components Rpn2 or Pros26.4

significantly reduced proteasome activity compared to cells

without knock-down that were either unexposed (Rpn2:

p#1.7E-2; Pros26.4: p#3.7E-3) or exposed to MMS (Rpn2:

p#1.4E-4; Pros26.4: p#7.0E-5). Following Rpn2 knock-down,

cells were unable to mount a detectable increase in proteasome

activity following MMS exposure, although we were unable to

demonstrate this for Pros26.4 knock-down (p#1.7E-3). Overall, it

appears that MMS exposure results in increased proteasome

activity.

Finally, to investigate TOR pathway activity, S6K phosphor-

ylation status was monitored. TOR is a kinase that phosphorylates

S6K to promote growth through ribosome biogenesis and is

negatively regulated by the tumor suppressor protein Tsc1 [23].

MMS exposure resulted in a dose-dependent decrease in S6K

phosphorylation, suggesting an inhibition of TOR activity

(Figure 4E). This MMS-induced decrease in S6K phosphorylation

was dependent on Tsc1 (Figure 4E). MMS exposure therefore

elicited a down-regulation of the growth promoting TOR

pathway, suggesting that this pathway is also a coordinated

component of DDR similar to observations in yeast [20]. This

supports a previously published observation by Matsuoka et al. [4],

who showed that some components of the mammalian TOR

pathway are phosphorylated following ionizing radiation expo-

sure. In conclusion, the results of these functional assays validate

the identification of the ‘‘MMS survival pathways’’ by RNAi

screening and that the functionality of these pathways, or lack

thereof, affects MMS survival.

Having thus identified 13 Drosophila MMS survival pathways, we

went on to investigate their functional conservation in mammals.

Using primary mouse embryonic fibroblasts (MEFs), we examined

the same five pathways that were modulated following MMS

Table 1. Summary of MMS survival genes identified by
genome-wide RNAi screen.

Normalized RNAi screen results

Death Resistance Total

BS_QN 1183 40 1223

cellHTS2 594 40 634

total 1326 72 1398

FBgn 935 61 996

Numbers of death and resistance hits found by background subtraction
followed by quantile normalization (BSQN) and cellHTS2 are given. The total
number of unique hits and the total number of hits whose amplicons map to
genes with FlyBase gene number (FBgn) are also given.
doi:10.1371/journal.pgen.1000527.t001
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Table 2. Categories of Gene Ontology enrichment within the validated MMS survival genes.

Gene Ontology enrichment

Biological Process

Adjusted P-value GO Attribute

,0.001 0006139: nucleobase, nucleoside, nucleotide and nucleic acid metabolic process

,0.001 0006351: transcription, DNA-dependent

,0.001 0032774: RNA biosynthetic process

,0.001 0016070: RNA metabolic process

,0.001 0045449: regulation of transcription

,0.001 0065004: protein-DNA complex assembly

,0.001 0016043: cellular component organization and biogenesis

,0.001 0051252: regulation of RNA metabolic process

,0.001 0006367: transcription initiation from RNA polymerase II promoter

,0.001 0006355: regulation of transcription, DNA-dependent

,0.001 0065003: macromolecular complex assembly

,0.001 0008283: cell proliferation

0.001 0035080: heat shock-mediated polytene chromosome puffing

0.014 0006911: phagocytosis, engulfment

0.018 0045165: cell fate commitment

0.034 0030154: cell differentiation

0.049 0006259: DNA metabolic process

Molecular Function

Adjusted P-value GO Attribute

,0.001 0030528: transcription regulator activity

,0.001 0003676: nucleic acid binding

,0.001 0016251: general RNA polymerase II transcription factor activity

,0.001 0003702: RNA polymerase II transcription factor activity

0.003 0005515: protein binding

0.003 0043565: sequence-specific DNA binding

Cellular Component

Adjusted P-value GO Attribute

,0.001 0005634: nucleus

,0.001 0005654: nucleoplasm

,0.001 0043227: membrane-bounded organelle

,0.001 0031981: nuclear lumen

,0.001 0016591: DNA-directed RNA polymerase II, holoenzyme

,0.001 0031974: membrane-enclosed lumen

,0.001 0043234: protein complex

,0.001 0032991: macromolecular complex

,0.001 0005667: transcription factor complex

0.003 0000119: mediator complex

0.012 0008540: proteasome regulatory particle, base subcomplex

0.015 0005665: DNA-directed RNA polymerase II, core complex

0.032 0005675: holo TFIIH complex

0.038 0000123: histone acetyltransferase complex

An examination of the 202 validated screen MMS survival genes for category enrichment within Gene Ontologies; Biological Process, with 46 genes having no functional
annotation; Molecular Function, with 40 genes having no functional annotation; Cellular Component, with 68 genes having no cellular component annotation, using
FuncAssociate.
doi:10.1371/journal.pgen.1000527.t002
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exposure in Drosophila. In general we observed comparable results

in MEFs to Drosophila (compare Figures 4 and 5). MMS increased

the amount of AP sites in MEFs (Figure 5A); in the absence of

XRCC1, however, we observed a significant increase in AP sites

following MMS exposure (Figure 5A; p#3.7E-4). For DDR in

MEFs, we assessed the phosphorylation status of Chk1 (a kinase

that, once phosphorylated, phosphorylates p53) [24], total p53

protein, and the phosphorylation status of p53 (Figure 5B), not to

examine p53 expression levels, but to obtain a result equivalent to

that of Drosophila result: that DDR is activated by MMS exposure.

Also, similar to the observation in Drosophila cells, MEFs had

increased proteasome activity following MMS treatment

(Figure 5D; p#2.0E-4); knock-down of either proteasome

component, PSMC1 or PSMD1 (orthologues to Rpn2 and

Pros26.4, respectively), resulted in decreased proteasome activity

following MMS exposure (PSMC1: p#8.1E-5; PSMD1: p#4.1E-

4). These results are comparable with Drosophila: it is clear that

proteasome activity is responsive to MMS in MEFs. It should also

be noted that, though we were able to demonstrate the same dose-

dependent decrease in S6K phosphorylation following MMS

exposure in MEFs as seen in Drosophila cells (Figure 5E) and that

knock-down of TSC1 disrupted this MMS-induced effect, the

disruption was not as evident as observed with Drosophila, probably

due to inefficient knock-down of the TSC1 protein in MEFs (data

not shown). Having observed the functionality of these pathways in

response to MMS and the ability of the five siRNA to modulate

the MMS response of their respective pathway, we also examined

the effect of each knock-down on MMS survival in MEFs. Three

of the protein knock-downs, GCLC, PSMC1 and PSMD1,

affected MMS survival in MEFs (data not shown). Overall, it

would appear that Drosophila could be used to accurately predict

MMS survival pathways in mouse.

Utilization of the MMS survival pathways in response to
Temozolomide

Given that MMS causes alkylation damage, it would be

reasonable to suppose the identified biological pathways are

generally involved in the response to other alkylating agents.

