Cell-based assays

Regardless of the technology (RNAi, CRISPR, over-expression, etc.), a good cell-based assay is the best foundation for a cell-based screen. We have equipment, provide reagents, share protocols, and more to support development of high-throughput screen assays in Drosophila cells.

Reagents, consultation, and other support is available for screens off-site. We also support screens on-site at our facility. Assays can be done using a number of types of reagents, including reagents for knockdown or over-expression of protein-coding genes, and interrogation of miRNAs.

See links below to relevant reagents, protocols, publications, and more.

News

Missed us at ADRC 2018? View our workshop slides!

April 19, 2018
Thank you to all those who attended our workshop at last week's Annual Drosophila Research Conference in Philadelphia, PA, USA. It was great to talk fly stocks, cell screens, and bioinformatics with the community. We are here to help and look forward to continued feedback on the resources we are building to empower your research. PDFs of our workshop presentations are attached to this news item. The slides will help you learn more about our in vivo resources for CRISPR, new pooled cell-based CRISPR screen technology, and bioinformatics resources at our facility.  Feel free to contact... Read more about Missed us at ADRC 2018? View our workshop slides!
Cartoon of essential gene pooled screen (made using BioRender.io)

Pooled-format CRISPR screens in Drosophila cells

March 22, 2018

The DRSC/TRiP-FGR is pleased to support collaborations on pooled CRISPR screens using the method recently reported in a BioRxiv pre-print by Viswanatha et al. From the abstract: "... Here, we developed a site-specific integration strategy for library delivery and performed a genome-wide CRISPR knockout screen in Drosophila S2R+ cells. Under basal growth conditions, 1235 genes were essential for cell fitness at a false-discovery rate of 5...

Read more about Pooled-format CRISPR screens in Drosophila cells
Photo of 384-well assay plates

Congrats to Sung, Shears, and colleagues: "Cytokine signaling through Drosophila Mthl10 ties lifespan to environmental stress"

December 13, 2017

Eui Jae Sung, Stephen Shears, and colleagues have published a research report that includes a screen of dsRNAs from the DRSC reagent collection using S2 cells. We shipped dsRNA reagents to the lab for a screen at their home institution, in addition to providing consultation and data management support. The resulting study by Sung et al. was published on Dec. 11, 2017: Sung EJ, Ryuda M, Matsumoto H, Uryu O, Ochiai M, Cook ME, Yi NY, Wang H, Putney JW, Bird GS, Shears SB, Hayakawa Y. Cytokine signaling through Drosophila Mthl10 ties lifespan to environmental stress...

Read more about Congrats to Sung, Shears, and colleagues: "Cytokine signaling through Drosophila Mthl10 ties lifespan to environmental stress"
Figure 2 from Housden et al 2017 PNAS

Variable Dose Analysis: a new DRSC-supported cell screen approach that leverages existing reagents to perform robust screens

December 1, 2017

We are excited to report the publication of a paper from Benjamin Housden and colleagues describing development and use of the Variable Dose Analysis (VDA) approach. Ben developed a way to use existing TRiP shRNA plasmids originally developed for fly stock production in a new, effective approach to high-throughput cell screening.

The VDA approach is particularly useful for combinatorial approaches that are acutely sensitive to assay robustness. The screen Ben and colleagues report focused on synthetic effects in Drosophila tumor model cells. ...

Read more about Variable Dose Analysis: a new DRSC-supported cell screen approach that leverages existing reagents to perform robust screens
Screenshot of a 2015 Science paper from Payre and colleagues

Francois Payre's plenary talk at ADRC 2017 features results from DRSC cell-based screen

March 30, 2017

Those of us lucky enough to be at the Annual Drosophila Research Conference this morning saw a great talk by Francois Payre about regulation of Shavenbaby by small ORFs. A genome-wide cell-based screen done at the DRSC by Emilie Benrabah identified the mechanism of regulation. As this exemplifies, cell screens can help identify key pathways and factors that can then be followed up with in vivo studies.

Events

Contact Us

Please contact us for any questions.

