Drosophila Research & Screening Center-Biomedical Technology Research Resource (DRSC-BTRR)

The NIH NIGMS P41-funded DRSC-BTRR helps researchers realize the full potential of Drosophila melanogaster as a model for the study of human health and disease, and is breaking new ground by enabling new studies in mosquito vectors of disease.

View all NIH NIGMS-funded BTRRs and BTDDs

View DRSC-BTRR publications

The DRSC-BTRR develops state-of-the-art tools and methods in three technology areas: (1) Development of technologies for Drosophila cell-based and in vivo studies, (2) Application of technologies for study of mosquito vectors of human diseases, and (3) Development of in vivo proteomics technologies for Drosophila.

We develop technologies through iterative rounds of testing and improvement together with ‘driving biomedical projects’ at collaborating labs that can benefit from the technologies. Current collaborators include experts in cancer therapeutics, rare genetic diseases, and mosquito vectors of infectious diseases.

To further extend the impact of the technologies, we engage in community activities that inform a broad audience and rapidly disseminate technologies. Altogether, we will serve as an integrated, collaborative resource engaging in projects with strong potential for impact in areas that are of interest to several institutes at the US National Institutes of Health.

Point-of-contact for inquiries about DSRC-BTRR technologies and collaborations: Stephanie Mohr

Technology Research & Development (TR&D) focus areas:

TR&D1: Development of CRISPR-based functional genomics technologies for high-throughput screening in Drosophila cultured cells and for use in vivo in Drosophila. Read more about CRISPR knockout in Drosophila cells here.

TR&D2: Development of CRISPR-based functional genomics and other technologies for use in mosquitos, including development of CRISPR screening technologies for use in mosquito cell lines. Read more about mosquito cell technologies here.

TR&D3: Development of proteomics-based technologies for use in vivo in Drosophila, including development of new protein binding and labeling technologies.

Additional components of the DRSC-BTRR include

  • Driving Biomedical Projects (DBPs), which allow us to directly meet the needs of collaborators through iterative technology testing and development
  • Collaboration & Service Projects (CSPs), such as Drosophila cell-based RNAi screens using established technologies
  • Community Engagement, including presentations and workshops aimed at helping the broadest possible research community access DRSC-BTRR technologies
  • Administration & Management, including oversight by NIH NIGMS leadership and scientific advisors to the DRSC-BTRR

Interested to use our technologies to help address your biomedical topic of interest? Contact DRSC-BTRR Director Stephanie Mohr

Get a sense of our outreach efforts by visiting our past events page and check out where we'll be presenting next here.

  • BioRender illustration of the workflow at the DRSC-BTRR -- from tech development and testing to iterative improvement
  • Illustration by A.L. Ramirez of an Aedes mosquito and a BioRender illustration of the CRISPR cell screening pipeline
  • BioRender illustration evoking the idea of tech development for large-scale screening to find nanobody binders of fly or mosquito proteins
  • BioRender cartoon representing knowhow in the form of notebooks with text and a faint image of a brain
  • Image of PerkinElmer Janus liquid handling robot at DRSC-BTRR

    Liquid Handling Automation at the DRSC-BTRR

What is the DRSC-BTRR? Plain-language statement of our goals and approaches:

Typical research labs use many technologies to study one or a few biomedical topics. At the DRSC-BTRR, we flip that model. We focus on developing and improving technologies, and we help other labs apply these technologies to study many different topics. What kind of technologies are we working on? We aim to develop new technologies for manipulating genes and proteins in insects or insect cultured cells. Specifically, we are focused on developing technologies that can be applied for research purposes in the fruit fly Drosophila melanogaster, which has long been used to uncover fundamental biological concepts and human disease-relevant information, and in cultured cells either from Drosophila or from mosquitos that spread human diseases such as malaria or zika virus disease. To accomplish this--and to stay focused on technologies that truly meet needs--we partner with laboratories that can benefit from applying the technologies. Among the labs we are currently partnering with are labs focused on the study of rare human genetic diseases, labs interested to find new treatments for cancer, and labs focused on understanding relationships between microbes that cause mosquito-borne diseases and their mosquito hosts. As part of our efforts, we engage in outreach to research communities that can benefit from our technologies to make sure that they hear about and learn how to use them. Once technologies are mature, we also publish detailed protocols and provide the materials we have developed, such as DNA plasmids or modified cell lines, to academic and non-profit facilities that specialize in storage and distribution of research materials. Through training, publication of protocols, and transfer of materials to distribution facilities, we make sure that researchers across the US and elsewhere will have easy access to DRSC-BTRR technologies for years to come.

