Signal transduction

2020
Yanhui Hu, Verena Chung, Aram Comjean, Jonathan Rodiger, Fnu Nipun, Norbert Perrimon, and Stephanie E Mohr. 2020. “BioLitMine: Advanced Mining of Biomedical and Biological Literature About Human Genes and Genes from Major Model Organisms.” G3 (Bethesda).Abstract
The accumulation of biological and biomedical literature outpaces the ability of most researchers and clinicians to stay abreast of their own immediate fields, let alone a broader range of topics. Although available search tools support identification of relevant literature, finding relevant and key publications is not always straightforward. For example, important publications might be missed in searches with an official gene name due to gene synonyms. Moreover, ambiguity of gene names can result in retrieval of a large number of irrelevant publications. To address these issues and help researchers and physicians quickly identify relevant publications, we developed BioLitMine, an advanced literature mining tool that takes advantage of the medical subject heading (MeSH) index and gene-to-publication annotations already available for PubMed literature. Using BioLitMine, a user can identify what MeSH terms are represented in the set of publications associated with a given gene of the interest, or start with a term and identify relevant publications. Users can also use the tool to find co-cited genes and a build a literature co-citation network. In addition, BioLitMine can help users build a gene list relevant to a MeSH terms, such as a list of genes relevant to "stem cells" or "breast neoplasms." Users can also start with a gene or pathway of interest and identify authors associated with that gene or pathway, a feature that makes it easier to identify experts who might serve as collaborators or reviewers. Altogether, BioLitMine extends the value of PubMed-indexed literature and its existing expert curation by providing a robust and gene-centric approach to retrieval of relevant information.
4531.full_.pdf
2017
Eui Jae Sung, Masasuke Ryuda, Hitoshi Matsumoto, Outa Uryu, Masanori Ochiai, Molly E Cook, Na Young Yi, Huanchen Wang, James W Putney, Gary S Bird, Stephen B Shears, and Yoichi Hayakawa. 12/11/2017. “Cytokine signaling through Drosophila Mthl10 ties lifespan to environmental stress.” Proc Natl Acad Sci U S A.Abstract
A systems-level understanding of cytokine-mediated, intertissue signaling is one of the keys to developing fundamental insight into the links between aging and inflammation. Here, we employed Drosophila, a routine model for analysis of cytokine signaling pathways in higher animals, to identify a receptor for the growth-blocking peptide (GBP) cytokine. Having previously established that the phospholipase C/Ca2+ signaling pathway mediates innate immune responses to GBP, we conducted a dsRNA library screen for genes that modulate Ca2+ mobilization in Drosophila S3 cells. A hitherto orphan G protein coupled receptor, Methuselah-like receptor-10 (Mthl10), was a significant hit. Secondary screening confirmed specific binding of fluorophore-tagged GBP to both S3 cells and recombinant Mthl10-ectodomain. We discovered that the metabolic, immunological, and stress-protecting roles of GBP all interconnect through Mthl10. This we established by Mthl10 knockdown in three fly model systems: in hemocyte-like Drosophila S2 cells, Mthl10 knockdown decreases GBP-mediated innate immune responses; in larvae, Mthl10 knockdown decreases expression of antimicrobial peptides in response to low temperature; in adult flies, Mthl10 knockdown increases mortality rate following infection with Micrococcus luteus and reduces GBP-mediated secretion of insulin-like peptides. We further report that organismal fitness pays a price for the utilization of Mthl10 to integrate all of these various homeostatic attributes of GBP: We found that elevated GBP expression reduces lifespan. Conversely, Mthl10 knockdown extended lifespan. We describe how our data offer opportunities for further molecular interrogation of yin and yang between homeostasis and longevity.
2016
Arunachalam Vinayagam, Meghana M Kulkarni, Richelle Sopko, Xiaoyun Sun, Yanhui Hu, Ankita Nand, Christians Villalta, Ahmadali Moghimi, Xuemei Yang, Stephanie E Mohr, Pengyu Hong, John M Asara, and Norbert Perrimon. 9/13/2016. “An Integrative Analysis of the InR/PI3K/Akt Network Identifies the Dynamic Response to Insulin Signaling.” Cell Reports, 16, 11, Pp. 3062-3074.Abstract

