Developmental Cell, Volume 31 Supplemental Information

Combining Genetic Perturbations and Proteomics

to Examine Kinase-Phosphatase Networks

in Drosophila Embryos

Richelle Sopko, Marianna Foos, Arunachalam Vinayagam, Bo Zhai, Richard Binari, Yanhui Hu, Sakara Randklev, Lizabeth A. Perkins, Steven P. Gygi, and Norbert Perrimon

Supplemental Figure Legends

Figure S1, Related to Figure 1

Transcript versus protein expression for protein kinases and phosphatases. Comparing RNA-Seq data derived from a *D. melanogaster* developmental time course (Graveley et al., 2011), in Reads per kilobase of exon model per million mapped reads (RPKM) per transcript, to median signal-to-noise ratios derived from MS1 feature intensities across all matching peptides observed for each corresponding protein kinase (A) and protein phosphatase (B) during shotgun mass spectrometry. Represented is an average RPKM value from two time points comprising stages 1-8.

Figure S2, Related to Figures 2 and 3

Characterization of the transgenic protein kinase and phosphatase shRNA collection.

(A) Plotted is the cumulative number of lines in the collection capable of achieving a particular extent of knockdown in early embryos with a germline specific Gal4 driver. The number of transgenic lines capable of generating that specific degree of knockdown or better is indicated next to each data point. Lines that fail to generate eggs are not included.

(B) Based on qPCR analysis of embryos derived from the germline of females expressing a distinct shRNA, at least one of two shRNAs targeting the same protein kinase or phosphatase will generate 60% knockdown or better for the corresponding gene at a frequency of 86% (N=81).

(C) Considering those shRNAs that unambiguously target the coding sequence (CDS), or the 5' or 3' untranslated region (UTR) of all transcript isoforms, we find shRNA design influences knockdown. 81% of lines expressing an shRNA targeting the CDS generated greater than 60% knockdown, while only 14% of lines expressing an shRNA targeting the 3'UTR generated greater than 60% knockdown – annotated as 'success'. The numbers of lines considered are indicated in parentheses. Plotted (y-axis) is the average transcript level (based on two independent qPCR measurements) remaining in 0-4 hour old embryos derived from females subjected to specific shRNA expression, relative to an shRNA targeting EGFP, versus (x-axis): (D) the average transcript level (units in RPKM) derived from two time points encompassing the same developmental time (Graveley et al., 2011); (E) the concentration of purified RNA used for the corresponding qPCR measurement; and (F) the batch date of processing. Three reference genes were used for normalization.

Figure S3, Related to Figure 4

Reproducibility among replicate experiments. Plotted is the overlap in TMT reporter ion signal-tonoise (Sn) and phosphopeptide identity for six independent biological replicates of embryos (MTD-Gal4>UAS-*white* shRNA) labeled with three TMT labels (126, 127, or 128) and shot in two independent 6-plex experiments: (A) and (B).

Figure S4, Related to Figure 4

Phosphosite distribution in kinase deficient embryos. The distribution of abundance changes in kinase shRNA embryos relative to *white* control shRNA embryos for (A) unique phosphosites residing in seven shRNA-targeted kinases (*wee, gish, lkb1, grp, Tao, Slik, and Atg1*) plotted based on downregulated fold change where 1-fold indicates no change and (B) all unique phosphopeptides plotted as a log2 ratio. The distribution in all cases centers around zero.

Figure S5, Related to Figure 5

Enrichment for kinase-substrate pairs among phosphosite correlations, and the characterization of *slik* deficient embryos and *Drosophila* S2 cells treated with *slik* dsRNA or insulin.

(A) Correlations in changes in levels (>1.5 fold relative to a control shRNA) between any two phosphosites (PS) were identified from kinase-deficient phosphorylation data. 517 gold standard (YGS) kinase substrate (KS) pairs in yeast (Sharifpoor et al., 2011) were mapped to *D. melanogaster* proteins with DIOPT (Hu et al., 2013). 179 human kinase phosphorylation motifs from the NetPhorest atlas (Miller et al., 2008) were also used to predict *D. melanogaster* KS pairs. The distribution of

overlap between KS pairs and correlation pairs for 1000 simulated random correlation pairs of the same size is shown in grey (expected). The observed number of KS pairs among all correlation pairs is indicated (red arrow). Illustrated is the number of pairs when requiring PS correlation among at least two (top) or three (bottom) kinase-deficient profiles. Z-Scores and P-values are indicated.

(B) Lysates from 0-4 hour embryos derived from females expressing an shRNA targeting *slik*, *wee* and an *EGFP* control shRNA were analyzed by immunoblotting with a Stat92E antibody. Immunoblotting with anti-tubulin serves as a loading control.

(C) Plotted (y-axis) is the level of *slik* transcript remaining in *Drosophila* S2 cells treated with dsRNA targeting *slik* relative to a dsRNA targeting *EGFP* (left) and in 0-4 hour old embryos derived from the germline of females subjected to specific shRNA expression relative to an shRNA targeting *EGFP* (right). Three reference genes were used for normalization.

(D) Lysates from 0-4 hour embryos derived from females expressing an shRNA targeting *slik* and an *EGFP* control shRNA were analyzed by immunoblotting with a phospho-ERK antibody (dpERK). Immunoblotting for total ERK and tubulin serve as loading controls.

Sixty-nine phosphoproteins downregulated >1.3 fold in *slik* deficient embryos and upregulated >1.3 fold in *Drosophila* S2 cells under conditions of insulin stimulation are plotted (E) in log2 scale according to maximal change in *slik* deficient embryos relative to control shRNA embryos, and (F) in log2 scale according to maximal change in insulin treated cells relative to untreated cells.