Publications

Raghuvir Viswanatha, Zongchi Li, Yanhui Hu, and Norbert Perrimon. Working Paper. “Pooled genome-wide CRISPR screening for basal and context-specific fitness gene essentiality in Drosophila cells”. Publisher's VersionAbstract
Genome-wide screens in Drosophila cells have offered numerous insights into gene function, yet a major limitation has been the inability to stably deliver large multiplexed DNA libraries to cultured cells allowing barcoded pooled screens. Here, we developed a site-specific integration strategy for library delivery and performed a genome-wide CRISPR knockout screen in Drosophila S2R+ cells. Under basal growth conditions, 1235 genes were essential for cell fitness at a false-discovery rate of 5%, representing the highest-resolution fitness gene set yet assembled for Drosophila, including 407 genes which likely duplicated along the vertebrate lineage and whose orthologs were underrepresented in human CRISPR screens. We additionally performed context-specific fitness screens for resistance to or synergy with trametinib, a Ras/ERK/ETS inhibitor, or rapamycin, an mTOR inhibitor, and identified key regulators of each pathway. The results present a novel, scalable, and versatile platform for functional genomic screens in low-redundancy animal cells.
Stephanie E Mohr, Kirstin Rudd, Yanhui Hu, Wei R Song, Quentin Gilly, Michael Buckner, Benjamin E Housden, Colleen Kelley, Jonathan Zirin, Rong Tao, Gabriel Amador, Katarzyna Sierzputowska, Aram Comjean, and Norbert Perrimon. 12/9/2017. “Zinc Detoxification: A Functional Genomics and Transcriptomics Analysis in Drosophila melanogaster Cultured Cells.” G3 (Bethesda).Abstract
Cells require some metals, such as zinc and manganese, but excess levels of these metals can be toxic. As a result, cells have evolved complex mechanisms for maintaining metal homeostasis and surviving metal intoxication. Here, we present the results of a large-scale functional genomic screen in Drosophila cultured cells for modifiers of zinc chloride toxicity, together with transcriptomics data for wildtype or genetically zinc-sensitized cells challenged with mild zinc chloride supplementation. Altogether, we identified 47 genes for which knockdown conferred sensitivity or resistance to toxic zinc or manganese chloride treatment, and more than 1800 putative zinc-responsive genes. Analysis of the 'omics data points to the relevance of ion transporters, glutathione-related factors, and conserved disease-associated genes in zinc detoxification. Specific genes identified in the zinc screen include orthologs of human disease-associated genes CTNS, PTPRN (also known as IA-2), and ATP13A2 (also known as PARK9). We show that knockdown of red dog mine (rdog; CG11897), a candidate zinc detoxification gene encoding an ABCC-type transporter family protein related to yeast cadmium factor (YCF1), confers sensitivity to zinc intoxication in cultured cells and that rdog is transcriptionally up-regulated in response to zinc stress. As there are many links between the biology of zinc and other metals and human health, the 'omics datasets presented here provide a resource that will allow researchers to explore metal biology in the context of diverse health-relevant processes.
Iiro Taneli Helenius, Ryan J Haake, Yong-Jae Kwon, Jennifer A Hu, Thomas Krupinski, Marina S Casalino-Matsuda, Peter HS Sporn, Jacob I Sznajder, and Greg J Beitel. 2016. “Identification of Drosophila Zfh2 as a Mediator of Hypercapnic Immune Regulation by a Genome-Wide RNA Interference Screen..” J Immunol, 196, 2, Pp. 655-67.Abstract

Hypercapnia, elevated partial pressure of CO2 in blood and tissue, develops in many patients with chronic severe obstructive pulmonary disease and other advanced lung disorders. Patients with advanced disease frequently develop bacterial lung infections, and hypercapnia is a risk factor for mortality in such individuals. We previously demonstrated that hypercapnia suppresses induction of NF-κB-regulated innate immune response genes required for host defense in human, mouse, and Drosophila cells, and it increases mortality from bacterial infections in both mice and Drosophila. However, the molecular mediators of hypercapnic immune suppression are undefined. In this study, we report a genome-wide RNA interference screen in Drosophila S2* cells stimulated with bacterial peptidoglycan. The screen identified 16 genes with human orthologs whose knockdown reduced hypercapnic suppression of the gene encoding the antimicrobial peptide Diptericin (Dipt), but did not increase Dipt mRNA levels in air. In vivo tests of one of the strongest screen hits, zinc finger homeodomain 2 (Zfh2; mammalian orthologs ZFHX3/ATBF1 and ZFHX4), demonstrate that reducing zfh2 function using a mutation or RNA interference improves survival of flies exposed to elevated CO2 and infected with Staphylococcus aureus. Tissue-specific knockdown of zfh2 in the fat body, the major immune and metabolic organ of the fly, mitigates hypercapnia-induced reductions in Dipt and other antimicrobial peptides and improves resistance of CO2-exposed flies to infection. Zfh2 mutations also partially rescue hypercapnia-induced delays in egg hatching, suggesting that Zfh2's role in mediating responses to hypercapnia extends beyond the immune system. Taken together, to our knowledge, these results identify Zfh2 as the first in vivo mediator of hypercapnic immune suppression.