Insulin regulates an essential conserved signaling pathway affecting growth, proliferation, and meta- bolism. To expand our understanding of the insulin pathway, we combine biochemical, genetic, and computational approaches to build a comprehensive Drosophila InR/PI3K/Akt network. First, we map the dynamic protein-protein interaction network sur- rounding the insulin core pathway using bait-prey interactions connecting 566 proteins. Combining RNAi screening and phospho-specific antibodies, we find that 47% of interacting proteins affect pathway activity, and, using quantitative phospho- proteomics, we demonstrate that $10% of interact- ing proteins are regulated by insulin stimulation at the level of phosphorylation. Next, we integrate these orthogonal datasets to characterize the structure and dynamics of the insulin network at the level of protein complexes and validate our method by iden- tifying regulatory roles for the Protein Phosphatase 2A (PP2A) and Reptin-Pontin chromatin-remodeling complexes as negative and positive regulators of ribosome biogenesis, respectively. Altogether, our study represents a comprehensive resource for the study of the evolutionary conserved insulin network. 

2016_Cell Rep_Vinayagam.pdf Supplement.pdf
Chen X and Xu L. 2016. “Genome-Wide RNAi Screening to Dissect the TGF-β Signal Transduction Pathway.” Methods in Molecular Biology. Publisher's VersionAbstract

The transforming growth factor-β (TGF-β) family of cytokines figures prominently in regulation of embryonic development and adult tissue homeostasis from Drosophila to mammals. Genetic defects affecting TGF-β signaling underlie developmental disorders and diseases such as cancer in human. Therefore, delineating the molecular mechanism by which TGF-β regulates cell biology is critical for understanding normal biology and disease mechanisms. Forward genetic screens in model organisms and biochemical approaches in mammalian tissue culture were instrumental in initial characterization of the TGF-β signal transduction pathway. With complete sequence information of the genomes and the advent of RNA interference (RNAi) technology, genome-wide RNAi screening emerged as a powerful functional genomics approach to systematically delineate molecular components of signal transduction pathways. Here, we describe a protocol for image-based whole-genome RNAi screening aimed at identifying molecules required for TGF-β signaling into the nucleus. Using this protocol we examined >90 % of annotated Drosophila open reading frames (ORF) individually and successfully uncovered several novel factors serving critical roles in the TGF-β pathway. Thus cell-based high-throughput functional genomics can uncover new mechanistic insights on signaling pathways beyond what the classical genetics had revealed.

Alfeu Zanotto-Filho, Ravi Dashnamoorthy, Eva Loranc, Luis HT de Souza, José CF Moreira, Uthra Suresh, Yidong Chen, and Alexander JR Bishop. 2016. “Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.” PLoS One, 11, 4, Pp. e0153970.Abstract

Alkylating agents are a key component of cancer chemotherapy. Several cellular mechanisms are known to be important for its survival, particularly DNA repair and xenobiotic detoxification, yet genomic screens indicate that additional cellular components may be involved. Elucidating these components has value in either identifying key processes that can be modulated to improve chemotherapeutic efficacy or may be altered in some cancers to confer chemoresistance. We therefore set out to reevaluate our prior Drosophila RNAi screening data by comparison to gene expression arrays in order to determine if we could identify any novel processes in alkylation damage survival. We noted a consistent conservation of alkylation survival pathways across platforms and species when the analysis was conducted on a pathway/process level rather than at an individual gene level. Better results were obtained when combining gene lists from two datasets (RNAi screen plus microarray) prior to analysis. In addition to previously identified DNA damage responses (p53 signaling and Nucleotide Excision Repair), DNA-mRNA-protein metabolism (transcription/translation) and proteasome machinery, we also noted a highly conserved cross-species requirement for NRF2, glutathione (GSH)-mediated drug detoxification and Endoplasmic Reticulum stress (ER stress)/Unfolded Protein Responses (UPR) in cells exposed to alkylation. The requirement for GSH, NRF2 and UPR in alkylation survival was validated by metabolomics, protein studies and functional cell assays. From this we conclude that RNAi/gene expression fusion is a valid strategy to rapidly identify key processes that may be extendable to other contexts beyond damage survival.