Figure S6, Related to Figures 6 and 7

Characterization of wee deficient embryos.

(A) Lysates from 0-4 hour embryos derived from females expressing an shRNA targeting wee and a *white* control shRNA were analyzed by immunoblotting with anti-Cdk1-pTyr15, anti-HH3-pSer10 and anti-HH3-pSer28 antibodies. Immunoblotting with anti-tubulin and anti-HH3 serve as loading controls.
(B) Approximately 6400 phosphosites identified in *wee* deficient embryonic lysates were ranked according to degree of change relative to control. Indicated are motifs encompassing phosphosites

that are enriched among those phosphosites downregulated >1.5 fold. Motif-X was used to identify motifs (Chou and Schwartz, 2011). The PLogo tool was used to generate motif logos. Favored amino acids at corresponding positions are indicated above the line while disfavored amino acids are below. (C) Plotted (y-axis) is the transcript level of *stwl* and *wee* remaining in 0-4hr old embryos derived from the germline of females subjected to specific shRNA expression, relative to an shRNA targeting EGFP. Three reference genes were used for normalization.

(D) Lysates from *Drosophila* cells expressing HA-tagged Wee together with 3xFLAG-tagged candidate Wee substrates were subjected to immunoprecipitation with anti-HA antibody and analyzed by immunoblotting with the indicated antibodies.

Supplemental Tables

Table S1: *D. melanogaster* protein kinase and phosphatase expression and orthologs, Related to Figure 1

Table S2: Transgenic shRNA knockdown and phenotype data, Related to Figure 2A

Table S3: Correlation between germline clone, mutant and shRNA phenotypes targeting the same gene, Related to Figure 3

Table S4: Control shRNA replicate phosphoproteomic experiment data, Related to Figure S3

Table S5: Protein kinase shRNA phosphoproteomic experiment data, Related to Figure 4

Table S6: All correlative phosphosite pairs in phosphoproteomic data and predicted *D. melanogaster*

KS pairs from NetPhorest, Related to Figure 5A

Table S7: Insulin-stimulated phosphoproteome time course data from S2 cells, Related to Figure 5C

Extended Experimental Procedures

Transgenic shRNA line generation

Transgenic shRNA line generation was essentially as described (Ni et al., 2011). Twenty-one base pair shRNAs were cloned into either VALIUM20 or VALIUM22 and injected for targeted phiC31-

mediated integration (Groth et al., 2004; Thomason et al., 2001) at genomic attP landing sites: P{CaryP}attP2 (3L: 68A4) or P{CaryP}attP40 (2L: 25C6). The genetic background was y[1] sc[1] v[1]; P{y[+t7.7]=CaryP}attP). Selection was based on vermillion eye color. All lines were sequenced to confirm identity of the shRNA and miR-1 scaffold. More than half of the shRNA collection can generate knockdown both in the soma and germline (VALIUM20), permitting interrogation of protein kinase and phosphatase function spatially and temporally via different drivers. The others were constructed in VALIUM22, which is optimized for germline specific expression (Ni et al., 2011).

Quantitative real time PCR primer design

D. melanogaster primer design for quantitative real time PCR was as per (Hu et al., 2013).

Gene	FWD Primer Seq	REV Primer Seq	efficiency	r-squared
aay	AGATCGTCTGTTTCGATGTGGA	ATCGCCTCCTTGGTAACGC	102	0.996
Abl	GGGTCTCAACATATTCACCG	GTGAGGTAATGGACGCGACTG	105	0.999
Acf1	CAAGAACGAAACATTCCACGAC	GTGCCGGAAGTAGTGTTCATAG	102.1	0.997
Ack	CCAGCAGAGCGACCCACTTT	TTGGACTCGTGGTGACTTCG	97	0.997
Akt1	GTTTGGGAGGTGGAAAGGAT	CCCGTAAACTCCTTGTCGAA	103.6	
alc	CGACCATCAGTACAAGTTCTGCG	TTCTCTGTCCCTCGGCGTTC	94.7	0.999
ald	GAGAACGAAAACAGCAGCCG	GACACTCGGCGAGGTAGCATA	106.4	0.999
alph	ATGGGCGGATTCCTGGATAAG	GAGCGTAGTAGGCGTCCTC	103.8	0.998
Argk	ATGCCGAGGCTTACACAGTG	CATCGCCAAAGTTGGAGGC	98.6	0.996
Asator	TTGAAGCAATTTCTGGAGCACA	CATACACCTCTCGAACAAACCG	97	1
Atg1	CGTCAGCCTGGTCATGGAGTA	TAACGGTATCCTCGCTGAGCG	112.4	0.996
aur	AGTATGCGCCACAAGGAACG	CCTGAATATAGGTGGCCGACTGG	99.2	0.998
babo	GCGAAAAAGCCAGAAAACA	CATATATTGTTCGATTCCTTGCAC	109.6	0.994
bsk	TACGGCCCATAGGATCAGGTG	TGCTGGGTGATAGTATCGTAAGCG	98.5	0.998
Btk29A	GGGCATACGGTGTGCTGATG	CACACGCTCCACAACCTCG	104	0.999
Bub1	CAAATAATCCATCAGCCTCCG	GGGAATCGGAGAAGCAGGTG	116	
caki/CASK	TATGTCGTGTTTATAGCGGCG	CTCCAGGCTGCCGTCGTAAT	123.5	0.993
CamKI	AGCAGAAACATTCACGGAACCG	CTGTAGCGGCGTAGTAGGCTTG	101.4	1
CamKII	AAAGGAGCCCTATGGGAAATCG	CCCAAAAGGGTGGATAACCG	101.7	0.999
CanA-14F	TGATCACCATCTTCTCGGCG	GCCGGATGTTCATCACGTTG	97.6	0.997
CanB2	CGCTTCGCCTTTCGCATCTA	CGCGAATCCGATCGTCTTGT	99.7	0.997
cdc14	CATCAAGCCAAAGAACACGGT	GCGGACCAAAGTCATTGTAGAA	98.9	0.998
cdc2c	CATGCCACAACCCATAACCG	GCAGGTTGGGATCATAGCACAG	103.7	
cdc2rk	TATCCAATCTGCTGATGACCG	GCTAAACATGCGGGCCAGTC	95.7	0.996
cdi	ACTGCTGTCTGTACGATGCC	CTCGTGCTCGTATTTCTCCA	96.6	0.999
Cdk12	CTGCACTGGGAAGCAACCTG	GGAGGAGGAGAACGAAGCcG	120.5	0.997
Cdk4	ATGTGGAGCAGGATCTTTCG	CCGGTCAGTAGTTCCCTTGACA	103.7	0.999
Cdk5	AAGAAACTCACCCTGGTCTTCG	AGACGGCCATGTCGATCTCC	91.6	
Cdk8	TCAATGTGATGGGCTTTCCG	AGCGTATGATGTTCCGGCATC	100.8	0.997
Cdk9	GACAAATTGCTGACCCTTGATCC	GTGATTCAGAGCTGTGTCCG	91.4	1