Temozolomide is an alkylating agent used clinically in the

treatment of cancer [12,25]. It has already been demonstrated

that BER and TOR are necessary for Temozolomide survival

[12,25]. Temozolomide causes DNA damage by increasing the

number of AP sites, and similar to our MMS results, inhibition of

BER increases sensitivity to temozolomide [12]. It has also been

reported that rapamycin inhibition of the TOR pathway increased

cellular sensitivity to temozolomide [25]. To further demonstrate

the utilization of MMS survival pathways in response to

temozolomide, we examined the DDR pathway, glutathione

levels, and proteasome activity in MEFs and observed the same

responses as observed following MMS exposure (Figure S8).

Further, using HEK293 cells, we observed that both MMS and

temozolomide exposure repressed Notch reporter activity (Figure

S9 and Text S1). Absence of functional Notch protein has been

shown to repress the activity of a downstream transcriptional

activator (RBP-Jk) [26], therefore this result demonstrates a

functional Notch pathway response in alkylation damage expo-

sure. Taken together, these data suggest a functional conservation

of the MMS survival pathways responses with other similarly

acting agents.

Network integration of MMS survival pathways
Of the 307 identified MMS survival genes (202 validated screen

hits plus 105 from pathway analyses), we were able to assign 146 to

13 pathways (Figures 1, 2, 3 and Figures S2, S3, S4, S5). Because

161 MMS survival protein remain unassigned, we re-examined the

inter-relationship between the identified MMS survival proteins

using the currently available Drosophila protein:protein interactome

(PPI) map [27–29]. To measure the connectivity among the MMS

survival genes, we took the largest connected components of the

PPI network and discarded the other, smaller components. The

largest connected component contained 7364 of the 7504 proteins

in the original PPI network. Taking the 202 original validated

MMS screen hits as an unbiased starting point, we determined the

number of proteins that were directly connected to one another,

compared to a random set of the same number of proteins from

the PPI, and observed a significant enrichment (Figure 6A and

Table S7; p#2.1E-10). Similar results were obtained for other

assessments of network connectivity (Table S7). Because the MMS

screen hits had more connections on average than a set of random

genes, which might have biased the above analysis, we also

compared the connectivity of the MMS screen hits in the real PPI

network with the connectivity of the same set of proteins in a

randomly rewired PPI network. Degrees were preserved in the

random rewiring process. As shown in Table S7, the MMS screen

hits have statistically significantly more direct interactions than

would be expected in a randomly rewired network (p = 0.01). On

the other hand, the randomized network had smaller average

distance and higher global efficiency than the real network, which

could be attributed to the well-known property of real-world

networks: they usually have slightly longer average distances (and

correspondingly, lower global coefficients) than their degree-

preserving randomly rewired counterparts [30].

Because we were unable to assess the effect of essential proteins

(proteins whose knock-down resulted in cell death regardless of

treatment) on MMS survival, we repeated the connectivity analysis

while including those essential proteins that were connected to two

or more MMS survival proteins, since these are the ones most

likely to have a functional role in MMS survival. This increased

the size and significantly improved the connectivity within the

resultant network (Figure 6B and Table S7; p#1.3E-26). After

pathway analysis, we identified an additional 105 MMS pathway

hits, which were validated. In order to expand the network to

include the proteins in these relevant pathways, these hits were

then incorporated and a larger, and equally well-connected

network was observed (Figure 6C and Table S7; p#4.6E-26).

Considering the apparent importance of pathways over the

individual genes, we then included all components of the 13

identified MMS survival pathways and observed that the

Figure 2. Base excision repair, DNA damage response, and proteasome pathways utilized for MMS survival. CG numbers are given for
each Drosophila pathway component, as well as the protein names or complex names for their human orthologues. Pathway entry points are noted
with Roman numerals at the top, and end points are at the bottom. A key for the following symbols is provided. Symbols encircled with thick lines
represent proteins that act together or in a complex, while symbols encircled with thin lines represent paralogues or proteins that may substitute for
one another. Proteins found to affect MMS survival are noted as down (death) or up triangles (resistance). Statistically significant proteins are
indicated with black triangles, while trend hits are indicated with grey triangles. Essential genes are noted with a thick bar and any with downwards
or upwards pointing boxes were also validated as conferring death or resistance, respectively, to MMS upon knock-down. Shaded squares are
proteins not found to be hits after validation, and open squares were not tested in our validation. Yeast orthologues previously found to be required
for MMS survival [3] are noted with a dot under the symbol. (A) Base Excision Repair. (B) DNA Damage Response. (C) Proteasome.
doi:10.1371/journal.pgen.1000527.g002
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connectivity of the resultant enlarged network was significantly

improved yet again (Figure 6D and Table S7; p#4.6E-52). Similar

to the analysis of the 202 validated MMS screen hits, we also

compared the connectivity of the subnetworks containing the

essential genes or pathway hits with that of a randomly rewired

network consisting of the same nodes. Although at a lower

statistical significance, the same general trend was observed (Table

S7). This more inclusive network allows a view of all interactions

Figure 3. Glutathione and TOR pathways utilized for MMS survival. CG numbers are given for each Drosophila pathway component, as well
as the protein names or complex names for their human orthologues. Pathway entry points are noted with Roman numerals at the top, and end
points are at the bottom. A key for the following symbols is provided. Symbols encircled with thick lines represent proteins that act together or in a
complex, while symbols encircled with thin lines represent paralogues or proteins that may substitute for one another. Proteins found to affect MMS
survival are noted as down (death) or up triangles (resistance). Statistically significant proteins are indicated with black triangles, while trend hits are
indicated with grey triangles. Essential genes are noted with a thick bar and any with downwards or upwards pointing boxes were also validated as
conferring death or resistance, respectively, to MMS upon knock-down. Shaded squares are proteins not found to be hits after validation, and open
squares were not tested in our validation. Yeast orthologues previously found to be required for MMS survival [3] are noted with a dot under the
symbol. (A) Glutathione (an expanded list of GST family members is given in Table S4) and (B) TOR.
doi:10.1371/journal.pgen.1000527.g003
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Figure 5. Functional conservation in mouse embryonic fibroblasts of five pathways found to be utilized for MMS survival in
Drosophila cells. (A) MMS exposure results in an increase in AP sites, siRNA based XRCC1 knock-down results in an increased quantity of AP sites
following MMS exposure. (B) MMS exposure results in phosphorylation of CHK1 and p53 and in an accumulation of total p53 levels. (C) MMS exposure
results in an increased amount of total glutathione and this increase is partially dependent upon GCLc. The intracellular glutathione concentration is
expressed as mmoles/L normalized per mg protein. This GCLc dependency correlates with the increased level of GCLc expression observed following
MMS exposure. (D) Proteasome activity is increased following MMS exposure in a manner that is dependent upon proteasome components Pmsc1
and Psmd1. Proteasome activity is expressed as units of activity/cell, normalizing the activity to the number of cells using a parallel viability
assessment. (E) MMS exposure results in a dose-dependent decrease in the phosphorylation of p70S6K. Statistically significant differences between
unexposed and MMS exposed cells are denoted (*; **; ***; with p-values of ,0.05; ,0.01; and ,0.001 respectively) as are differences between NT
control and each siRNA knock-down (#; ##; ###; with p-values of ,0.05; ,0.01; and ,0.001 respectively).
doi:10.1371/journal.pgen.1000527.g005

