Pooled genome-wide CRISPR activation screening for rapamycin resistance genes in cells

Citation:

Baolong Xia, Raghuvir Viswanatha, Yanhui Hu, Stephanie E Mohr, and Norbert Perrimon. 2023. “Pooled genome-wide CRISPR activation screening for rapamycin resistance genes in cells.” Elife, 12.
elife-85542-v1.pdf11.28 MB

Abstract:

Loss-of-function and gain-of-function genetic perturbations provide valuable insights into gene function. In cells, while genome-wide loss-of-function screens have been extensively used to reveal mechanisms of a variety of biological processes, approaches for performing genome-wide gain-of-function screens are still lacking. Here, we describe a pooled CRISPR activation (CRISPRa) screening platform in cells and apply this method to both focused and genome-wide screens to identify rapamycin resistance genes. The screens identified three genes as novel rapamycin resistance genes: a member of the SLC16 family of monocarboxylate transporters (), a member of the lipocalin protein family (), and a zinc finger C2H2 transcription factor (). Mechanistically, we demonstrate that overexpression activates the RTK-Akt-mTOR signaling pathway and that activation of insulin receptor (InR) by requires cholesterol and clathrin-coated pits at the cell membrane. This study establishes a novel platform for functional genetic studies in cells.

Last updated on 04/25/2023