CG10089	ACATCATCGCCATACATGACAG	AGACGGAAAAGTATTGGGAGAGA		
CG10376	TTCAAGCGATTTCTGGTCAGC	CCGGACACTTTGTATGTCTCATT	105.3	0.998
CG10417	GGTGCCTATTTGTCCCATCCG	CGCCATCCTTGCATAGAGC	105.5	0.997
CG10702	CAACGACCAGGAGGTGCAGT	CCAGCTTAGCTTCACAGACCG	100.2	0.998
CG10738	ATGTTTGCTCACCCCTGTCC	CCGGAAGTTGCTAAAAGCGAG	105.7	0.993
CG11486	TTGATATGCAGGAGGACGAG	CAGATTAAAGTCGGGTCGCT	99.9	0.998
CG11597	GCGACATCCGGCACAAGTTA	CGAAAGGCACTCCTCGTAGAAT	78.8	0.998
CG11870	GACCATTGGCGTCAGTGAACC	CACTGGTTGTATGGCATTTCCG	99.9	0.989
CG12091	CAACCTGCGACACAAGTACAA	GAACGATGAAAACTCTCCGGG	93	0.998
CG12237	GCCTTCGACTTCGACCACA	GGTATGCCACGAATGGTGTC	101	0.996
CG1227	GGGCTCCAGAGTTATTTACCG	GAGCACACAGCCAAGACTCCA	99.6	1
CG13197	GTGAAGGAGAATCTTCGGCTG	TGGCACTTGGGTGGTAGTATC	100	0.993
CG1344	CTGTAATGAGCTGTGTGCCG	CCCAGACAATATCGTCCTTATCA	106.6	
CG13850	AGCAAAAGCCAAGCCTCCAG	TCCGTGATAGTTAGCAGTCCAT	107.7	0.997
CG14212	GTTGAGCAGGACTCCTATTTGG	CGCACTTGGGGATCTGGTC	97.3	0.997
CG14216	TCAATGTGCGCTCCTACGG	GATGTCCTCGTATTTGGTGCC	104.6	0.996
CG14411	CGGACTGTTGAGTGTCACCAA	GGCCCAAATAGGTATTCTCCTGA	106.1	0.999
CG14903	ACTTGAATTCCGAGGACGCC	ACTGAGCTTGACCAGAGCAC	96.6	0.998
CG16771	CCGTGCAGCACACGAAATG	CACATGGCGGTTATCAGGAGG	85.6	0.997
CG17528	ATGCGATTATTGCTAAACAAGCG	GCGAACCACTTGCGTAATGG	106.8	0.995
CG17598	AACAGCGAGCGGGCTATTG	GGGGAACTTGTCCGGCATT	105	0.997
CG17698	TACGCGCAGGTCGATCTAATTC	TGATGGCAGGAGAGTATCCG	99.3	0.995
CG17746	GCGCCCTCGGTGACTATGTAT	CCAATCGTCCATGATTTTCCG	94	0.998
CG1951	CGGAGTGGGTCTGATGTGG	ACGACTTTTTCTCGAACACGAA	92.8	0.997
CG2124	CAAACTACCTCTGGCGAAGTG	AGGACGCAGTATTGCATACGG	104.6	0.999
CG3008	GTCCTTTCCGCCGGAGTTTC	CCTTATTGGAGAGCTTCATGTCG	104.8	0.998
CG31431	CCGATGATTTGTGATCTGTGGT	AAAACAGCGGGACTGCTGAAA	136.8	0.998
CG31643	TGCTCTTCTAACCCGACTGGA	CAGTGAGATTCCCATCACCAC	110.9	0.99
CG31751	CTCTACGGGATCACGATAAGCG	GGACAGTGGGTTACAATGAGG	104.7	0.998
CG32649	AAGAAGAAGTCCGACCAGCCG	GAGGGAACCTTGCGCTGTTT	100.7	0.999
CG32666	GACCTCAAGCCGCAGAACATC	CAGCTTCAATCCATCTTCTATGCG	97.6	1.000
CG34123	CTGGAGCCTGGATATTCACCG	GCATCGCCCACTTGCTTGGT	95.7	0.994
CG34380	TAACAGATGCTCAAATCACAGCG	GCATTCGACACCATGTGCTT	93.7	0.998
CG3530	GACAGGATCTCCGCTACTCAT	GCAGCGAAGTGTAGACATCGT	106.7	0.996
CG3608	CGATGCGACAACACAGTGA	ACCATGCATGCGAAAAGAC	101.2	0.996
CG3632	GGCGCACGGATGATGGTAT	ATCTCGCACCTGTACGGATTC	111.4	0.998
CG3837	CGGCTACTTCCAGACGCTAC	TGGCCACCAGTGAAGAAGA	102.4	0.995
CG4041	TGTTCTCGCATGTATTCCCG	ATCGCCCAGCATGAGTTTATCC	103.1	0.997
CG42327	GAAGTGCCACCTGGTTGTGAG	GTCTCAGGAAGCGGAATCACG	91.4	0.997
CG42637	GATGGAGAGCAACGGAGAGG	ATTGACCAGGCCACGTTTCT	97.4	0.998
CG43143	GGACAAGGCACTTACGGCAA	GATGGTTTTGATAGCCACCTCC	97.9	0.997
CG5026	GCTATGGTTGCTCCACAAGAA	AATCCCACCGACCACGATATT	97.3	0.999
CG5144	CCATGCCAGCAAAGGAAATGT	CAGCAGGGACTTGGATTTCG	105.5	0.994
CG5830	GACGACGAGCAACTGAACG	TGGCTTTAAACGATCCACATC	120.4	0.999
CG6498	CACGAATACTTTCTGGGCATGG	CACAAACTCTGCCTTCTGCCG	103.8	0.997
CG6697	TCAAAAGCTGCTCAACCTGA	CAAAGCGCTGATCTTCACAT	103.1	0.998