Figure 4. An examination of the functionality of five of pathways utilized in MMS survival by Drosophila cells. (A) MMS exposure results in
an increase in AP sites. dsRNA knock-down of the BER component XRCC1 increases the quantity of AP sites observed following MMS exposure. (B) MMS
exposure results in increased p53 expression by quantitative real-time PCR analysis; expression level is provided as fold change compared to an
endogenous control (CG6905). (C) MMS results in an increased amount of total glutathione, and this increase is dependent upon the rate limiting
glutathione metabolizing enzyme glutamate cysteine ligase (GCLc). The intracellular glutathione concentration is expressed as mmoles/L normalized per
mg protein. This GCLc dependency correlates with the increased level of GCLc expression observed following MMS exposure. (D) Proteasome activity is
increased following MMS exposure in a manner that is dependent upon proteasome components Rpn2 and Pros26.4. Proteasome activity is expressed as
units of activity/cell, normalizing the activity to the number of cells using a parallel viability assessment. (E) MMS exposure results in a dose-dependent
decrease in the phosphorylation of the dTor component p70S6K. This decrease is dependent upon the negative regulator of dTor, Tsc1. Statistically
significant differences between unexposed and MMS exposed cells are denoted (*; **; ***; with p-values of ,0.05; ,0.01; and ,0.001 respectively) as are
differences between Luc control and each dsRNA knock-down (#; ##; ###; with p-values of ,0.05; ,0.01; and ,0.001 respectively).
doi:10.1371/journal.pgen.1000527.g004
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both within and connecting to a pathway, even if the pathway

components themselves are not critical to survival after MMS. To

qualitatively visualize this result, each protein known to be in a

pathway was grouped together and assigned to a ‘‘pathway node’’

(a single node within the interactome that retains the interactions

of its constitutive proteins to proteins that are external to that

pathway). This resulted in a highly connected interactome, or

‘‘MMS survival network’’ (Figure 6E), that now encompassed 179

of the 233 MMS survival proteins that are present in the PPI

network (77%). Of the remaining 54 orphan proteins, 47 are only

one protein removed from the MMS survival network, six are two

proteins away, and only one is not connected at all. At each step in

this analysis, we observed an improved network, either enlarged or

better connected, not only when comparing the entire set of

proteins in that network to a random set of proteins in the PPI, but

also when randomizing the additional proteins added at each step

(data not shown). Overall, our observations with the MMS survival

network suggest that despite the general interconnectivity within

protein interactomes, a pathway analysis is highly relevant because

it may improve interactome connectivity and it simplifies a systems

biology overview.

Discussion

Studies performed using yeast as a model organism to predict

network response to MMS reported an astounding involvement

of diverse biological pathways [31]. Considering that the genes

that respond to environmental stress differ between mammalian

and yeast cells [17], we presumed that damage response might

be different or more complex in higher eukaryotes, especially

considering the presence of paralogues and thus increased

genetic redundancy. We therefore performed a genome-wide,

RNAi based screen with Drosophila cells to investigate which

genes are essential for survival following damage exposure with

MMS. We were able to identify and validate 307 MMS survival

genes, the majority of which had not previously been associated

with alkylation damage survival. Of these genes, 146 were

components of 13 different MMS survival pathways. With the

five pathways examined in detail, we observed that four were

functionally conserved in yeast and all five conserved in mouse

with regard to their utilization following MMS treatment

(Figure 5). In yeast, experimental validation of response to

MMS by proteasome [19], the TOR pathway [20], and DNA

repair pathways [21] was previously reported. Similarly,

glutathione response to MMS was observed in mammalian cells

[32], and our observation of an increase in GCLc expression

provides an underlying mechanism for this phenomenon. Our

demonstration of a dose-dependent increase in 8-oxoguanine after

MMS exposure indicates that MMS also results in oxidative stress

damage, as previous studies suggested [33]. Additionally, several

recent studies have demonstrated a role for the proteasome in

regulating several DNA repair pathways (reviewed in [34]),

supporting our observation of increased proteasome activity in

response to MMS. Thus, our screen and pathway identification have

revealed a conserved set of MMS survival pathways.

Our Drosophila based study has provided novel insights to the

global cellular response to alkylation damage by identifying

biological pathways whose functions are required for survival

after this damage. The only other analogous genome-wide, loss-of-

function screen for MMS survival genes was performed in yeast

[14]. That study highlighted the general biological processes

required for MMS survival based on gene ontology and integrated

the identified proteins into a disorganized network [14].

Considering that pathways, whether signaling, metabolic, or

enzymatic, have long been identifiable entities, it is logical to

consider them as units within a network. Thus our experiments

focused on identifying pathways required upon exposure to

damage and validating the biological responsiveness of pathways

following this damage exposure. Our results confirmed that these

biological pathways are indeed functional in yeast, Drosophila, and

mouse cells and therefore functional contribution of these

biological pathways are pertinent to damage response in a network

representation.

In addition to the functional conservation of the survival

pathway in response to alkylation damage, these same biological

pathways appear to have roles in response to other types of

damages. It is interesting to compare our results with an elegant

study by Matsuoka et al. [4], which identified proteins that are

phosphorylated following ionizing radiation in human cells. Their

study identified proteins that are components of nine of our 13

MMS survival pathways, including four of the DNA repair

pathways, DDR, mTOR, proteasome, basal transcription, and

ribosome. These results suggest that different types of damage, not

just alkylation damage, may utilize different components of a DNA

damage survival network in a functionally conserved manner and

reemphasize the functional conservation of pathways, if not the

individual genes, between species.

Our emphasis to reorganize the MMS survival network based

on pathways is to facilitate the observation of biologically

relevant interactions. Often protein:protein interaction networks

may appear chaotic, but may be interrogated for simple sub-

networks associated with protein(s) and pathways of interest [21].

However, when working with pleiotropic responses that

encompass so many different biological processes, such as

DDR, a chaotic network representation appears non-intuitive

(Figure 6D). Thus, the integration of pathways within the

conceptual framework of systems biology networking is logical.

