Cell-based assays

Regardless of the technology (RNAi, CRISPR, over-expression, etc.), a good cell-based assay is the best foundation for a cell-based screen. We have equipment, provide reagents, share protocols, and more to support development of high-throughput screen assays in Drosophila cells.

Reagents, consultation, and other support is available for screens off-site. We also support screens on-site at our facility. Assays can be done using a number of types of reagents, including reagents for knockdown or over-expression of protein-coding genes, and interrogation of miRNAs.

See links below to relevant reagents, protocols, publications, and more.

News

Graphical image of tissue culture, fly pushing, and computer, and the team of people who work with them

DRSC-Biomedical Technology Research Resource

October 21, 2019

We are pleased to announce that we have been funded by NIH NIGMS to form the Drosophila Research & Screening Center-Biomedical Technology Research Resource (DRSC-BTRR). The P41-funded DRSC-BTRR (N. Perrimon, PI; S. Mohr, Co-I) builds upon and extends past goals of the Drosophila RNAi Screening Center.

As the DRSC-BTRR, we are working together with collaborators whose 'driving biomedical projects' inform development of new technologies at the DRSC. At the same time, we continue to support Drosophila cell-based RNAi and CRIPSR knockout screens and related...

Read more about DRSC-Biomedical Technology Research Resource
Photo of 384-well assay plates

Drosophila cell screen with DRSC reagent library contributes to identification of new therapeutic target for renal cancer

October 7, 2019

We here at the DRSC/TRiP are thrilled to see this study from Hilary Nicholson et al. published in Science Signaling.

The study provides a great example of how screens in Drosophila cultured cells can be used as part of a cross-species platform aimed at discovery of new targets for disease treatment. The work represents a collaboration between the laboratory of 2019 Nobel Prize winner W. Kaelin and DRSC PI N. Perrimon.

...

Read more about Drosophila cell screen with DRSC reagent library contributes to identification of new therapeutic target for renal cancer
Cartoon of fly host cells with virus or endosymbiotic bacteria

Cell-based RNAi screening helps reveal host-microbe interactions--two new screen reports

November 19, 2018

Laboratories at the Skirball Institute at New York University and the Boyce Thompson Institute at Cornell University reported results of two different cell-based Drosophila RNAi screens in papers published this week. The screens have in common that they looked at interactions between the host insect cells and a microbe -- the endosymbiont Wolbachia in one study and baculovirus in the other. For more, check out the newly published studies. For both these screens, the DRSC provided libraries for screens that were then performed at the host institution.

 

... Read more about Cell-based RNAi screening helps reveal host-microbe interactions--two new screen reports
flySAM

Missed us at ADRC 2018? View our workshop slides!

April 19, 2018
Thank you to all those who attended our workshop at last week's Annual Drosophila Research Conference in Philadelphia, PA, USA. It was great to talk fly stocks, cell screens, and bioinformatics with the community. We are here to help and look forward to continued feedback on the resources we are building to empower your research. PDFs of our workshop presentations are attached to this news item. The slides will help you learn more about our in vivo resources for CRISPR, new pooled cell-based CRISPR screen technology, and bioinformatics resources at our facility.  Feel free to contact... Read more about Missed us at ADRC 2018? View our workshop slides!
Cartoon of essential gene pooled screen (made using BioRender.io)

Pooled-format CRISPR screens in Drosophila cells

March 22, 2018

The DRSC/TRiP-FGR is pleased to support collaborations on pooled CRISPR screens using the method recently, reported in eLife by Viswanatha et al. (PDF download file below).

From the abstract: "... Here, we developed a site-specific integration strategy for library delivery and performed a genome-wide CRISPR knockout screen in Drosophila S2R+ cells. Under basal growth conditions, 1235 genes were essential for cell fitness...

Read more about Pooled-format CRISPR screens in Drosophila cells
Photo of 384-well assay plates

Congrats to Sung, Shears, and colleagues: "Cytokine signaling through Drosophila Mthl10 ties lifespan to environmental stress"

December 13, 2017

Eui Jae Sung, Stephen Shears, and colleagues have published a research report that includes a screen of dsRNAs from the DRSC reagent collection using S2 cells. We shipped dsRNA reagents to the lab for a screen at their home institution, in addition to providing consultation and data management support. The resulting study by Sung et al. was published on Dec. 11, 2017: Sung EJ, Ryuda M, Matsumoto H, Uryu O, Ochiai M, Cook ME, Yi NY, Wang H, Putney JW, Bird GS, Shears SB, Hayakawa Y. Cytokine signaling through Drosophila Mthl10 ties lifespan to environmental stress...