CG7028	CCACCGAACAAGCGAATCCA	TCCA GCTCAGCCCGCAATTTTGTG		0.998
CG7156	CGATTGTCTTCCCAAGGTCG	AGCCGCTTGACATCGTGGAAC	104.9	0.999
CG7207	GTATCCTGGCCCAGATTTCG	GAAGAACTCATCCTCGGGCAAT	100.8	0.998
CG7597/Cdk12	CTGCACTGGGAAGCAACCTG	GGAGGAGGAGAACGAAGCCG	120.5	0.997
CG7616	CTGAGCCTCGGAACACGGATT	AAATCGCAATACAGGACGACCG	108.1	0.996
CG8147	TCTCGGCCTGAGTGTTCTAGT	GATCCGGTTCCCATAAGCGA	95.1	0.999
CG8173	GACGAGCAGGGCGAGGTTAAT	CACTTCGTCTATGACCTCCG	106.7	0.996
CG8485	AGCATGAAAGTGGGAGATGCG	GGCTTCGGTTGGACTTGGTTT	94.7	0.999
CG8726	TGCAAGAGTACATAAACGCCG	GGTCGTGAAAGGACTGCGAGTA	94.9	0.999
CG8866	GCCAAGCACTTGGACGATGAG	GATGGTTCTCAATGAAGTGCG	107.9	0.999
CG8878	CCACACTACTGCACACCCCG	TGGTGACTCCATCACACTGGA	100.1	0.998
CG8964	GCGCCAGCATCATTTGAGG	CAGTTGGTAGTCACAGGGCAA	108.5	0.982
CkI-alpha	TATTGAAGGAAAGTCGCCCCG	GGTAAATGTCGCCAAACGATCC	96.4	0.999
Cks30A	GCCCAAGACTCATCTGATGACG	CCGGCTTATGGATCATGTAGTGG	100.7	0.997
Csk	GAGTTCGGTGACGTGATGCTG	CAGCCAGAAACTTCTGCACG	113.6	0.998
CSW	GAACATGGTCTGGCAGGAGAAC	CTCCGATCTACCCTCGTCCG	102.4	0.998
Dd	TCGCCAAGTGCGAGCTTTTAT	CGTCCAGGTCCAGAACGAG	87.4	0.997
dnt	ATTGCCACAAGGAACTGCGTTAT	CCCCAGGCAGTTGTAGTCCG	108.3	0.997
Doa	AAGATTAACCGCGAGGTGCG	CCCGAAGTCGATTAGGCGAAC	97.6	0.998
drl	CCCAACTTGCTAACAATCGGA	CTCCCGCACGTAGTAAAGCTC	105.6	0.996
Dsor1	GGCGAGATCAGTATCTGCATGG	TGGACTCTGGTATTCGACCG	104.2	
Dyrk3	GGGCCATCGAGATATTATCCG	AGTTGGCCGAACTGTTTAACGA	104.5	0.995
EDTP	CTTTGAGGAAGGGACGGCGTA	AGTCGAGCTTAAACAGGTATTCG	95.5	0.999
Eip63E	CGAGGTGGTCACGTTATGGT	AGGTCGAGTACTCCGTGCTG	92.7	0.998
Eph	TTGGCACATGCAGATCAGGTT	TGGTGTTTGGGCTTGAGGTC	109.1	0.995
еуа	CTACGACGGCAAACATGACTAC	CGCATAAGGAGTTCCGTATCC	89	0.997
Fak56D	GCTGACCGATGATTATGCCG	CGAACGGTGGGCGTAGAGTAG	110.9	
Fancd2	AAAGAAACCTCTGAACACCATCG	CCAGATGAGGACTCAACGGATA	95.6	0.997
Fcp1	AGCGACGAGGGTCCTGTAA	CTTCGCGCTTTCTCTTCAAC	106.2	0.999
fj	CAGCGGTCGTTATCGCAAG	GCTCACTGGTAGGATTTGTCGG	91.4	0.994
flw	CGTGGCCTCTGTCTCAAGTC	CAACAGGTCTGTGTACTGGC	103.4	0.997
for	CAGCGATTTCCTCAAGAGTGT	CTCCTCCAAAACATCGGAGA	101.6	0.999
Fps85D	ATATCGCTCTCCACAAATCGTC	CTGAGCACAATCTGGCTCTCC	103.6	0.999
fray	GGACACTGCCGAGGGTATCG	GTATCCAGCGCATCAACGAGTC	97.4	1
fu	CAAGGACGACAGCAAGGTGGT	AGCTCTTTCGTGGCTCTTCCG	104.8	0.999
GckIII	TGCATTATCGTCCTCTGTGTCC	CCTTCGTTGGCTGTAATGACCG	103.9	0.998
Gcn2	CCCTGGTGGAGAGTTTGATGC	GTTACACTTGTCTACAAAGTCGCG	100.4	0.998
gek	TCACCAAAGCGGATTTACCG	CCGGATGAACCAAAGACATTGC	100.7	0.999
gish	CCAAATTTTCGTGTCGGTAAA	GTTCATTGTTGTAAAGGTTTTTGC	104.7	0.999
Gprk1	TGGAAATGTTACTTCAAAGGGACG	TACTTCATCCGCGCCATTTC	99.7	0.999
Gprk2	AGCGAGAGAAGGTGGTTCCG	CATTGCGATATGTGTGGGAATTG	103.2	0.999
grp	TTCCTATGACCTGGTGGACTCG	AGACTGCAGACGCTGCCTCTTA	93.7	0.999
Haspin	GGCAACAGGAGATTATCAATACGA	CCAGTTGTTCTTTAACTCATTCCG	93.9	0.999
hep	CCCCGCCGACAACTAGAGTG	CACCACCGGGACCACTAGAAA	106.5	0.994
hipk	CAACAATGTCAAGGCATCCG	CAGGCTGCACAGTGTGGAAA	106	0.999
hop	CACCACCAACACCAATTCCG	GGAACGTCGTTTGGCCTTCT	115.6	0.996