2016_PLOS One_Zanotto-Filho.pdf Supplemental Files.zip
Iiro Taneli Helenius, Ryan J Haake, Yong-Jae Kwon, Jennifer A Hu, Thomas Krupinski, Marina S Casalino-Matsuda, Peter HS Sporn, Jacob I Sznajder, and Greg J Beitel. 2016. “Identification of Drosophila Zfh2 as a Mediator of Hypercapnic Immune Regulation by a Genome-Wide RNA Interference Screen.” J Immunol, 196, 2, Pp. 655-67.Abstract

Hypercapnia, elevated partial pressure of CO2 in blood and tissue, develops in many patients with chronic severe obstructive pulmonary disease and other advanced lung disorders. Patients with advanced disease frequently develop bacterial lung infections, and hypercapnia is a risk factor for mortality in such individuals. We previously demonstrated that hypercapnia suppresses induction of NF-κB-regulated innate immune response genes required for host defense in human, mouse, and Drosophila cells, and it increases mortality from bacterial infections in both mice and Drosophila. However, the molecular mediators of hypercapnic immune suppression are undefined. In this study, we report a genome-wide RNA interference screen in Drosophila S2* cells stimulated with bacterial peptidoglycan. The screen identified 16 genes with human orthologs whose knockdown reduced hypercapnic suppression of the gene encoding the antimicrobial peptide Diptericin (Dipt), but did not increase Dipt mRNA levels in air. In vivo tests of one of the strongest screen hits, zinc finger homeodomain 2 (Zfh2; mammalian orthologs ZFHX3/ATBF1 and ZFHX4), demonstrate that reducing zfh2 function using a mutation or RNA interference improves survival of flies exposed to elevated CO2 and infected with Staphylococcus aureus. Tissue-specific knockdown of zfh2 in the fat body, the major immune and metabolic organ of the fly, mitigates hypercapnia-induced reductions in Dipt and other antimicrobial peptides and improves resistance of CO2-exposed flies to infection. Zfh2 mutations also partially rescue hypercapnia-induced delays in egg hatching, suggesting that Zfh2's role in mediating responses to hypercapnia extends beyond the immune system. Taken together, to our knowledge, these results identify Zfh2 as the first in vivo mediator of hypercapnic immune suppression.