Read more about Congrats to Sung, Shears, and colleagues: "Cytokine signaling through Drosophila Mthl10 ties lifespan to environmental stress"

Contact Us

Please contact us for any questions.

Publications

Raghuvir Viswanatha, Roderick Brathwaite, Yanhui Hu, Zhongchi Li, Jonathan Rodiger, Pierre Merckaert, Verena Chung, Stephanie E Mohr, and Norbert Perrimon. 2019. “Pooled CRISPR Screens in Drosophila Cells.” Curr Protoc Mol Biol, 129, 1, Pp. e111.Abstract
High-throughput screens in Drosophila melanogaster cell lines have led to discovery of conserved gene functions related to signal transduction, host-pathogen interactions, ion transport, and more. CRISPR/Cas9 technology has opened the door to new types of large-scale cell-based screens. Whereas array-format screens require liquid handling automation and assay miniaturization, pooled-format screens, in which reagents are introduced at random and in bulk, can be done in a standard lab setting. We provide a detailed protocol for conducting and evaluating genome-wide CRISPR single guide RNA (sgRNA) pooled screens in Drosophila S2R+ cultured cells. Specifically, we provide step-by-step instructions for library design and production, optimization of cytotoxin-based selection assays, genome-scale screening, and data analysis. This type of project takes ∼3 months to complete. Results can be used in follow-up studies performed in vivo in Drosophila, mammalian cells, and/or other systems. © 2019 by John Wiley & Sons, Inc. Basic Protocol: Pooled-format screening with Cas9-expressing Drosophila S2R+ cells in the presence of cytotoxin Support Protocol 1: Optimization of cytotoxin concentration for Drosophila cell screening Support Protocol 2: CRISPR sgRNA library design and production for Drosophila cell screening Support Protocol 3: Barcode deconvolution and analysis of screening data.
Hilary E Nicholson, Zeshan Tariq, Benjamin E Housden, Rebecca B Jennings, Laura A Stransky, Norbert Perrimon, Sabina Signoretti, and William G Kaelin. 2019. “HIF-independent synthetic lethality between CDK4/6 inhibition and VHL loss across species.” Sci Signal, 12, 601.Abstract
Inactivation of the tumor suppressor gene is the signature initiating event in clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, and causes the accumulation of hypoxia-inducible factor 2α (HIF-2α). HIF-2α inhibitors are effective in some ccRCC cases, but both de novo and acquired resistance have been observed in the laboratory and in the clinic. Here, we identified synthetic lethality between decreased activity of cyclin-dependent kinases 4 and 6 (CDK4/6) and inactivation in two species (human and ) and across diverse human ccRCC cell lines in culture and xenografts. Although HIF-2α transcriptionally induced the CDK4/6 partner cyclin D1, HIF-2α was not required for the increased CDK4/6 requirement of ccRCC cells. Accordingly, the antiproliferative effects of CDK4/6 inhibition were synergistic with HIF-2α inhibition in HIF-2α-dependent ccRCC cells and not antagonistic with HIF-2α inhibition in HIF-2α-independent cells. These findings support testing CDK4/6 inhibitors as treatments for ccRCC, alone and in combination with HIF-2α inhibitors.
Stephanie E Mohr, Kirstin Rudd, Yanhui Hu, Wei R Song, Quentin Gilly, Michael Buckner, Benjamin E Housden, Colleen Kelley, Jonathan Zirin, Rong Tao, Gabriel Amador, Katarzyna Sierzputowska, Aram Comjean, and Norbert Perrimon. 12/9/2017. “Zinc Detoxification: A Functional Genomics and Transcriptomics Analysis in Drosophila melanogaster Cultured Cells.” G3 (Bethesda).Abstract
Cells require some metals, such as zinc and manganese, but excess levels of these metals can be toxic. As a result, cells have evolved complex mechanisms for maintaining metal homeostasis and surviving metal intoxication. Here, we present the results of a large-scale functional genomic screen in Drosophila cultured cells for modifiers of zinc chloride toxicity, together with transcriptomics data for wildtype or genetically zinc-sensitized cells challenged with mild zinc chloride supplementation. Altogether, we identified 47 genes for which knockdown conferred sensitivity or resistance to toxic zinc or manganese chloride treatment, and more than 1800 putative zinc-responsive genes. Analysis of the 'omics data points to the relevance of ion transporters, glutathione-related factors, and conserved disease-associated genes in zinc detoxification. Specific genes identified in the zinc screen include orthologs of human disease-associated genes CTNS, PTPRN (also known as IA-2), and ATP13A2 (also known as PARK9). We show that knockdown of red dog mine (rdog; CG11897), a candidate zinc detoxification gene encoding an ABCC-type transporter family protein related to yeast cadmium factor (YCF1), confers sensitivity to zinc intoxication in cultured cells and that rdog is transcriptionally up-regulated in response to zinc stress. As there are many links between the biology of zinc and other metals and human health, the 'omics datasets presented here provide a resource that will allow researchers to explore metal biology in the context of diverse health-relevant processes.
Huajin Wang, Michel Becuwe, Benjamin E Housden, Chandramohan Chitraju, Ashley J Porras, Morven M Graham, Xinran N Liu, Abdou Rachid Thiam, David B Savage, Anil K Agarwal, Abhimanyu Garg, Maria-Jesus Olarte, Qingqing Lin, Florian Fröhlich, Hans Kristian Hannibal-Bach, Srigokul Upadhyayula, Norbert Perrimon, Tomas Kirchhausen, Christer S Ejsing, Tobias C Walther, and Robert V Farese. 2016. “Seipin is required for converting nascent to mature lipid droplets.” Elife, 5.Abstract