hpo	CGAGCCATCTTTATGATTCCG	GGCACTTGCTCACGAAGTCAAT	93.1	0.997
hppy	ACAAGATCCCGGAGCGACTG	TG TGTGCAGCACTTTGTGTCCG		0.997
htl	GCTGCAGTCAAAATGGTCCG	GATTTCCGTGTGGCGCATAC	97.5	0.997
ik2	ATCTCGCAGATGCACAAACATT	TGGAGGAGGTCCATTGATCG	103.9	1
llk	GTCTGCGGGTCAAGATTC	TCCTCGTTCATGCAGATTGAAA	81.6	0.995
irbp	AGTTCATCACGTTGTCAAGAGC	TACGATCGGACAGGATTTCG	102	0.999
ird1	AGCACTGGAGGCACGATCAC	GTCCCATCTCCTCGTACTGCG	103.9	0.999
ird5	AAGTTTGCGAGAAAGACCTATTCG	GAAATTATCGCACCATTGCAGA	103.6	1
ire-1	ATGGTAAGGAGGGCGAGCAG	ATGACCGTGTACTGAGTCCG	106	0.998
JIL-1	ACGGTGGTCCAGAAGCGAAA	CCTCCAGTACCACTCTCTCCG	100.4	0.998
key	TTATCTTGGGTAGCTCGCCG	ATACGTCGGACCGCAAGGAACT	103	0.999
КР78а	TCAGACGCCACCCTTATCCG	GTGCGGTCAGCTTGGAGAAGA	103.4	0.998
KP78b	GTGGCAAGTATCGTGTTCCG	GTTGCGTTGGATTCAGAACGAG	102.5	0.999
ksr	ACAGCCGGTGTGGATAAGAGG	CATTTGACTTGTGGGTATCCG	103	0.999
l(1)g0148	CAACCAAACAGGCACGCAAC	ATCGAACAGCTTGCCAATGTC	100.8	0.999
l(1)G0232	CTATGGCGTTCCCAGCTC	CCTGCTTCTCACGCACCT	93	0.999
Lar	TCTGAATCTATCCTGCATTGCCG	GATCTTCGGAGCCCTTCATCC	92.7	0.999
lic	CAAACGCATACCCATGACCG	GGGCAGTCGCTGGATCTCAT	121.3	0.999
LIMK1	GTGAACGGCACACCAGTTAGT	ACTTGCACCGGATCATGCTC	106.3	0.999
Liprin-beta	GAGGGCAGCAAAATGCTCG	TAAGTTGCGTTCGCTGAGTGT	97.9	0.996
Lk6	CAAACGCCCAGTAACATCCG	GCTGTAGGACCACACGCTTGAC	102	0.999
lkb1	CCTGCTGCTCTCCCTGGATC	GTCGTGCATGTGTCGTCAGG	90.8	
loki	AATTTCAGTGATCCCGACCG	ACCACGCACGGATGTGAAAG	99.5	0.999
Lrrk	CCGCTTGTTCCGTTGTTGTG	ATCTTTCCTGCAATTTCGCCG	102.8	0.998
Madm	GCACTGCCGTGATGTATGTACC	GTGCCCGAGTGTTCTACGTCG	97.9	0.999
Mapk-Ak2	AAGTGCAGGAGGAGATGACG	GACTTGTCCAGCGCCTTGATT	103.4	1
Mat1	TGTCCAGAGTGCATGGTCC	GCCTACGAATATCCACCTCCTTC	93.4	0.998
Mbs	TACAAGGCGCTCTGGGAAGC	CGAGTGTTGCACGTGTCTGG	97.3	0.999
mbt	AAATCCACAGGTCGCCAGGT	TCGTTGAATAGCAGCTCCCG	98.5	0.997
mei-41	CCCTCTCTGGGAAGAATCGTG	CTTAACGCTCTCGTTGTCCG	99.5	0.998
Mekk1	ACAGCTTCCGCAGACTTACCG	CAGTCCATAGTGTTGCGCCG	102.5	0.996
Mipp1	ATGCGCCTGCTGATATTGCTA	GCGGTCTTCGAGGAGAACTG	96.8	0.996
Mkk4	GTTGCCGTGTATGTGGCTGATA	CCGTAAACTGCGTAATGCCG	95.9	0.998
Mkp	CAAAGGCGAATGGGCAACC	TCGCTCAATGTAGCGTACACC	102.3	0.982
Mkp3	CGACTCGGAAGCGTTGAAAAA	GTGATCCGTGATCGGAATCTG	88.9	0.999
MKP-4	CTCATCCACTGTGATCGCTTAC	GAAGAGCTTTAGTTGGCTGACA	96.8	0.993
mnb	GCACCATCACTCTAGTCCCTCGT	CGAAAGTGGTTGGGAATC	111.1	0.992
тор	CTTTGCGGCTTTGAAAAAGT	GGCATGGACCTCTTTGGAG	98.5	0.999
mos	TACCCTTACCGAAGCCTCCG	CGCTTGCAGTTGCCACATTGTA	102	0.999
Mpk2	GATGTTGGAGCTAGATGCCG	GCTGGGCTCCGCATACTTCT	104.2	0.998
mRNA-cap	CGGACAAAAAGAATCCCAAC	CTCCTTGGTGACTGGATGC	107.1	0.998
msn	TCCCTTGGACAGCAGCGATT	AGTTCCATCGTTCCTAGCCCG	98.8	0.997
mtm	GGCGGAGAAAACGGCATTC	CGGTAGTTGGTTATGGTAAGAGC	107.7	0.998
mts	GCAATCAGTTGACAGAGACACA	CACCGGGCATTTTACCTCCT	105.5	1
Myt1	AAACCAAGGCAAATCCCGTCT	AACACGGACTCTCGAAATCG	82.6	0.999
Nak	CCGCTGTGTCTCCTTACCCG	AGTCCGGGTGGCAAACTGAA	103.8	0.997