An additional advantage of including pathways is highlighted by

our demonstration of MMS survival protein enrichment by

detailed examination of pathways. Even with this detailed

Figure 6. Protein network of MMS survival proteins reveals an integrated, highly connected MMS survival network. (A) 150 of the
validated MMS survival proteins (red nodes) are represented in the known Drosophila interactome, with protein:protein interactions represented by
grey edges; 104 of these validated hits are ‘‘orphans,’’ not connected to other proteins. (B) Nodes and orphans from (A), including 11 proteins
essential for viability (black nodes) that are connected to two or more validated hits, improves the connectivity of the DNA damage survival network.
In this network, only 93 hits are orphans and a larger network of 36 proteins, containing 29 validated hits, is observed. (C) Nodes and orphans from
(B), including additional pathway hits not found in screen (green nodes). In this network, 86 screen hits and an additional 54 pathway hits are orphans
and a larger network of 63 proteins, containing 33 validated screen hits, 20 additional pathway hits and 10 essential proteins. (D) Nodes and orphans
from (C), including all non-hit members of the 13 MMS survival pathways (open nodes). In this network, 60 screen hits and an additional 40 pathway
hits are orphans and a larger network of 247 proteins, containing 79 validated screen hits (26 of which are within pathways), 35 additional pathway
hits, 101 non-hit pathway proteins, and 32 essential proteins. (E) Network of proteins validated to be required after MMS treatment (red nodes),
proteins essential for viability (black nodes), and 13 pathways (blue pathway nodes) validated to be involved in MMS survival. All proteins in each
pathway, regardless of being a hit, are represented in its metanode, with node size representing protein number. After all pathway components are
used to create the network, only 54 proteins are orphan, and 96 proteins are contained within the main interconnected network. Network
connectivity coefficients are given at the lower right-hand corner for (A–D).
doi:10.1371/journal.pgen.1000527.g006
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analysis and convincing evidence that the pathways were indeed

functioning as expected, we were not able to assign every protein

within each pathway as an ‘‘MMS survival protein.’’ There are

many possible explanations for this, but nonetheless, considering

the pathways as a whole provide a framework within the

network that highlights novel interactions, cross-talk, and

identified proteins not mapped to a canonical pathway, but

present within the network, would unlikely be observed in a

‘‘chaotic network view’’ and encourages their investigation. This

approach is similar to computational clustering of networks

based on signaling pathways using interactome datasets [35], but

our approach includes both identified proteins and pathway

components. Our representation is simplified, using a single

node to represent the entire pathway rather than a complex

display of interactions for every component in a pathway [36].

This simplified pathway inclusive representation reveals a highly

organized network, consistent with the requirement of each

pathway for cellular survival (Figure 6E), and provides an

effective strategy to integrate modular components into the

network [37] and thereby inferring biological properties [38].

The interconnectivity between the survival pathways

(Figure 5E) suggests potential pathway cross-talk. If such cross-

talk exists, it would be highly pertinent to cancer therapy.

Recent studies have demonstrated the utility of a global level

analysis, allowing identification of altered pathway function in

complex diseases such as the Notch pathway in pancreatic

cancer [39] and similarly the DDR pathway in breast and

colorectal cancers [40]. Considering our identification of Notch,

TOR, DDR, and the proteasome as ‘‘survival pathways,’’ all of

which are currently being explored as targets for cancer therapy

[41,42], our identified survival network would suggest the

possibility of combining pathway-specific pharmacological agents

in cancer therapy. Some of the pathway connections and

potential cross-talk represented in our survival network

(Figure 6E) have already been observed. For example, protein

phosphatase, PP2A, a downstream component of the TOR

pathway [23], interacts with the DDR component to regulate

phosphorylation of ATM and ATR [43] and vice versa [4];

DDR interacts with BER via CHK2 and XRCC1 [44]; Notch

interacts with DDR via Mastermind and p53 [45]; the

glutathione pathway interacts with the nucleotide excision repair

pathway (NER) [46]; and the proteasome interacts with various

DNA repair components [34,47]. Together, it would appear that

our model of an integrated network of conserved damage

survival pathways is both valid and biologically relevant.

In conclusion, we have identified a network of pathways that

have a functional role in damage response by affecting viability; we

also demonstrated the functional conservation between species of

the MMS survival pathways. By considering the protein

interactions between the MMS survival proteins and by incorpo-

rating the MMS survival pathways, a highly interconnected

damage survival network is observed that encompasses at least

58% of the identified MMS survival proteins directly. This

interconnectivity suggests a strong functional interrelationship

between constitutive components of the survival network and the

possibility of pathway cross-talk and coordination at a level greater

than just their instigation by the DDR pathway. Although these

MMS survival pathways have already been implicated in MMS

damage response, we have identified these seemingly disparate

pathways in a single screen, and with the network analysis, this

lends to direct connection of these pathways in response to

damage. The pleiotropic effects of alkylation damage therefore

require a wide-variety of functioning pathways in order for the cell

to survive.

Methods

Tissue culture
Kc167 cells were grown in Schneider medium (Invitrogen,

Carlsbad, CA) supplemented with 10% heat inactivated fetal

bovine serum (65uC, 10 minutes), penicillin and streptomycin at

22uC in a humidified chamber.

Primary MEFs were obtained by harvesting 14.5 day C57BL/6

embryos as previously described [48]. Briefly, fetal liver and head

were removed and the remainder of the embryo mechanically

disaggregated in plating medium. A suspension of single-cells was

plated out in Dulbecco’s Modified Eagle’s Medium (DMEM)

supplemented with 10% fetal calf serum, 2 mM glutamine,

100 U/mL penicillin, and 100 mg/mL streptomycin. MEFs were

grown for two passages before freezing aliquots. Aliquots were

taken and expanded as needed for each experiment.

Genome-wide viability screen following MMS exposure
Methods were adapted from [49], with 1.26104 Kc167 cells

suspended in 10 mL of serum-free Schneider medium (Invitrogen)

added to each well of sixty-three 384-well plates. Each well

contains about 0.25 mg of a double-stranded (ds) RNA, with

22,915 individual dsRNA represented in the whole library

(Version 1 dsRNA). Cells were incubated for 1 h at 22uC, allowed

phagocytic uptake of the dsRNA, then 20 mL of serum (15% heat-

inactivated fetal bovine serum) containing medium were added

and the plates incubated for a further 72 h. Medium was

exchanged for fresh serum containing medium, with or without

0.004% (w/v) of MMS (Sigma-Aldrich, St. Louis, MO). Following

72 h additional incubation, medium was removed and the number

of viable cells assessed using pre-diluted Celltiter-Glo per

manufacturers instructions (Promega, Madison, WI). Screens were

performed in duplicate, with the replicate screen initiated on a

different day.

Production of dsRNA
dsRNA were produced similarly to previously described [8,18].