Huajin Wang, Michel Becuwe, Benjamin E Housden, Chandramohan Chitraju, Ashley J Porras, Morven M Graham, Xinran N Liu, Abdou Rachid Thiam, David B Savage, Anil K Agarwal, Abhimanyu Garg, Maria-Jesus Olarte, Qingqing Lin, Florian Fröhlich, Hans Kristian Hannibal-Bach, Srigokul Upadhyayula, Norbert Perrimon, Tomas Kirchhausen, Christer S Ejsing, Tobias C Walther, and Robert V Farese. 2016. “Seipin is required for converting nascent to mature lipid droplets..” Elife, 5.Abstract

How proteins control the biogenesis of cellular lipid droplets (LDs) is poorly understood. Using Drosophila and human cells, we show here that seipin, an ER protein implicated in LD biology, mediates a discrete step in LD formation-the conversion of small, nascent LDs to larger, mature LDs. Seipin forms discrete and dynamic foci in the ER that interact with nascent LDs to enable their growth. In the absence of seipin, numerous small, nascent LDs accumulate near the ER and most often fail to grow. Those that do grow prematurely acquire lipid synthesis enzymes and undergo expansion, eventually leading to the giant LDs characteristic of seipin deficiency. Our studies identify a discrete step of LD formation, namely the conversion of nascent LDs to mature LDs, and define a molecular role for seipin in this process, most likely by acting at ER-LD contact sites to enable lipid transfer to nascent LDs.

Arunachalam Vinayagam, Meghana M Kulkarni, Richelle Sopko, Xiaoyun Sun, Yanhui Hu, Ankita Nand, Christians Villalta, Ahmadali Moghimi, Xuemei Yang, Stephanie E Mohr, Pengyu Hong, John M Asara, and Norbert Perrimon. 9/13/2016. “An Integrative Analysis of the InR/PI3K/Akt Network Identifies the Dynamic Response to Insulin Signaling.” Cell Reports, 16, 11, Pp. 3062-3074.Abstract

Insulin regulates an essential conserved signaling pathway affecting growth, proliferation, and meta- bolism. To expand our understanding of the insulin pathway, we combine biochemical, genetic, and computational approaches to build a comprehensive Drosophila InR/PI3K/Akt network. First, we map the dynamic protein-protein interaction network sur- rounding the insulin core pathway using bait-prey interactions connecting 566 proteins. Combining RNAi screening and phospho-specific antibodies, we find that 47% of interacting proteins affect pathway activity, and, using quantitative phospho- proteomics, we demonstrate that $10% of interact- ing proteins are regulated by insulin stimulation at the level of phosphorylation. Next, we integrate these orthogonal datasets to characterize the structure and dynamics of the insulin network at the level of protein complexes and validate our method by iden- tifying regulatory roles for the Protein Phosphatase 2A (PP2A) and Reptin-Pontin chromatin-remodeling complexes as negative and positive regulators of ribosome biogenesis, respectively. Altogether, our study represents a comprehensive resource for the study of the evolutionary conserved insulin network. 

Joel M Swenson, Serafin U Colmenares, Amy R Strom, Sylvain V Costes, and Gary H Karpen. 2016. “The composition and organization of Drosophila heterochromatin are heterogeneous and dynamic..” Elife, 5.Abstract

Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown. We found that 13 of 16 tested candidates (83%) are required for gene silencing, providing a substantial increase in the number of identified components that impact heterochromatin properties. Surprisingly, image analysis revealed that although some HP1a interactors and regulators are broadly distributed within the heterochromatin domain, most localize to discrete subdomains that display dynamic localization patterns during the cell cycle. We conclude that heterochromatin composition and architecture is more spatially complex and dynamic than previously suggested, and propose that a network of subdomains regulates diverse heterochromatin functions.

  •  
  • 1 of 17
  • »
More