Nek2	GGCAGATGCAGGAAAAACTT	TCGGCTGTCTGCAACTACAA	106.7	0.997
Nipped-A	AGTCCGGCATATCCGTCGT	GAATGAACTGAGGTTCGCCAT	91.4	0.999
nmo	CTCCCTACTATCAACCGCCG	GCTCCATAGCCGATAGGACGA	92.2	0.999
otk	CGTATGACAAGCGTGTCCATC	ATAGTTGCCAACATCCTCCGT	91.3	0.998
p38b	GAAGCGCACCTATCGGGAAC	GACATCCAGCAGACCAATAACG	108	0.999
Pak	AGATGTACCGCCCGACATGC	TCTTCAGCGTTTTCTTCTTCCG	97.8	
Pak3	AAGACCAATCTGGAGCACCG	GGTACTGGTGGAGGCTCTTGC	102.4	0.999
Pdk	GCCATTAGCGGGCTATGGAT	CCATGGAAATAGCGGGCGTA	84.5	0.998
Pdp	GAGTTCGTTTACAACTTTCCCGT	CAGGGCCAGTTTGATCCCAG	107	0.998
РЕК	TACTAGGTCCAGTGGTGCCG	GCTTGTCCAGGTGGGAAGCTA	112.5	0.999
Pez	TGTTTGTTATATCAGTGCATCACCT	AGCTGATCGTGCAGTCCA	93.9	0.999
Pgam5	GTGAAGGAGCGCCTATTCCG	GGTGGAAGTATCGGCGAAAGC	92.4	0.998
PhK-gamma	GGAGTGGGCTGATATTTCAGAGG	GGATCAACGACTAGACATTTGCG	105	1
phl	GAAGGCGACAGCGATCTATAC	CAGGTTGGCAAACTTGGCA	101.9	0.987
Pink1	CATAGCCAAAGGTTGTGCCG	ATCCGAGGCAACATCTTTCTTGA	95.3	0.998
Pk17E	GTGATGGCGCTCCAAAGGAT	TCCCTGGCTATAATCTCCCG	88.8	0.998
Pk61C	TGCTTAGTGCAGAATTAGGCG	GGCATCGTTCAGGTCGAAAG	104.7	0.999
Pk92B	GCCGCTGAGCTACAACACAA	GAATGCGTTATGTCCAATTCCG	102.8	0.998
Pka-C1	GCACTACTTGGACCTCATCTACCG	CACCTTGAGGTAGCCCTGCG	112.6	0.998
Pka-C3	GGCGTACAAAATTCCATCAAACA	CTCGCTGTAATCGGACTCCA	106.5	0.997
Pka-R2	CAGGAAGCGGAAAATGTACG	GCCAGATTCATGCGTTCGTAGT	97.9	0.998
Pkc98E	CAAGGAGCAGGAGTACGGCG	GGCCAGCCATCATCTCGTACA	122.2	0.998
Pkn	GCCATAGCCGTGATGCGTAG	ATGCCTGTTTCTTAACATCCTCCG	100.2	
Plip	CGTTTCCTTCTACCCCACCC	CCCAGTATCACATGCTCATCG	103.8	0.995
pll	TGCAGCAGAGCTACAACGAA	CAGGATATTGTCGTGCCGGA	98	0.997
png	GGGTCTTCCTCTGCCACCAA	CAACTCTGTCTTCGGATTCCG	92.4	0.995
Pp1alpha-96A	TGCACGACCGGGAAAGAATG	AGCTCCAGGAGTATGGGCTG	106.6	0.998
Pp2A-29B	CCACCATTGCACTCGCTTTG	GGAATCAACTCGGACCGTGT	109.4	0.999
Pp2A-B - 19738	TCCTGAAGACTGTTTTACATCGC	CTATGCCATTATGATGCTCCGTT	106.3	0.996
Pp2B-14D	CAATAGTACCGCCTCGAACAAC	GTGCAGCTTTCCAGTGCTC	105.8	0.989
Pp2C1	GATGAGTCGTCCGTGGAATTT	GCTGATCCTCTCTGGCCTTTG	95.2	0.997
Pp4-19C	CAGTTGGTAATGGAGGGCTT	CGCAGCGATAGCAGTAATTG	94.5	0.998
PpD3	ATGCTCAAAACCAAGGAGTTCTC	ACCATCCTGTAGTGCGAAACC	82.2	0.999
PpV	ACCGTTTGCGGTGACATC	AGTTGGTATGCGGCACCT	112.1	0.999
PR2	GACGCGCCATCGAAGTAGTG	GTTCTCGTATTCCCGCTCCG	97.8	
primo-1	GTGCTAATGATTTGTTTGGGCAA	TGCTGCACTATCGACCTCCA	94.1	0.999
PRL-1	GAGACACAAGGCATTACCGTC	CTTTAAGACCTCAAACCACTCGT	101.8	0.997
Pten	ACATCATCGATTTCTGATTTGC	CAGTTTCCGGCGATGTAAAA	94.2	
Ptp10D	GCTGTACTACACGAACTTTACGC	CTGAACGGACAGATTCGACGG	93.2	0.999
Ptp4E	ACCACGACTGGAGCATATCA	GCCATGTGGTGAAGTGAAAG	93.2	0.999
Ptp61F	AACGGCATCGATCCAATTC	CCGCTTCAGCTCGTTCTC	104.8	0.997
Ptp69D	GTGCGATATGTGTGCAAGGAT	GCTACTGCTTCGTTTTCAGATGC	107.5	0.998
Ptp99A	GGGAAGTGCCCGTTAAGATCG	CTGAATCCAATGTCCCCGTC	101.2	0.996
PTP-ER	TGCCCTACATTAATGCCAATTAC	GTAGCGCTGCGTGTTCTG	90.6	0.995
Ptpmeg	GTCGTGAGATGGGTTGATGCT	CGGCTGGGATCGCTTACAAAA	105.8	0.997
puc	TCCGGCGGTCTACGATATAGAAA	AGCAATAGATGCGGGAAAACG	90.8	0.998

