Cell-based assays

Decorative cartoon drawn with BioRender depicting DRSC-BTRR technology concepts

So you want to do a CRISPR pooled screen in insect cells? You can! Here's how

May 12, 2022

At the DRSC-BTRR, we've been doing a lot of pooled-format CRISPR knockout screens in Drosophila cells. We're finding the results to be robust and reproducible. And best of all, the results have been informative, providing insights into diverse areas of biology.

Thinking about how to do CRISPR knockout screens in cells is a little different from thinking about how to do a genetic or RNAi screen in vivo or doing an arrayed-format RNAi screen....

Read more about So you want to do a CRISPR pooled screen in insect cells? You can! Here's how
Hans M. Dalton, Raghuvir Viswanatha, Ricky Brathwaite Jr., Jae Sophia Zuno, Stephanie E Mohr, Norbert Perrimon, and Clement Y. Chow. 12/4/2021. “A genome-wide CRISPR screen identifies the glycosylation enzyme DPM1 as a modifier of DPAGT1 deficiency and ER stress.” BioRxiv. Publisher's VersionAbstract
Partial loss-of-function mutations in glycosylation pathways underlie a set of rare diseases called Congenital Disorders of Glycosylation (CDGs). In particular, DPAGT1 CDG is caused by mutations in the gene encoding the first step in N-glycosylation, DPAGT1, and this disorder currently lacks effective therapies. To identify potential therapeutic targets for DPAGT1-CDG, we performed CRISPR knockout screens in Drosophila cells for genes associated with better survival and glycoprotein levels under DPAGT1 inhibition. We identified hundreds of candidate genes that may be of therapeutic benefit. Intriguingly, inhibition of the mannosyltransferase Dpm1, or its downstream glycosylation pathways, could rescue two in vivo models of DPAGT1 inhibition and ER stress, even though impairment of these pathways alone usually cause CDGs. While both in vivo models ostensibly cause ER stress (through DPAGT1 inhibition or a misfolded protein), we found a novel difference in fructose metabolism that may indicate glycolysis as a modulator of DPAGT1-CDG. Our results provide new therapeutic targets for DPAGT1-CDG, include the unique finding of Dpm1-related pathways rescuing DPAGT1 inhibition, and reveal a novel interaction between fructose metabolism and ER stress.
Raghuvir Viswanatha, Enzo Mameli, Jonathan Rodiger, Pierre Merckaert, Fabiana Feitosa-Suntheimer, Tonya M Colpitts, Stephanie E Mohr, Yanhui Hu, and Norbert Perrimon. 11/24/2021. “Bioinformatic and cell-based tools for pooled CRISPR knockout screening in mosquitos.” Nat Commun, 12, 1, Pp. 6825.Abstract
Mosquito-borne diseases present a worldwide public health burden. Current efforts to understand and counteract them have been aided by the use of cultured mosquito cells. Moreover, application in mammalian cells of forward genetic approaches such as CRISPR screens have identified essential genes and genes required for host-pathogen interactions, and in general, aided in functional annotation of genes. An equivalent approach for genetic screening of mosquito cell lines has been lacking. To develop such an approach, we design a new bioinformatic portal for sgRNA library design in several mosquito genomes, engineer mosquito cell lines to express Cas9 and accept sgRNA at scale, and identify optimal promoters for sgRNA expression in several mosquito species. We then optimize a recombination-mediated cassette exchange system to deliver CRISPR sgRNA and perform pooled CRISPR screens in an Anopheles cell line. Altogether, we provide a platform for high-throughput genome-scale screening in cell lines from disease vector species.
Jiunn Song, Arda Mizrak, Chia-Wei Lee, Marcelo Cicconet, Zon Weng Lai, Chieh-Han Lu, Stephanie E. Mohr, Jr Robert V. Farese, and Tobias C. Walther. 9/15/2021. “Identification of two pathways mediating protein targeting from ER to lipid droplets”. Publisher's VersionAbstract
Pathways localizing proteins to their sites of action within a cell are essential for eukaryotic cell organization and function. Although mechanisms of protein targeting to many organelles have been defined, little is known about how proteins, such as key metabolic enzymes, target from the ER to cellular lipid droplets (LDs). Here, we identify two distinct pathways for ER-to-LD (ERTOLD) protein targeting: early ERTOLD, occurring during LD formation, and late ERTOLD, targeting mature LDs after their formation. By using systematic, unbiased approaches, we identified specific membrane-fusion machinery, including regulators, a tether, and SNARE proteins, that are required for late ERTOLD targeting. Components of this fusion machinery localize to LD-ER interfaces and appear to be organized at ER exit sites (ERES) to generate ER-LD membrane bridges. We also identified multiple cargoes for early and late ERTOLD. Collectively, our data provide a new model for how proteins target LDs from the ER.
Graphical image of tissue culture, fly pushing, and computer, and the team of people who work with them