How proteins control the biogenesis of cellular lipid droplets (LDs) is poorly understood. Using Drosophila and human cells, we show here that seipin, an ER protein implicated in LD biology, mediates a discrete step in LD formation-the conversion of small, nascent LDs to larger, mature LDs. Seipin forms discrete and dynamic foci in the ER that interact with nascent LDs to enable their growth. In the absence of seipin, numerous small, nascent LDs accumulate near the ER and most often fail to grow. Those that do grow prematurely acquire lipid synthesis enzymes and undergo expansion, eventually leading to the giant LDs characteristic of seipin deficiency. Our studies identify a discrete step of LD formation, namely the conversion of nascent LDs to mature LDs, and define a molecular role for seipin in this process, most likely by acting at ER-LD contact sites to enable lipid transfer to nascent LDs.

Arunachalam Vinayagam, Meghana M Kulkarni, Richelle Sopko, Xiaoyun Sun, Yanhui Hu, Ankita Nand, Christians Villalta, Ahmadali Moghimi, Xuemei Yang, Stephanie E Mohr, Pengyu Hong, John M Asara, and Norbert Perrimon. 9/13/2016. “An Integrative Analysis of the InR/PI3K/Akt Network Identifies the Dynamic Response to Insulin Signaling.” Cell Reports, 16, 11, Pp. 3062-3074.Abstract

Insulin regulates an essential conserved signaling pathway affecting growth, proliferation, and meta- bolism. To expand our understanding of the insulin pathway, we combine biochemical, genetic, and computational approaches to build a comprehensive Drosophila InR/PI3K/Akt network. First, we map the dynamic protein-protein interaction network sur- rounding the insulin core pathway using bait-prey interactions connecting 566 proteins. Combining RNAi screening and phospho-specific antibodies, we find that 47% of interacting proteins affect pathway activity, and, using quantitative phospho- proteomics, we demonstrate that $10% of interact- ing proteins are regulated by insulin stimulation at the level of phosphorylation. Next, we integrate these orthogonal datasets to characterize the structure and dynamics of the insulin network at the level of protein complexes and validate our method by iden- tifying regulatory roles for the Protein Phosphatase 2A (PP2A) and Reptin-Pontin chromatin-remodeling complexes as negative and positive regulators of ribosome biogenesis, respectively. Altogether, our study represents a comprehensive resource for the study of the evolutionary conserved insulin network. 

  •  
  • 1 of 17
  • »
More