put	TTTTGCCCGGAAGTCATGGG	TGCTCTATCCGTGTTTCACATTG	109.9	0.985
PVR	CAACCCTCGGACACTGGTCTA	GTAGGTGGCACGTTGTACGTT	110.6	0.996
rok	TACGAATGCAAGAGATGCCG	CGGGTCGTGTTTGTCCACAT	100.7	0.999
rolled	ATGGCATGGTTGTGTCTGCG	AAGTTTGGTGTTCAAAGGGCGATA	97	0.999
S6K	TCCTTGGCAAAGGTGGTTAT	ATTGGTCACAATGGATGCC	92.6	0.998
S6kII	CTTATGGAGCTGAGTGATTCCG	CCCTTCTCCTACCGCCAGTT	94.9	
SAK	TGCACACTCACCAGGATGTG	ACGCGGTTAGTGAGTCCAGTGC	99.5	1
sax	GAATGTGGTCTGCTGTGCCG	TGTCGAAGGGCAGCAGTTCC	102.9	
Sbf	CGAGGGCATTGAATGGTT	GATGTCCGTCAGCACAGAGA	101.3	0.996
sgg	AATGTATCGTATATCTGCTCCCG	CAACCGGCACTCCAGACATC	99.1	0.999
shark	CAAGCTGACGGTGCCCTTGAT	GCAGCAGATTGGTCACTCCG	102.9	0.997
Sik3/CG42856	AGATGCAATGCTGCCAGGAGAA	GCATATAGCTTTGCAGCTCCTCG	102.5	0.999
slik	GGGAGGCACTTCTCTGGGAAC	GCATAGTTCCTTTACATGCCG	97	0.998
slpr	GCACCTATTCCAAATTCTCCG	CCCGTTATCAGTTCCCACAGC	94.8	0.998
smg1	AGGCTTACCAATGCAAAGGCG	GATGATCTTGGACAGACGCAGA	96.9	0.999
smi35A	TCAAATGCAATACGCCCATGA	TCAAGATCGGTTAGGTAGTTGCG	108.5	0.999
SNF1A	TGGGCACTACCTACTGGGCG	ATCTGGTGCTCGCCGATCTT	101.6	0.998
SNF4A-gamma	CCGTAGAAGTGTCCTTTGCCG	AACGCTGGCTGGTCATCATC	117	
spag	GTCATGTCCAGACAGACAAGTC	CTGGCAAGTCCTGTTTCTCCG	99.4	0.998
Src42A	GGAGATACTGAATGACACGCAG	GGATGGAATGTAGCCTTCCGAA	110	0.997
Src64B	AAGAAGTTCCGACACAACCG	ACGATGTAAATGGGCTCCTCCT	104.2	1
SRPK	ATCCGCTGACTGAGGGCACTG	GTAGAGTTTTCCAGTTGTGGCG	102.3	0.998
Stam	ATGCCGCACAGATGAACTCG	GGGAGTCGGCTGAGTGTAGATTG	98.6	0.998
stg	GAAAACAACTGCAGCATGGAT	CGACAGCTCCTCCTGGTC	97	0.998
Stlk	AACTGTTCGTCGGCTTCAACAT	GCTATTGCAACTTCCGGAAACC	92.7	
Tak1	GCCAACTGGACAATAATCCG	TGCTCTCCTCCGGGAATC	97.9	
Тао	AGACACAGGAGCTGGAGTACCG	TCGTGTTGCTTGTTTATCTGCTC	101.6	0.999
tefu	GGGATTCGATAAACTGGCCG	AAAGGCAGCAGGCAGGTCTT	152.8	0.993
tkv	ATGGAACCTGCGAGACCAGAC	CTCCTCGTACATCCCGGTCG	104.1	0.998
torso	CATGATCTGCCGCACGGAGT	GTAGGTGGCATTTGGAGCCG	105.4	
trbl	CCACTTGGTCGATCTAACCG	TCGTTTACAATACGGCAGAGGAA	93.1	0.994
trc	GCCCAGAAGGAGACGGAGTATC	CCTCAAAGTCCTCCACACCG	110.5	0.996
twe	ACGTATATCGCAAATAGATCAGGA	CACACGCTCCACTTTCATCA	116.9	0.999
twf	CCCTTGGCGTGGAGGTTGTTA	AAGAAGGCTTCGGTCAGCTCG	88.9	1
tws	GGAAACAAAGCCCATTGAGA	CGAAGATGCAGTCATTCTCGT	100.2	0.999
wdb	GGCACGTTTGTGGATCGAATC	GCAGCTCAACATCCTGAGAAT	101.9	0.997
wee	ACTCGATGCGCGAAATCCAC	TTGACTTGCATGAACTCCCG	119	0.993
wnd	CATTCAGCAACAATCAACAACG	CATACACTTCACAGGGGACTCCG	101	1
Wnk	AGCCGAACCCGACATCAAAA	GTGTGCAGAAAGTGTGCCCT	97.2	0.999
Wsck	TTCGGAATGACAATGGACCG	GGCGTTGTCCACGTATTCCAC	104.7	0.997
wts	AGGACGGTGGGTAATCCAGGT	GAGCCACCTCACTGAAACCG	91.4	
yata	GCCTCCGATTATGGCAACAAC	ATCCTGAGAGGTATCCATTTCG	98.6	0.998