Briefly, dsRNA was synthesized using cDNA prepared by gene

specific amplification of reverse transcribed cDNA. For cDNA

preparation, RNA was harvested from adult D. melanogaster using

Trizol reagent. For gene specific amplification, primers designed

by the DRSC to target genes of interest were custom synthesized

with overhanging T7 promoter sequences (Invitrogen). DRSC

validation primer sequences were obtained from the DRSC for

targeting genes of interest, and oligonucleotides were purchased

(Invitrogen). First round PCR amplifications were performed using

gene specific primers, and the amplified products were gel

purified, using an agarose gel purification kit (Qiagen, Valencia,

CA) or a 96-well gel isolation kit (Invitrogen). The purified PCR

products were then used for second round amplification also using

the gene specific primers; these amplified products were purified

using Millipore PCR purification 96-well plate system (Millipore,

Billercia, MA). The purified products were then used for dsRNA

synthesis using T7 Ribomax express system (Promega) and

purified using the PCR purification plate system (Millipore). The

quality of purified dsRNA was verified by agarose gel electropho-

resis and, following spectrophotometric quantification, stored at

220uC.

Validation analysis
Validation of MMS survival genes was performed as previously

described [18], with the exception that DRSC ‘‘validation’’

dsRNA (targeting a gene mRNA transcript at a different location

to the library amplicon), designed by the DRSC but produced
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in-house, were preferentially used in this study. Briefly, dsRNA

were validated in quadruplicate, with one set of plates treated with

MMS and one set used as an untreated control. Plates with or

without MMS with the same dsRNA were then compared.

Genes required after MMS treatment and genes whose knock-

down conferred resistance to MMS were validated by validation

amplicons, if available. When validation amplicons were not

available, the amplicon used in the original library was used for

validation. In some instances, both validation and library

amplicons were used in validation experiments. In these cases,

the knock-down result from the validation amplicon was preferred

over that of the library amplicon, if a difference was evident. If the

gene of interest was annotated to a pathway that had already been

determined to be involved in MMS response, the gene was

considered as a hit regardless of which version amplicon validated.

Gene ontology
Gene ontology was retrieved from FlyBase (http://flybase.org/).

Enrichment analysis was conducted using FuncAssociate (http://

llama.med.harvard.edu/cgi/func/funcassociate/) for those ontol-

ogies over-represented with a p-value of less than 0.05. Those

ontology categories that overlapped were consolidated.

Westerns
Protein lysates were prepared using radioimmunoprecipitation

assay (RIPA) buffer containing 5% sodium deoxycholate, 0.1%

SDS, 0.1% Igepal in PBS with a cocktail of protease inhibitors

(1 mM PMSF, 1 mM Sodium Orthovandate and 30 uL/mL

Aprotinin (Sigma)). Protein concentration was determined using

Bradford Protein Assay Reagent (Biorad, Hercules, CA). Equal

amounts of protein were resolved using 10% SDS polyacrylamide

gel and transferred onto a nitrocellulose membrane (Hybond-

ECL, GE Healthcare Lifesciences, Piscataway, NJ). Using

appropriate dilutions of primary and secondary antibodies,

immunodetection of the protein was performed using the ECL

plus system (GE Healthcare Lifesciences). Primary antibodies

include P-Chk1 (T68) (Abcam) and total CHK1 (Abcam), P-

p70S6K (T389) (Cell Signaling Technology) and total p70S6K

(Cell Signaling Technology), and P-p53 (S15) (Cell Signaling

Technology) and total p53 (Cell Signaling Technology).

Apurinic sites measurement
Apurinic or apyrmidinic sites (AP) that were generated following

DNA damage were measured using a colorimetric assay kit for

DNA damage quantification (Oxford Biomedical Science, Oxford,

MI), following manufacturer’s protocol. Briefly, DNA was isolated

from the experimental cells using a Genomic DNA isolation kit

(Oxford Biomedical Science). Equal amounts of DNA were then

labelled using a biotinylated aldehyde reactive probe. Labelling

was followed by purification and colorimetric quantification using

streptavidin-horse radish peroxidase (HRP) conjugate and HRP-

dependent substrate supplied with the kit. The aldehyde reactive

probe labelled DNA standard, supplied by the kit, was used to

determine the number of AP sites per 100 kilobase pairs of DNA

in the experimental samples.

Glutathione measurement
Intracellular glutathione levels were measured using a colori-

metric assay kit for glutathione (Oxford Biomedical Science),

following manufacturer’s protocol. Briefly, cells from RNAi

experiments were resuspended in ice-cold PBS and homogenized

using a sonicator; the lysate was cleared by centrifugation and the

protein concentration of the supernatant was determined using

Bradford’s reagent (Biorad). For estimation of glutathione, equal

amounts of protein lysate were de-proteinized using metapho-

sphoric acid (MPA) with the final concentration of MPA adjusted

to 5%. The precipitated proteins were cleared by centrifugation at

4000 g for 10 min at 4uC, and the supernatant was used for the

assay. Reduced glutathione (Sigma) was used as a standard, and

samples were arrayed in a 96-well plate. A two-step reaction was

conducted, thioesterification of intracellular thiols using 4-choloro-

1-methyl-7-trifluoromethyl-quinolinium methylsulfate followed by

alkaline conversion of glutathione-thioester to chromophoric

thione, followed by detection of total glutathione by absorbtion

at 400 nm.

Quantitative Reverse-Transcriptase PCR
dsRNA was used to target a gene of interest; this dsRNA was

the same used to validate the genes of interest by knock-down. The

level of RNAi mediated silencing of gene expression was

monitored by quantitative real time RT–PCR using QuantiTect

SYBR Green RT-PCR kit (Qiagen GmbH) and an ABI 7500 Real

Time PCR System (Applied Biosystems, Foster City, CA). For

these experiments, 18.616104 Kc167 cells were dispensed into a 24-

well tissue culture plate containing 6.2 mg of dsRNA per well.

Following 1 h incubation in a serum-free condition to allow the

uptake of dsRNA, serum was replenished to a final concentration

of 10%. On Day 3, RNA was isolated using RNeasy Mini kit

(Qiagen) and quantified using an ND-1000 Spectrophotometer

(Nanodrop, Wilmington, DE). For the PCR amplifications, distinct

primers that were not encompassed within the dsRNA used to

target the gene were used. For gene expression analysis following

MMS exposure, RNA was isolated on Day 4. For experiments

with Kc167 cells, CG6905, the expression of which remained

unaltered following MMS exposure, was used as an endogenous

control. For experiments with MEFs, the isolated RNA was

reverse transcribed using an ImProm-II Reverse Transcription

System (Promega) and the cDNA was used with TaqMan Gene

Expression Assay kit for GCLc, purchased from (Applied

Biosystems, CA) and TaqMan Universal Master Mix (Applied

Biosystems). Mouse b-Actin TaqMan Gene Expression Assay kit

was used as an endogenous control. The level of gene expression

was determined using nnCt method [50].

Proteasome measurement
Experiments were performed in 384-well plates using the same

layout and timing as described for the RNAi validation

experiments, [18], except the proteasome activity was measured

on Day 4 of the experiment, 24 h after MMS exposure. For

proteasome measurement, a Proteasome-Glo assay kit was used

(Promega), as per instructions. To normalize the proteasome

activity with cell density, a parallel experiment was performed in a

separate 384-well plate, and the cell density was estimated using

CellTiter-Glo (Promega) as described above. Proteasome activity

was then normalized to the relative number of cells present.