2016_J Immunol_Helenius.pdf Supplement.pdf
2015
Hirotaka Kanoh, Takayuki Kuraishi, Li-Li Tong, Ryo Watanabe, Shinji Nagata, and Shoichiro Kurata. 2015. “Ex vivo genome-wide RNAi screening of the Drosophila Toll signaling pathway elicited by a larva-derived tissue extract.” Biochem Biophys Res Commun, 467, 2, Pp. 400-6.Abstract
Damage-associated molecular patterns (DAMPs), so-called "danger signals," play important roles in host defense and pathophysiology in mammals and insects. In Drosophila, the Toll pathway confers damage responses during bacterial infection and improper cell-fate control. However, the intrinsic ligands and signaling mechanisms that potentiate innate immune responses remain unknown. Here, we demonstrate that a Drosophila larva-derived tissue extract strongly elicits Toll pathway activation via the Toll receptor. Using this extract, we performed ex vivo genome-wide RNAi screening in Drosophila cultured cells, and identified several signaling factors that are required for host defense and antimicrobial-peptide expression in Drosophila adults. These results suggest that our larva-derived tissue extract contains active ingredients that mediate Toll pathway activation, and the screening data will shed light on the mechanisms of damage-related Toll pathway signaling in Drosophila.
Hirotaka Kanoh, Li-Li Tong, Takayuki Kuraishi, Yamato Suda, Yoshiki Momiuchi, Fumi Shishido, and Shoichiro Kurata. 2015. “Genome-wide RNAi screening implicates the E3 ubiquitin ligase Sherpa in mediating innate immune signaling by Toll in Drosophila adults.” Sci Signal, 8, 400, Pp. ra107.Abstract
The Drosophila Toll pathway plays important roles in innate immune responses against Gram-positive bacteria and fungi. To identify previously uncharacterized components of this pathway, we performed comparative, ex vivo, genome-wide RNA interference screening. In four screens, we overexpressed the Toll adaptor protein dMyd88, the downstream kinase Pelle, or the nuclear factor κB (NF-κB) homolog Dif, or we knocked down Cactus, the Drosophila homolog of mammalian inhibitor of NF-κB. On the basis of these screens, we identified the E3 ubiquitin ligase Sherpa as being necessary for the activation of Toll signaling. A loss-of-function sherpa mutant fly exhibited compromised production of antimicrobial peptides and enhanced susceptibility to infection by Gram-positive bacteria. In cultured cells, Sherpa mediated ubiquitylation of dMyd88 and Sherpa itself, and Sherpa and Drosophila SUMO (small ubiquitin-like modifier) were required for the proper membrane localization of an adaptor complex containing dMyd88. These findings highlight a role for Sherpa in Drosophila host defense and suggest the SUMOylation-mediated regulation of dMyd88 functions in Toll innate immune signaling.
Benjamin E Housden, Alexander J Valvezan, Colleen Kelley, Richelle Sopko, Yanhui Hu, Charles Roesel, Shuailiang Lin, Michael Buckner, Rong Tao, Bahar Yilmazel, Stephanie E Mohr, Brendan D Manning, and Norbert Perrimon. 2015. “Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi.” Sci Signal, 8, 393, Pp. rs9.Abstract

The tuberous sclerosis complex (TSC) family of tumor suppressors, TSC1 and TSC2, function together in an evolutionarily conserved protein complex that is a point of convergence for major cell signaling pathways that regulate mTOR complex 1 (mTORC1). Mutation or aberrant inhibition of the TSC complex is common in various human tumor syndromes and cancers. The discovery of novel therapeutic strategies to selectively target cells with functional loss of this complex is therefore of clinical relevance to patients with nonmalignant TSC and those with sporadic cancers. We developed a CRISPR-based method to generate homogeneous mutant Drosophila cell lines. By combining TSC1 or TSC2 mutant cell lines with RNAi screens against all kinases and phosphatases, we identified synthetic interactions with TSC1 and TSC2. Individual knockdown of three candidate genes (mRNA-cap, Pitslre, and CycT; orthologs of RNGTT, CDK11, and CCNT1 in humans) reduced the population growth rate of Drosophila cells lacking either TSC1 or TSC2 but not that of wild-type cells. Moreover, individual knockdown of these three genes had similar growth-inhibiting effects in mammalian TSC2-deficient cell lines, including human tumor-derived cells, illustrating the power of this cross-species screening strategy to identify potential drug targets.

2015_Sci Sig_Housden.pdf Supplemental Files.zip
Richelle Sopko, You Bin Lin, Kalpana Makhijani, Brandy Alexander, Norbert Perrimon, and Katja Brückner. 2015. “A systems-level interrogation identifies regulators of Drosophila blood cell number and survival.” PLoS Genet, 11, 3, Pp. e1005056.Abstract