Text illustration that provides a link to the webpage describing our DBPs

Funding: NIGMS P41 GM132087: "Functional genomics resources for the Drosophila and broader research communities" (PI: N. Perrimon | Co-I: S. Mohr)(08/01/2019 - 04/30/2024)

Projects that benefit from our in vivo, cell and/or bioinformatics resources should cite the above grant. Citation is critical to our ability to demonstrate our successful development of resources and outreach to relevant communities.

 

Recent Publications from the DSRC-BTRR

Nikki Coleman-Gosser, Yanhui Hu, Shiva Raghuvanshi, Shane Stitzinger, Weihang Chen, Arthur Luhur, Daniel Mariyappa, Molly Josifov, Andrew Zelhof, Stephanie E Mohr, Norbert Perrimon, and Amanda Simcox. 2023. “Continuous muscle, glial, epithelial, neuronal, and hemocyte cell lines for research.” Elife, 12.Abstract

Expression of activated Ras, Ras, provides cultured cells with a proliferation and survival advantage that simplifies the generation of continuous cell lines. Here, we used lineage-restricted Ras expression to generate continuous cell lines of muscle, glial, and epithelial cell type. Additionally, cell lines with neuronal and hemocyte characteristics were isolated by cloning from cell cultures established with broad Ras expression. Differentiation with the hormone ecdysone caused maturation of cells from mesoderm lines into active muscle tissue and enhanced dendritic features in neuronal-like lines. Transcriptome analysis showed expression of key cell-type-specific genes and the expected alignment with single-cell sequencing and in situ data. Overall, the technique has produced in vitro cell models with characteristics of glia, epithelium, muscle, nerve, and hemocyte. The cells and associated data are available from the Genomic Resource Center.

Baolong Xia, Raghuvir Viswanatha, Yanhui Hu, Stephanie E Mohr, and Norbert Perrimon. 2023. “Pooled genome-wide CRISPR activation screening for rapamycin resistance genes in cells.” Elife, 12.Abstract

Loss-of-function and gain-of-function genetic perturbations provide valuable insights into gene function. In cells, while genome-wide loss-of-function screens have been extensively used to reveal mechanisms of a variety of biological processes, approaches for performing genome-wide gain-of-function screens are still lacking. Here, we describe a pooled CRISPR activation (CRISPRa) screening platform in cells and apply this method to both focused and genome-wide screens to identify rapamycin resistance genes. The screens identified three genes as novel rapamycin resistance genes: a member of the SLC16 family of monocarboxylate transporters (), a member of the lipocalin protein family (), and a zinc finger C2H2 transcription factor (). Mechanistically, we demonstrate that overexpression activates the RTK-Akt-mTOR signaling pathway and that activation of insulin receptor (InR) by requires cholesterol and clathrin-coated pits at the cell membrane. This study establishes a novel platform for functional genetic studies in cells.