Orthologue identification
Orthologues of Drosophila genes of interest in human, mouse,

and yeast, were obtained from Ensembl49 (http://ensembl.org/).

siRNA targeting of MEFs
SMARTPool siRNAs were purchased from Dharmacon RNA

technologies (Lafayette, CO). For siRNA transfection into MEFs,

cells were harvested by trypsinization, washed in a serum free

medium, and cell density was adjusted to 16106 cells in 100 mL of

MEF-2 Nucleofector Solution (Amaxa, Gaithersburg, MD),
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containing 0.5 mg of siRNA, followed by transfection by

electroporation using Nucleofector II Device (Amaxa). The

transfected cells were seeded in either a 96-well or a 384-well

tissue culture plate, as required by the experiment. For non-

specific control, scrambled, non-targeting siRNA was used. The

fluorescent probe siGLO red (Dharmacon) was used to monitor

the efficiency of siRNA uptake, and the efficiency of protein

knock-down was determined by western blot analysis (Figure S3B).

Additional validation for SMARTPool siRNA experiments were

performed using a minimum of four independent duplex siRNA

for each gene (Figure S10).

Pathway identification
Pathway analysis was conducted first by a priori identification of

protein/pathway relationships and KegArray, yielding from which

we included DNA damage response, glutathione metabolism, the

TOR pathway, proteasome, and DNA repair pathways. For a

systematic analysis on the MMS hits, KegArray (with default

settings) was used (http://genome.jp/download/), yielding Notch

signaling, ATPase, basal transcription, ribosome, proteasome and

glutathione metabolism. These pathways were examined for the

number of hits identified in the pathway versus the number of total

pathway components. Pathways that we included from prior

knowledge only were not top pathways retrieved by KegArray due

to their relatively small size or completeness in the KEGG

database in fly.

Interactome analysis
Protein interactome data were obtained from IntAct [27]

(http://www.ebi.ac.uk/intact/), the Database of Interacting

Proteins [28] (DIP, http://dip.doe-mbi.ucla.edu/) and the Bio-

molecular Interaction Network Database [29] (BIND, http://

bond.unleashedinformatics.com/). Data from the three databases

were combined into a single interactome, using the CG number of

each gene as the identifier of the protein. Interactomes were

visualized using Cytoscape 2.6 (http://www.cytoscape.org/).

Pathway nodes were created external to Cytoscape by renaming

all nodes representing protein in the pathways with the name of

the pathway. If a protein was found in multiple pathways, it is

represented in all relevant pathway nodes. Interactions between

pathways were trimmed if the only interaction between them also

existed within both pathways. For instance, if a protein:protein

interaction occurs between two members of the NER pathway,

and these two proteins also exist in the BER pathway, then the

interaction is more likely to be pathway specific and not cross-talk

between pathways and was therefore removed.

Connectivity analyses
Four measurements of connectivity were made: (1) Counting the

number of pairs of MMS survival proteins that directly interact in

the interaction network, (2) computing the average geodesic

distance (i.e., the number of edges in a shortest path) between each

pair of MMS survival proteins in the interaction network [51], (3)

the global efficiency of the network [51], and (4) the clustering

coefficient [51]. The number of direct interactions provides an

intuitive measure of the connectivity of a subnetwork, while the

average distance measures the global connectivity of the sub-

network. Global efficiency provides a similar measure to average

distance, but allows for disconnected components. The global

efficiency was measured by 1
N N{1ð Þ

P
i, j~1::N, i=j

1
dij

, where n is the

number of vertices in the network and dij is the geodesic distance

between vertices vi and vj. The clustering coefficient is a measure

of local connectivity of the network. For each vertex vi, let gi be the

subnetwork that consists of direct neighbours of vi (excluding vi

itself) and the edges between them. The clustering coefficient of vi

was measured by the total number of edges in gi divided by the

maximum number of edges that could possibly exist in gi. The

clustering coefficient of a network is given by the average of the

clustering coefficient of each vertex, with a high clustering

coefficient indicating a distinction between a real network from

a random one. To assess the statistical significance of each

measurement, the same number of proteins or proteins pairs, as

appropriate, were randomly sampled from the PPI or PPI

subnetwork. This sampling was repeated 1,000 times to estimate

a p-value that the difference could be expected by chance.

Statistical analyses
To determine if knock-down of genes resulted in increased

sensitivity to MMS, raw data obtained from the viability assays

was normalized and statistically analyzed as described previously

[18]. A T-test was performed between normalized quadruplicates

to determine the significant difference between treated and

untreated wells. Percent control survival with MMS treatment

was then estimated for each experimental gene knock-down as

described previously [18], and a second T-test was performed on

the percent of viability as compared with luciferase control within

each plate as described before [18]. From these analyses,

significant hits were selected as death hits if there was no greater

than 55% viability in treated wells as compared to untreated if a p-

value of less than 0.05 resulted from at least one of the T-tests. For

those genes with an essential phenotype of less than 40% viability

of non-targeting dsRNA, more stringent requirements were made

on the viability effect after MMS treatment, such that 30–40%

viability when untreated needed 15% viability after MMS

treatment, 20–30% needed 10% after treatment, 10–20% needed

5% after treatment, and 0–10% was too dead to determine if

MMS had an effect. Genes were considered ‘‘trend death hits’’ if

they exhibited less than 55% viability after treatment but did not

have a p-value with significance or if they exhibited 55–65%

viability after MMS treatment with a significant p-value. Knock-

down of genes resulting in resistance to MMS were confirmed as

those with greater than 85% viability after treatment as compared

to untreated wells, with one of the two p-values of less than 0. 0001

and viability after no treatment to be at least 60% that of non-

targeting knock-down.

To determine if a gene was essential for viability, a T-test was

performed on untreated wells comparing values for non-targeting

dsRNA against luciferase and dsRNA targeting the gene. If the

targeting dsRNA resulted in less than 70% viability of luciferase

with a p-value of less than 0.00001, the gene was deemed essential.

Comparisons between predicted and observed numbers of

MMS survival genes between yeast and Drosophila studies were

done by a standard G-test [52]. The G-test is equivalent to a

contingency Chi-square test but allows for classes with zero

events.

To determine protein enrichment within a pathway where there

is an unbalanced distribution of data between the numbers of

proteins within a pathway compared to the total number of genes

within a genome, a Fisher’s Exact test was employed [53].

For connectivity measurements, except in the case of clustering

coefficient, p-values were estimated using a Z-test, given that the

connectivity measurement for the random subnetworks approxi-

mately follows a normal distribution (Table S6). The p-value for

the clustering coefficient measurement was estimated by simply

counting the frequency that the clustering coefficient of a

randomly sampled sub-network was at least as high as that of

the real sub-network.
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Supporting Information

Figure S1 The MMS dose response as measured by cell survival.