In multicellular organisms, cell number is typically determined by a balance of intracellular signals that positively and negatively regulate cell survival and proliferation. Dissecting these signaling networks facilitates the understanding of normal development and tumorigenesis. Here, we study signaling by the Drosophila PDGF/VEGF Receptor (Pvr) in embryonic blood cells (hemocytes) and in the related cell line Kc as a model for the requirement of PDGF/VEGF receptors in vertebrate cell survival and proliferation. The system allows the investigation of downstream and parallel signaling networks, based on the ability of Pvr to activate Ras/Erk, Akt/TOR, and yet-uncharacterized signaling pathway/s, which redundantly mediate cell survival and contribute to proliferation. Using Kc cells, we performed a genome wide RNAi screen for regulators of cell number in a sensitized, Pvr deficient background. We identified the receptor tyrosine kinase (RTK) Insulin-like receptor (InR) as a major Pvr Enhancer, and the nuclear hormone receptors Ecdysone receptor (EcR) and ultraspiracle (usp), corresponding to mammalian Retinoid X Receptor (RXR), as Pvr Suppressors. In vivo analysis in the Drosophila embryo revealed a previously unrecognized role for EcR to promote apoptotic death of embryonic blood cells, which is balanced with pro-survival signaling by Pvr and InR. Phosphoproteomic analysis demonstrates distinct modes of cell number regulation by EcR and RTK signaling. We define common phosphorylation targets of Pvr and InR that include regulators of cell survival, and unique targets responsible for specialized receptor functions. Interestingly, our analysis reveals that the selection of phosphorylation targets by signaling receptors shows qualitative changes depending on the signaling status of the cell, which may have wide-reaching implications for other cell regulatory systems.

2015_PLOS Gen_Sopko.pdf Supplemental Files.zip
2014
Richelle Sopko, Marianna Foos, Arunachalam Vinayagam, Bo Zhai, Richard Binari, Yanhui Hu, Sakara Randklev, Lizabeth A Perkins, Steven P Gygi, and Norbert Perrimon. 2014. “Combining genetic perturbations and proteomics to examine kinase-phosphatase networks in Drosophila embryos.” Dev Cell, 31, 1, Pp. 114-27.Abstract

Connecting phosphorylation events to kinases and phosphatases is key to understanding the molecular organization and signaling dynamics of networks. We have generated a validated set of transgenic RNA-interference reagents for knockdown and characterization of all protein kinases and phosphatases present during early Drosophila melanogaster development. These genetic tools enable collection of sufficient quantities of embryos depleted of single gene products for proteomics. As a demonstration of an application of the collection, we have used multiplexed isobaric labeling for quantitative proteomics to derive global phosphorylation signatures associated with kinase-depleted embryos to systematically link phosphosites with relevant kinases. We demonstrate how this strategy uncovers kinase consensus motifs and prioritizes phosphoproteins for kinase target validation. We validate this approach by providing auxiliary evidence for Wee kinase-directed regulation of the chromatin regulator Stonewall. Further, we show how correlative phosphorylation at the site level can indicate function, as exemplified by Sterile20-like kinase-dependent regulation of Stat92E.

2014_Dev Cell_Sopko.pdf Supplement.pdf
Arunachalam Vinayagam, Jonathan Zirin, Charles Roesel, Yanhui Hu, Bahar Yilmazel, Anastasia A Samsonova, Ralph A Neumüller, Stephanie E Mohr, and Norbert Perrimon. 2014. “Integrating protein-protein interaction networks with phenotypes reveals signs of interactions.” Nat Methods, 11, 1, Pp. 94-9.Abstract

A major objective of systems biology is to organize molecular interactions as networks and to characterize information flow within networks. We describe a computational framework to integrate protein-protein interaction (PPI) networks and genetic screens to predict the 'signs' of interactions (i.e., activation-inhibition relationships). We constructed a Drosophila melanogaster signed PPI network consisting of 6,125 signed PPIs connecting 3,352 proteins that can be used to identify positive and negative regulators of signaling pathways and protein complexes. We identified an unexpected role for the metabolic enzymes enolase and aldo-keto reductase as positive and negative regulators of proteolysis, respectively. Characterization of the activation-inhibition relationships between physically interacting proteins within signaling pathways will affect our understanding of many biological functions, including signal transduction and mechanisms of disease.