DRSC/TRiP and DRSC-BTRR Office Hours

September 13, 2021

New this fall: Online office hours!

Do you have questions about modifying Drosophila cell lines with CRISPR or performing large-scale cell screens? Questions about in vivo RNAi with TRiP fly stocks or CRISPR knockout or activation with our sgRNA fly stocks? Questions about our new protocols and resources for CRISPR mosquito cell lines? Pop into our Zoom office hours to say hello and get our expert input! Registration is required (see below).

DRSC/TRiP & DRSC-BTRR Office Hours Schedule:

Mon. Sept. 27, 2021, 12...

Read more about DRSC/TRiP and DRSC-BTRR Office Hours
Xiangzhao Yue, Yongkang Liang, Zhishuang Wei, Jun Lv, Yongjin Cai, Xiaobin Fan, Wenqing Zhang, and Jie Chen. 2021. “Genome-wide in vitro and in vivo RNAi screens reveal Fer3 to be an important regulator of kkv transcription in Drosophila.” Insect Sci.Abstract
Krotzkopf verkehrt (kkv) is a key enzyme that catalyzes the synthesis of chitin, an important component of the Drosophila epidermis, trachea, and other tissues. Here, we report the use of comprehensive RNA interference (RNAi) analyses to search for kkv transcriptional regulators. A cell-based RNAi screen identified 537 candidate kkv regulators on a genome-wide scale. Subsequent use of transgenic Drosophila lines expressing RNAi constructs enabled in vivo validation, and we identified six genes as potential kkv transcriptional regulators. Weakening of the kkvDsRed signal, an in vivo reporter indicating kkv promoter activity, was observed when the expression of Akirin, NFAT, 48 related 3 (Fer3), or Autophagy-related 101(Atg101) was knocked down in Drosophila at the 3rd-instar larval stage; whereas we observed disoriented taenidial folds on larval tracheae when Lines (lin) or Autophagy-related 3(Atg3) was knocked down in the tracheae. Fer3, in particular, has been shown to be an important factor in the activation of kkv transcription via specific binding with the kkv promoter. The genes involved in the chitin synthesis pathway were widely affected by the downregulation of Fer3. Furthermore, Atg101, Atg3, Akirin, Lin, NFAT, Pnr and Abd-A showed the potential complex mechanism of kkv transcription are regulated by an interaction network with bithorax complex components. Our study revealed the hitherto unappreciated diversity of modulators impinging on kkv transcription and opens new avenues in the study of kkv regulation and chitin biosynthesis. This article is protected by copyright. All rights reserved.
Baolong Xia, Gabriel Amador, Raghuvir Viswanatha, Jonathan Zirin, Stephanie E Mohr, and Norbert Perrimon. 2020. “CRISPR-based engineering of gene knockout cells by homology-directed insertion in polyploid Drosophila S2R+ cells.” Nat Protoc, 15, 10, Pp. 3478-3498.Abstract
Precise and efficient genome modifications provide powerful tools for biological studies. Previous CRISPR gene knockout methods in cell lines have relied on frameshifts caused by stochastic insertion/deletion in all alleles. However, this method is inefficient for genes with high copy number due to polyploidy or gene amplification because frameshifts in all alleles can be difficult to generate and detect. Here we describe a homology-directed insertion method to knockout genes in the polyploid Drosophila S2R+ cell line. This protocol allows generation of homozygous mutant cell lines using an insertion cassette which autocatalytically generates insertion mutations in all alleles. Knockout cells generated using this method can be directly identified by PCR without a need for DNA sequencing. This protocol takes 2-3 months and can be applied to other polyploid cell lines or high-copy-number genes.