Shue Chen, Leah F Rosin, Gianluca Pegoraro, Nellie Moshkovich, Patrick J Murphy, Guoyun Yu, and Elissa P Lei. 8/12/2022. “NURF301 contributes to gypsy chromatin insulator-mediated nuclear organization.” Nucleic Acids Res, 50, 14, Pp. 7906-7924.Abstract
Chromatin insulators are DNA-protein complexes that can prevent the spread of repressive chromatin and block communication between enhancers and promoters to regulate gene expression. In Drosophila, the gypsy chromatin insulator complex consists of three core proteins: CP190, Su(Hw), and Mod(mdg4)67.2. These factors concentrate at nuclear foci termed insulator bodies, and changes in insulator body localization have been observed in mutants defective for insulator function. Here, we identified NURF301/E(bx), a nucleosome remodeling factor, as a novel regulator of gypsy insulator body localization through a high-throughput RNAi imaging screen. NURF301 promotes gypsy-dependent insulator barrier activity and physically interacts with gypsy insulator proteins. Using ChIP-seq, we found that NURF301 co-localizes with insulator proteins genome-wide, and NURF301 promotes chromatin association of Su(Hw) and CP190 at gypsy insulator binding sites. These effects correlate with NURF301-dependent nucleosome repositioning. At the same time, CP190 and Su(Hw) both facilitate recruitment of NURF301 to chromatin. Finally, Oligopaint FISH combined with immunofluorescence revealed that NURF301 promotes 3D contact between insulator bodies and gypsy insulator DNA binding sites, and NURF301 is required for proper nuclear positioning of gypsy binding sites. Our data provide new insights into how a nucleosome remodeling factor and insulator proteins cooperatively contribute to nuclear organization.
Hans M Dalton, Raghuvir Viswanatha, Roderick Brathwaite, Jae Sophia Zuno, Alexys R Berman, Rebekah Rushforth, Stephanie E Mohr, Norbert Perrimon, and Clement Y Chow. 2022. “A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress.” PLoS Genet, 18, 9, Pp. e1010430.Abstract
Partial loss-of-function mutations in glycosylation pathways underlie a set of rare diseases called Congenital Disorders of Glycosylation (CDGs). In particular, DPAGT1-CDG is caused by mutations in the gene encoding the first step in N-glycosylation, DPAGT1, and this disorder currently lacks effective therapies. To identify potential therapeutic targets for DPAGT1-CDG, we performed CRISPR knockout screens in Drosophila cells for genes associated with better survival and glycoprotein levels under DPAGT1 inhibition. We identified hundreds of candidate genes that may be of therapeutic benefit. Intriguingly, inhibition of the mannosyltransferase Dpm1, or its downstream glycosylation pathways, could rescue two in vivo models of DPAGT1 inhibition and ER stress, even though impairment of these pathways alone usually causes CDGs. While both in vivo models ostensibly cause cellular stress (through DPAGT1 inhibition or a misfolded protein), we found a novel difference in fructose metabolism that may indicate glycolysis as a modulator of DPAGT1-CDG. Our results provide new therapeutic targets for DPAGT1-CDG, include the unique finding of Dpm1-related pathways rescuing DPAGT1 inhibition, and reveal a novel interaction between fructose metabolism and ER stress.
Ying Xu, Raghuvir Viswanatha, Oleg Sitsel, Daniel Roderer, Haifang Zhao, Christopher Ashwood, Cecilia Voelcker, Songhai Tian, Stefan Raunser, Norbert Perrimon, and Min Dong. 2022. “CRISPR screens in Drosophila cells identify Vsg as a Tc toxin receptor.” Nature, 610, 7931, Pp. 349-355.Abstract
Entomopathogenic nematodes are widely used as biopesticides1,2. Their insecticidal activity depends on symbiotic bacteria such as Photorhabdus luminescens, which produces toxin complex (Tc) toxins as major virulence factors3-6. No protein receptors are known for any Tc toxins, which limits our understanding of their specificity and pathogenesis. Here we use genome-wide CRISPR-Cas9-mediated knockout screening in Drosophila melanogaster S2R+ cells and identify Visgun (Vsg) as a receptor for an archetypal P. luminescens Tc toxin (pTc). The toxin recognizes the extracellular O-glycosylated mucin-like domain of Vsg that contains high-density repeats of proline, threonine and serine (HD-PTS). Vsg orthologues in mosquitoes and beetles contain HD-PTS and can function as pTc receptors, whereas orthologues without HD-PTS, such as moth and human versions, are not pTc receptors. Vsg is expressed in immune cells, including haemocytes and fat body cells. Haemocytes from Vsg knockout Drosophila are resistant to pTc and maintain phagocytosis in the presence of pTc, and their sensitivity to pTc is restored through the transgenic expression of mosquito Vsg. Last, Vsg knockout Drosophila show reduced bacterial loads and lethality from P. luminescens infection. Our findings identify a proteinaceous Tc toxin receptor, reveal how Tc toxins contribute to P. luminescens pathogenesis, and establish a genome-wide CRISPR screening approach for investigating insecticidal toxins and pathogens.
Jiunn Song, Arda Mizrak, Chia-Wei Lee, Marcelo Cicconet, Zon Weng Lai, Wei-Chun Tang, Chieh-Han Lu, Stephanie E. Mohr, Robert V. Farese, and Tobias C. Walther. 2022. “Identification of two pathways mediating protein targeting from ER to lipid droplets.” Nature Cell Biol. Publisher's VersionAbstract
Pathways localizing proteins to their sites of action are essential for eukaryotic cell organization and function. Although mechanisms of protein targeting to many organelles have been defined, how proteins, such as metabolic enzymes, target from the endoplasmic reticulum (ER) to cellular lipid droplets (LDs) is poorly understood. Here we identify two distinct pathways for ER-to-LD protein targeting: early targeting at LD formation sites during formation, and late targeting to mature LDs after their formation. Using systematic, unbiased approaches in Drosophila cells, we identified specific membrane-fusion machinery, including regulators, a tether and SNARE proteins, that are required for the late targeting pathway. Components of this fusion machinery localize to LD–ER interfaces and organize at ER exit sites. We identified multiple cargoes for early and late ER-to-LD targeting pathways. Our findings provide a model for how proteins target to LDs from the ER either during LD formation or by protein-catalysed formation of membrane bridges.