2014_Nat Methods_Vinayagam.pdf Supplemental Files.zip
2013
Ralph A Neumüller, Thomas Gross, Anastasia A Samsonova, Arunachalam Vinayagam, Michael Buckner, Karen Founk, Yanhui Hu, Sara Sharifpoor, Adam P Rosebrock, Brenda Andrews, Fred Winston, and Norbert Perrimon. 2013. “Conserved regulators of nucleolar size revealed by global phenotypic analyses.” Sci Signal, 6, 289, Pp. ra70.Abstract

Regulation of cell growth is a fundamental process in development and disease that integrates a vast array of extra- and intracellular information. A central player in this process is RNA polymerase I (Pol I), which transcribes ribosomal RNA (rRNA) genes in the nucleolus. Rapidly growing cancer cells are characterized by increased Pol I-mediated transcription and, consequently, nucleolar hypertrophy. To map the genetic network underlying the regulation of nucleolar size and of Pol I-mediated transcription, we performed comparative, genome-wide loss-of-function analyses of nucleolar size in Saccharomyces cerevisiae and Drosophila melanogaster coupled with mass spectrometry-based analyses of the ribosomal DNA (rDNA) promoter. With this approach, we identified a set of conserved and nonconserved molecular complexes that control nucleolar size. Furthermore, we characterized a direct role of the histone information regulator (HIR) complex in repressing rRNA transcription in yeast. Our study provides a full-genome, cross-species analysis of a nuclear subcompartment and shows that this approach can identify conserved molecular modules.

2013_Sci Sig_Neumuller.pdf Supplemental Files.zip
Katharina Thiel, Christoph Heier, Verena Haberl, Peter J Thul, Monika Oberer, Achim Lass, Herbert Jäckle, and Mathias Beller. 2013. “The evolutionarily conserved protein CG9186 is associated with lipid droplets, required for their positioning and for fat storage.” J Cell Sci, 126, Pt 10, Pp. 2198-212.Abstract

Lipid droplets (LDs) are specialized cell organelles for the storage of energy-rich lipids. Although lipid storage is a conserved feature of all cells and organisms, little is known about fundamental aspects of the cell biology of LDs, including their biogenesis, structural assembly and subcellular positioning, and the regulation of organismic energy homeostasis. We identified a novel LD-associated protein family, represented by the Drosophila protein CG9186 and its murine homolog MGI:1916082. In the absence of LDs, both proteins localize at the endoplasmic reticulum (ER). Upon lipid storage induction, they translocate to LDs using an evolutionarily conserved targeting mechanism that acts through a 60-amino-acid targeting motif in the center of the CG9186 protein. Overexpression of CG9186, and MGI:1916082, causes clustering of LDs in both tissue culture and salivary gland cells, whereas RNAi knockdown of CG9186 results in a reduction of LDs. Organismal RNAi knockdown of CG9186 results in a reduction in lipid storage levels of the fly. The results indicate that we identified the first members of a novel and evolutionarily conserved family of lipid storage regulators, which are also required to properly position LDs within cells.

2013_J Cell Sci_Theil.pdf Supplement.pdf
Clemens Bergwitz, Mark J Wee, Sumi Sinha, Joanne Huang, Charles DeRobertis, Lawrence B Mensah, Jonathan Cohen, Adam Friedman, Meghana Kulkarni, Yanhui Hu, Arunachalam Vinayagam, Michael Schnall-Levin, Bonnie Berger, Lizabeth A Perkins, Stephanie E Mohr, and Norbert Perrimon. 2013. “Genetic determinants of phosphate response in Drosophila.” PLoS One, 8, 3, Pp. e56753.Abstract