Justin A Bosch, Shannon Knight, Oguz Kanca, Jonathan Zirin, Donghui Yang-Zhou, Yanhui Hu, Jonathan Rodiger, Gabriel Amador, Hugo J Bellen, Norbert Perrimon, and Stephanie E Mohr. 2020. “Use of the CRISPR-Cas9 System in Drosophila Cultured Cells to Introduce Fluorescent Tags into Endogenous Genes.” Curr Protoc Mol Biol, 130, 1, Pp. e112.Abstract
The CRISPR-Cas9 system makes it possible to cause double-strand breaks in specific regions, inducing repair. In the presence of a donor construct, repair can involve insertion or 'knock-in' of an exogenous cassette. One common application of knock-in technology is to generate cell lines expressing fluorescently tagged endogenous proteins. The standard approach relies on production of a donor plasmid with ∼500 to 1000 bp of homology on either side of an insertion cassette that contains the fluorescent protein open reading frame (ORF). We present two alternative methods for knock-in of fluorescent protein ORFs into Cas9-expressing Drosophila S2R+ cultured cells, the single-stranded DNA (ssDNA) Drop-In method and the CRISPaint universal donor method. Both methods eliminate the need to clone a large plasmid donor for each target. We discuss the advantages and limitations of the standard, ssDNA Drop-In, and CRISPaint methods for fluorescent protein tagging in Drosophila cultured cells. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Knock-in into Cas9-positive S2R+ cells using the ssDNA Drop-In approach Basic Protocol 2: Knock-in into Cas9-positive S2R+ cells by homology-independent insertion of universal donor plasmids that provide mNeonGreen (CRISPaint method) Support Protocol 1: sgRNA design and cloning Support Protocol 2: ssDNA donor synthesis Support Protocol 3: Transfection using Effectene Support Protocol 4: Electroporation of S2R+-MT::Cas9 Drosophila cells Support Protocol 5: Single-cell isolation of fluorescent cells using FACS.
Raghuvir Viswanatha, Roderick Brathwaite, Yanhui Hu, Zhongchi Li, Jonathan Rodiger, Pierre Merckaert, Verena Chung, Stephanie E Mohr, and Norbert Perrimon. 2019. “Pooled CRISPR Screens in Drosophila Cells.” Curr Protoc Mol Biol, 129, 1, Pp. e111.Abstract
High-throughput screens in Drosophila melanogaster cell lines have led to discovery of conserved gene functions related to signal transduction, host-pathogen interactions, ion transport, and more. CRISPR/Cas9 technology has opened the door to new types of large-scale cell-based screens. Whereas array-format screens require liquid handling automation and assay miniaturization, pooled-format screens, in which reagents are introduced at random and in bulk, can be done in a standard lab setting. We provide a detailed protocol for conducting and evaluating genome-wide CRISPR single guide RNA (sgRNA) pooled screens in Drosophila S2R+ cultured cells. Specifically, we provide step-by-step instructions for library design and production, optimization of cytotoxin-based selection assays, genome-scale screening, and data analysis. This type of project takes ∼3 months to complete. Results can be used in follow-up studies performed in vivo in Drosophila, mammalian cells, and/or other systems. © 2019 by John Wiley & Sons, Inc. Basic Protocol: Pooled-format screening with Cas9-expressing Drosophila S2R+ cells in the presence of cytotoxin Support Protocol 1: Optimization of cytotoxin concentration for Drosophila cell screening Support Protocol 2: CRISPR sgRNA library design and production for Drosophila cell screening Support Protocol 3: Barcode deconvolution and analysis of screening data.
Graphical image of tissue culture, fly pushing, and computer, and the team of people who work with them

DRSC-Biomedical Technology Research Resource

October 21, 2019

We are pleased to announce that we have been funded by NIH NIGMS to form the Drosophila Research & Screening Center-Biomedical Technology Research Resource (DRSC-BTRR). The P41-funded DRSC-BTRR (N. Perrimon, PI; S. Mohr, Co-I) builds upon and extends past goals of the Drosophila RNAi Screening Center.