Viability of Drosophila Kc167 cells following exposure to increasing

dose of MMS determined using CellTiter-Glo (relative light units

(ordinate) for increasing dose of MMS (abscissa)).

Found at: doi:10.1371/journal.pgen.1000527.s001 (0.54 MB EPS)

Figure S2 Four of the eight additional pathways utilized for

MMS survival. CG numbers are given for each Drosophila pathway

component, as well as the protein names or complex names for

their human orthologues. Pathway entry points are noted with

Roman numerals at the top, and end points are at the bottom. A

key for the following symbols is provided. Symbols encircled with

thick lines represent proteins that act together or in a complex,

while symbols encircled with thin lines represent paralogues or

proteins that may substitute for one another. Proteins found to

affect MMS survival are noted as down (death) or up triangles

(resistance). Statistically significant proteins are indicated with

black triangles, while trend hits are indicated with grey triangles.

Essential genes are noted with a thick bar and any with

downwards or upwards pointing boxes were also validated as

conferring death or resistance, respectively, to MMS upon knock-

down. Shaded squares are proteins not found to be hits after

validation, and open squares were not tested in our validation.

Yeast orthologues previously found to be required for MMS

survival [3] are noted with a dot under the symbol. An example of

average percent of untreated control survival of validated hits is

shown next to each pathway, though this may not represent the

actual control for each data point within the graph. Error bars are

the standard deviation of quadruplicates. Survival of control cells

with dsRNA targeting luciferase is shown in an open bar, protein

knock-down that resulted in a significant difference in MMS

survival from this control are shown in black (death) or stripped

(resistance), and those with a trend effect are shown in grey. A

complete list of these proteins and their human and yeast

orthologues is given in Table S6. (A) Nucleotide Excision Repair.

(B) Mismatch Repair. (C) Homologous Recombination Repair. (D)

RecQ Helicases.

Found at: doi:10.1371/journal.pgen.1000527.s002 (1.40 MB EPS)

Figure S3 Two of the eight additional pathways utilized for

MMS survival. CG numbers are given for each Drosophila pathway

component, as well as the protein names or complex names for

their human orthologues. Pathway entry points are noted with

Roman numerals at the top, and end points are at the bottom. A

key for the following symbols is provided. Symbols encircled with

thick lines represent proteins that act together or in a complex,

while symbols encircled with thin lines represent paralogues or

proteins that may substitute for one another. Proteins found to

affect MMS survival are noted as down (death) or up triangles

(resistance). Statistically significant proteins are indicated with

black triangles, while trend hits are indicated with grey triangles.

Essential genes are noted with a thick bar and any with

downwards or upwards pointing boxes were also validated as

conferring death or resistance, respectively, to MMS upon knock-

down. Shaded squares are proteins not found to be hits after

validation, and open squares were not tested in our validation.

Yeast orthologues previously found to be required for MMS

survival [3] are noted with a dot under the symbol. An example of

average percent of untreated control survival of validated hits is

shown next to each pathway, though this may not represent the

actual control for each data point within the graph. Error bars are

the standard deviation of quadruplicates. Survival of control cells

with dsRNA targeting luciferase is shown in an open bar, protein

knock-down that resulted in a significant difference in MMS

survival from this control are shown in black (death) or stripped

(resistance), and those with a trend effect are shown in grey. A

complete list of these proteins and their human and yeast

orthologues is given in Table S6. (A) Basal Transcription. (B)

Ribosome.

Found at: doi:10.1371/journal.pgen.1000527.s003 (3.26 MB EPS)

Figure S4 Two of the eight additional pathways utilized for

MMS survival. CG numbers are given for each Drosophila pathway

component, as well as the protein names or complex names for

their human orthologues. Pathway entry points are noted with

Roman numerals at the top, and end points are at the bottom. A

key for the following symbols is provided. Symbols encircled with

thick lines represent proteins that act together or in a complex,

while symbols encircled with thin lines represent paralogues or

proteins that may substitute for one another. Proteins found to

affect MMS survival are noted as down (death) or up triangles

(resistance). Statistically significant proteins are indicated with

black triangles, while trend hits are indicated with grey triangles.

Essential genes are noted with a thick bar and any with

downwards or upwards pointing boxes were also validated as

conferring death or resistance, respectively, to MMS upon knock-

down. Shaded squares are proteins not found to be hits after

validation, and open squares were not tested in our validation.

Yeast orthologues previously found to be required for MMS

survival [3] are noted with a dot under the symbol. An example of

average percent of untreated control survival of validated hits is

shown next to each pathway, though this may not represent the

actual control for each data point within the graph. Error bars are

the standard deviation of quadruplicates. Survival of control cells

with dsRNA targeting luciferase is shown in an open bar, protein

knock-down that resulted in a significant difference in MMS

survival from this control are shown in black (death) or stripped

(resistance), and those with a trend effect are shown in grey. A

complete list of these proteins and their human and yeast

orthologues is given in Table S6. (A) ATPases. (B) Notch.

Found at: doi:10.1371/journal.pgen.1000527.s004 (2.47 MB EPS)

Figure S5 Average percent of untreated control survival of

validated hits in each pathway represented in Figures 2 and 3.

Error bars are the standard deviation of quadruplicates. Survival

of control cells with dsRNA targeting luciferase is shown in an

open bar as an average across all plates as a general reference. It

should be noted that each plate had its own luciferase controls

against which all plate values were compared. Protein knock-down

that resulted in a significant difference in MMS survival from their

internal plate control are shown in black (death) or dashed

(resistance), and those with a trend effect are shown in grey. A

complete list of these proteins and their human and yeast

orthologues is given in Table S6.

Found at: doi:10.1371/journal.pgen.1000527.s005 (4.48 MB EPS)

Figure S6 Efficiency of RNAi mediated silencing of gene

expression. (A) RNAi transfection resulted in decreased expression

of target mRNA in Drosophila Kc167 cells, measured by quantitative

real time PCR as indicated percent control gene expression

(ordinate) for the genes (abscissa) tested, with expression

normalized to endogenous control (CG6905). (B) Western blot

analysis for efficiency of RNAi in siRNA transfected primary

mouse embryonic fibroblast cells.

Found at: doi:10.1371/journal.pgen.1000527.s006 (0.74 MB EPS)

Figure S7 MMS exposure results in a dose-dependent increase

in 8-oxoguanine DNA modifications. The MMS-dependent

increase in 8-oxoguanine is (A) observed qualitatively by
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microscopic examination with 8-oxoguanine containing cells

observed by fluorescence in the FITC channel and this (B) can

be quantified as a percentage of fluorescent within a field

(ordinate) for increasing dose of MMS (abscissa).

Found at: doi:10.1371/journal.pgen.1000527.s007 (7.71 MB EPS)

Figure S8 Temozolomide exposure results in functional re-

sponse by MMS survival pathways in mouse embryonic

fibroblasts. (A) Temozolomide exposure results in phosphorylation

of p53 and in an accumulation of total p53 levels. (B)

Temozolomide exposure results in an increased amount of total

glutathione. The intracellular glutathione concentration is ex-

pressed as units of activity/cell. (C) Proteasome activity is

increased following temozolomide exposure, normalizing the

activity to the number of cells using a parallel viability assessment.