Phosphate is required for many important cellular processes and having too little phosphate or too much can cause disease and reduce life span in humans. However, the mechanisms underlying homeostatic control of extracellular phosphate levels and cellular effects of phosphate are poorly understood. Here, we establish Drosophila melanogaster as a model system for the study of phosphate effects. We found that Drosophila larval development depends on the availability of phosphate in the medium. Conversely, life span is reduced when adult flies are cultured on high phosphate medium or when hemolymph phosphate is increased in flies with impaired malpighian tubules. In addition, RNAi-mediated inhibition of MAPK-signaling by knockdown of Ras85D, phl/D-Raf or Dsor1/MEK affects larval development, adult life span and hemolymph phosphate, suggesting that some in vivo effects involve activation of this signaling pathway by phosphate. To identify novel genetic determinants of phosphate responses, we used Drosophila hemocyte-like cultured cells (S2R+) to perform a genome-wide RNAi screen using MAPK activation as the readout. We identified a number of candidate genes potentially important for the cellular response to phosphate. Evaluation of 51 genes in live flies revealed some that affect larval development, adult life span and hemolymph phosphate levels.

2013_PLOS One_Bergwitz.pdf Supplemental Files.zip
Keren Imberg-Kazdan, Susan Ha, Alex Greenfield, Christopher S Poultney, Richard Bonneau, Susan K Logan, and Michael J Garabedian. 2013. “A genome-wide RNA interference screen identifies new regulators of androgen receptor function in prostate cancer cells.” Genome Res, 23, 4, Pp. 581-91.Abstract

The androgen receptor (AR) is a mediator of both androgen-dependent and castration-resistant prostate cancers. Identification of cellular factors affecting AR transcriptional activity could in principle yield new targets that reduce AR activity and combat prostate cancer, yet a comprehensive analysis of the genes required for AR-dependent transcriptional activity has not been determined. Using an unbiased genetic approach that takes advantage of the evolutionary conservation of AR signaling, we have conducted a genome-wide RNAi screen in Drosophila cells for genes required for AR transcriptional activity and applied the results to human prostate cancer cells. We identified 45 AR-regulators, which include known pathway components and genes with functions not previously linked to AR regulation, such as HIPK2 (a protein kinase) and MED19 (a subunit of the Mediator complex). Depletion of HIPK2 and MED19 in human prostate cancer cells decreased AR target gene expression and, importantly, reduced the proliferation of androgen-dependent and castration-resistant prostate cancer cells. We also systematically analyzed additional Mediator subunits and uncovered a small subset of Mediator subunits that interpret AR signaling and affect AR-dependent transcription and prostate cancer cell proliferation. Importantly, targeting of HIPK2 by an FDA-approved kinase inhibitor phenocopied the effect of depletion by RNAi and reduced the growth of AR-positive, but not AR-negative, treatment-resistant prostate cancer cells. Thus, our screen has yielded new AR regulators including drugable targets that reduce the proliferation of castration-resistant prostate cancer cells.

2013_Genome Res_Imberg-Kazdan.pdf Supplement.pdf
Young Kwon, Arunachalam Vinayagam, Xiaoyun Sun, Noah Dephoure, Steven P Gygi, Pengyu Hong, and Norbert Perrimon. 2013. “The Hippo signaling pathway interactome.” Science, 342, 6159, Pp. 737-40.Abstract

The Hippo pathway controls metazoan organ growth by regulating cell proliferation and apoptosis. Many components have been identified, but our knowledge of the composition and structure of this pathway is still incomplete. Using existing pathway components as baits, we generated by mass spectrometry a high-confidence Drosophila Hippo protein-protein interaction network (Hippo-PPIN) consisting of 153 proteins and 204 interactions. Depletion of 67% of the proteins by RNA interference regulated the transcriptional coactivator Yorkie (Yki) either positively or negatively. We selected for further characterization a new member of the alpha-arrestin family, Leash, and show that it promotes degradation of Yki through the lysosomal pathway. Given the importance of the Hippo pathway in tumor development, the Hippo-PPIN will contribute to our understanding of this network in both normal growth and cancer.