As the DRSC-BTRR, we are working together with collaborators whose 'driving biomedical projects' inform development of new technologies at the DRSC. At the same time, we continue to support Drosophila cell-based RNAi and CRIPSR knockout screens and related...

Read more about DRSC-Biomedical Technology Research Resource
Photo of 384-well assay plates

Drosophila cell screen with DRSC reagent library contributes to identification of new therapeutic target for renal cancer

October 7, 2019

We here at the DRSC/TRiP are thrilled to see this study from Hilary Nicholson et al. published in Science Signaling.

The study provides a great example of how screens in Drosophila cultured cells can be used as part of a cross-species platform aimed at discovery of new targets for disease treatment. The work represents a collaboration between the laboratory of 2019 Nobel Prize winner W. Kaelin and DRSC PI N. Perrimon.

...

Read more about Drosophila cell screen with DRSC reagent library contributes to identification of new therapeutic target for renal cancer
Hilary E Nicholson, Zeshan Tariq, Benjamin E Housden, Rebecca B Jennings, Laura A Stransky, Norbert Perrimon, Sabina Signoretti, and William G Kaelin. 2019. “HIF-independent synthetic lethality between CDK4/6 inhibition and VHL loss across species.” Sci Signal, 12, 601.Abstract
Inactivation of the tumor suppressor gene is the signature initiating event in clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, and causes the accumulation of hypoxia-inducible factor 2α (HIF-2α). HIF-2α inhibitors are effective in some ccRCC cases, but both de novo and acquired resistance have been observed in the laboratory and in the clinic. Here, we identified synthetic lethality between decreased activity of cyclin-dependent kinases 4 and 6 (CDK4/6) and inactivation in two species (human and ) and across diverse human ccRCC cell lines in culture and xenografts. Although HIF-2α transcriptionally induced the CDK4/6 partner cyclin D1, HIF-2α was not required for the increased CDK4/6 requirement of ccRCC cells. Accordingly, the antiproliferative effects of CDK4/6 inhibition were synergistic with HIF-2α inhibition in HIF-2α-dependent ccRCC cells and not antagonistic with HIF-2α inhibition in HIF-2α-independent cells. These findings support testing CDK4/6 inhibitors as treatments for ccRCC, alone and in combination with HIF-2α inhibitors.
2018 Dec 08

DRSC&TRiP at ASCB|EMBO 2018

Sat Dec 8 (All day) to Wed Dec 12 (All day)

Location: 

San Diego, CA, USA
The DRSC & TRiP will be represented at the ASCB|EMBO 2018 conference in the form of a poster that includes information about our collaboration with O. Kanca in the H. Bellen lab at Baylor College of Medicine to tag Drosophila S2R+ cell lines with GFP using a CRISPR-based strategy. We have 'painted' a number of subcellular localizations green with this approach! If you're at the meeting, check out P1482 at Board Number B494, presented by Baolong Xia of the Perrimon lab.
Cartoon of fly host cells with virus or endosymbiotic bacteria

Cell-based RNAi screening helps reveal host-microbe interactions--two new screen reports

November 19, 2018

Laboratories at the Skirball Institute at New York University and the Boyce Thompson Institute at Cornell University reported results of two different cell-based Drosophila RNAi screens in papers published this week. The screens have in common that they looked at interactions between the host insect cells and a microbe -- the endosymbiont Wolbachia in one study and baculovirus in the other. For more, check out the newly published studies. For both these screens, the DRSC provided libraries for screens that were then performed at the host institution.

 

... Read more about Cell-based RNAi screening helps reveal host-microbe interactions--two new screen reports

Pages