Proteasome activity is expressed as units of activity/cell,

normalizing the activity to the number of cells using a parallel

viability assessment.

Found at: doi:10.1371/journal.pgen.1000527.s008 (0.71 MB EPS)

Figure S9 MMS and Temozolomide exposure results in

functional response by notch signalling pathway in HEK 293

cells. MMS and temozolomide exposure results in decreased

luciferase activity of the notch reporter RBP-Jk, normalized for

transfection efficiency in HEK 293 cells using renilla luciferase.

Found at: doi:10.1371/journal.pgen.1000527.s009 (0.41 MB EPS)

Figure S10 Validation of pathway functions with additional

siRNA knock down in mouse embryonic fibroblasts. (A) Knock-

down of GCLc with four different siRNA results in decreased

GCLc expression in mouse cells, by quantitative real-time PCR

analysis; expression level is provided as fold-change compared to

an endogenous control (mouse b-actin). (B) MMS results in an

increased amount of total glutathione, and this increase is

dependent upon the rate limiting glutathione metabolizing enzyme

glutamate-cysteine ligase (GCLc). (C) Knock-down of proteasome

components Psmc1 or Psmd1 with four different siRNA results in

decreased gene expression in mouse cells, by quantitative real-time

PCR analysis; expression level is provided as fold-change

compared to an endogenous control (mouse b-actin). (D)

Proteasome activity is increased following MMS exposure in a

manner that is dependent upon proteasome components Pmsc1

and Psmd1.

Found at: doi:10.1371/journal.pgen.1000527.s010 (0.81 MB EPS)

Table S1 Summary of MMS screen hits and pathway genes

selected for validation. The 534 Drosophila MMS screen hits

selected for validation analysis and 298 pathway genes tested for

pathway analysis, provided with FlyBase gene number, corre-

sponding CG number, and the dsRNA used for validation, noted

by DRSC identification number, either library dsRNA or

validation dsRNA. For those genes that had no validation

amplicon designed or those whose library amplicon had no

potential off-target effects at 19 nt, data from [18] was used

(asterisks). For each dsRNA, significant death, trend death or

significant resistance to MMS treatment is noted (MMS survival).

Found at: doi:10.1371/journal.pgen.1000527.s011 (0.94 MB

XLS)

Table S2 Raw, normalized, and survival data for validation

experiment. For data normalization, raw data of untreated control

and MMS experiments were normalized using luciferase (Luc) and

high MMS controls and statistical significance was determined as

described [18].

Found at: doi:10.1371/journal.pgen.1000527.s012 (0.23 MB

XLS)

Table S3 List of yeast MMS hits and their fly orthologues. Yeast

MMS hits as determined by Begley et al. [3], and their fly

orthologues that were neither a hit in our MMS screen nor in a

pathway identified from the screen. Also given is whether each fly

gene was essential, a resistance hit, a death hit, or a death tread

after validation with an independent dsRNA.

Found at: doi:10.1371/journal.pgen.1000527.s013 (0.04 MB

XLS)

Table S4 Drosophila GST family members and their involvement

in MMS survival. The five GST families and their component

members. Provided is the gene name, corresponding CG number,

whether they validated as a significant MMS survival gene (death),

a trend (death trend) or not involved in MMS survival (no). For

each validation observed to have an effect, the type of amplicon,

library or validation is given. It is also noted for any validated

MMS survival gene whether the effect was also observed in the

screen. If validation was not performed this is also noted (not

tested).

Found at: doi:10.1371/journal.pgen.1000527.s014 (0.02 MB

XLS)

Table S5 Summary of the number of MMS survival genes

identified per MMS survival pathway (BER: base excision repair;

DDR: DNA damage response; Proteasome; GSH: glutathione

synthesis; TOR: TOR pathway; NER: nucleotide excision repair;

MMR: mismatch repair; HRR: homologous recombination

repair; RECQ: RecQ helicases; Transcription: basal transcription;

Ribosome; ATPase; Notch: Notch signaling pathway), and the

percentage non-essential genes of each pathway that this

represents. Protein enrichment within each pathway compared

to the number of genes that validated (202 of 13826 prior to

pathway analysis and 307 of 13826 including pathway analysis) is

determined using a Fisher’s Exact Test (NS: Not Significant; NA:

Not Applicable).

Found at: doi:10.1371/journal.pgen.1000527.s015 (0.51 MB PDF)

Table S6 The orthologous relationship between the MMS

survival genes identified in the Drosophila and yeast MMS survival

screens. Provided are the 13 MMS survival pathway, the gene

names of each Drosophila component and their corresponding CG

number. For each of these Drosophila genes, the yeast ORF is

provided for any identifiable yeast orthologue and whether it was

observed as being involved in MMS survival (hit) in S. cerevisiae by

Begley et al. [3], if it was not identified (not hit) or if it is essential

(essential). Where orthologues between the species are known and

taking into account the yeast essential genes that could not be

assayed for their effect on MMS survival, there is a clear

enrichment in MMS survival genes within the majority of

pathways examined between the two species. A complete list of

these proteins and their human orthologues are also given.

Found at: doi:10.1371/journal.pgen.1000527.s016 (0.11 MB

XLS)

Table S7 Connectivity analysis of MMS survival genes identified

by the RNAi genomic screen and following validation analyses.

Provided are the number of proteins identified, the number of

those proteins that are within the protein:protein interactome

(PPI), the number of direct connections between these proteins,

the average distance between every possible pair of proteins within

the network compared to the expected values, the global efficiency

and the clustering coefficient. For each measurement the expected

number of direct interactions is derived from the same number of

proteins randomly selected 1000 times from the PPI. Analyses are

provided for the proteins identified by the MMS screen prior to

validation (Screen hits), those screen hits that actually validated
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(Validated hits), the validated hits as well as essential proteins that

are connected to two or more hits (Validated+essential connec-

tors), the total number of validated MMS survival proteins

identified by both screen and pathway validation (Validated+path-

way hits), the Validated and pathway hits and the essential

proteins that are connected to two or more hits (Validated+path-

way hits+essential connectors), the total number of validated MMS

survival proteins and all other components of the 13 MMS survival

pathways (Validated+all in pathways), and finally the total number

of validated MMS survival proteins, all other components of the

13 MMS survival pathways and the essential proteins that are

connected to two or more hits or pathway proteins (Validated+all

in pathways+essential connectors). Analyses were also provided to

compare connectivity of real and randomly rewired PPI.

Found at: doi:10.1371/journal.pgen.1000527.s017 (0.19 MB

DOC)

Text S1 Methods for 8-oxo-guanine assay and notch reporter

analysis.

Found at: doi:10.1371/journal.pgen.1000527.s018 (0.03 MB

DOC)
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