2013_Science_Kwon.pdf Supplemental Files.zip
2012
Mar Arias Garcia, Miguel Sanchez Alvarez, Heba Sailem, Vicky Bousgouni, Julia Sero, and Chris Bakal. 2012. “Differential RNAi screening provides insights into the rewiring of signalling networks during oxidative stress.” Mol Biosyst, 8, 10, Pp. 2605-13.Abstract

Reactive Oxygen Species (ROS) are a natural by-product of cellular growth and proliferation, and are required for fundamental processes such as protein-folding and signal transduction. However, ROS accumulation, and the onset of oxidative stress, can negatively impact cellular and genomic integrity. Signalling networks have evolved to respond to oxidative stress by engaging diverse enzymatic and non-enzymatic antioxidant mechanisms to restore redox homeostasis. The architecture of oxidative stress response networks during periods of normal growth, and how increased ROS levels dynamically reconfigure these networks are largely unknown. In order to gain insight into the structure of signalling networks that promote redox homeostasis we first performed genome-scale RNAi screens to identify novel suppressors of superoxide accumulation. We then infer relationships between redox regulators by hierarchical clustering of phenotypic signatures describing how gene inhibition affects superoxide levels, cellular viability, and morphology across different genetic backgrounds. Genes that cluster together are likely to act in the same signalling pathway/complex and thus make "functional interactions". Moreover we also calculate differential phenotypic signatures describing the difference in cellular phenotypes following RNAi between untreated cells and cells submitted to oxidative stress. Using both phenotypic signatures and differential signatures we construct a network model of functional interactions that occur between components of the redox homeostasis network, and how such interactions become rewired in the presence of oxidative stress. This network model predicts a functional interaction between the transcription factor Jun and the IRE1 kinase, which we validate in an orthogonal assay. We thus demonstrate the ability of systems-biology approaches to identify novel signalling events.

2012_Mol BioSys_Garcia.pdf Supplemental Files.zip
Reid Aikin, Alexandra Cervantes, Gisela D'Angelo, Laurent Ruel, Sandra Lacas-Gervais, Sébastien Schaub, and Pascal Thérond. 2012. “A genome-wide RNAi screen identifies regulators of cholesterol-modified hedgehog secretion in Drosophila.” PLoS One, 7, 3, Pp. e33665.Abstract

Hedgehog (Hh) proteins are secreted molecules that function as organizers in animal development. In addition to being palmitoylated, Hh is the only metazoan protein known to possess a covalently-linked cholesterol moiety. The absence of either modification severely disrupts the organization of numerous tissues during development. It is currently not known how lipid-modified Hh is secreted and released from producing cells. We have performed a genome-wide RNAi screen in Drosophila melanogaster cells to identify regulators of Hh secretion. We found that cholesterol-modified Hh secretion is strongly dependent on coat protein complex I (COPI) but not COPII vesicles, suggesting that cholesterol modification alters the movement of Hh through the early secretory pathway. We provide evidence that both proteolysis and cholesterol modification are necessary for the efficient trafficking of Hh through the ER and Golgi. Finally, we identified several putative regulators of protein secretion and demonstrate a role for some of these genes in Hh and Wingless (Wg) morphogen secretion in vivo. These data open new perspectives for studying how morphogen secretion is regulated, as well as provide insight into regulation of lipid-modified protein secretion.

2012_PLOS One_Aikin.pdf Supplemental Files.zip
2011
Fillip Port, George Hausmann, and Konrad Basler. 2011. “A genome-wide RNA interference screen uncovers two p24 proteins as regulators of Wingless secretion.” EMBO Rep, 12, 11, Pp. 1144-52.Abstract

Wnt proteins are secreted, lipid-modified glycoproteins that control animal development and adult tissue homeostasis. Secretion of Wnt proteins is at least partly regulated by a dedicated machinery. Here, we report a genome-wide RNA interference screen for genes involved in the secretion of Wingless (Wg), a Drosophila Wnt. We identify three new genes required for Wg secretion. Of these, Emp24 and Eclair are required for proper export of Wg from the endoplasmic reticulum (ER). We propose that Emp24 and Eca act as specific cargo receptors for Wg to concentrate it in forming vesicles at sites of ER export.

2011_EMBO Rep_Port.pdf Supplemental Files.zip

Pages