Embryonic RNA isolation

Approximately 300 embryos (0-4 hours old) were collected and incubated in 50% bleach for 5 minutes to remove chorions. Post washing with 0.1% TritonX-100, 50 microliters of TRIzol (Life Technologies) and an equal volume of RNase-free 0.5 mm glass beads (Next Advance) were added to de-chorionated embryos in an Eppendorf Safe-Lock 1.5ml microcentrifuge tube. Homogenization of embryos was by bead beating at 4° C at a setting of 8 in a Bullet Blender (Next Advance), 3 consecutive times for 3 minutes. Lysates were stored at -80° C until further processing. RNA was extracted with chloroform and precipitated with isopropanol. RNA pellets were resuspended in RDD buffer (Qiagen) and incubated at room temperature with DNAse I (Qiagen) for 10 minutes. Samples, diluted in RLT buffer and ethanol, were further processed for cleanup with an RNeasy MinElute Cleanup Kit (Qiagen). RNA was eluted with RNAse-free water and RNA concentration and purity (criteria: A_{260}/A_{280} ratio near 2) assessed using a Nanodrop 8000 spectrophotometer (Thermo-Scientific). All samples were processed alongside an EGFP shRNA-expressing sample as a control.

Embryonic cDNA generation

A total of 1 microgram of RNA was incubated with iScript reaction mix (a mix of oligo(dT) and random hexamer primers) and iScript reverse transcriptase (iScript cDNA Synthesis Kit, Bio-Rad) for reverse transcription. Reaction conditions were: 5 minutes at 25°C, then 30 minutes at 42°C, then 5 minutes at 85°C.

Primer evaluation by thermal analysis/calibration curve analysis of PCR products

cDNA isolated from embryos expressing a control shRNA targeting EGFP was diluted serially four times by a factor of four, starting with 1/20th of the cDNA synthesis reaction volume. A no-template control was included to assess the likelihood or primer-dimers. Each primer was added to a final concentration of 0.4 micromolar in iQ SYBR Green Supermix (Bio-rad) with a final reaction volume of 13 microliters. Bio-Rad CFX Manager was used to calculate R-squared values and PCR efficiency for primer pairs (Table S2), based on the results of a two-step program (40 cycles, alternating between 10 seconds at 95^oC and 30 seconds at 56^oC) with a Bio-Rad CFX96 Touch Real-Time PCR Detection System. Melt curve analysis comprised temperature ramping over 5 minutes, from 55^oC to 95^oC in 0.5^oC increments. Criteria for primer validation are described in (Hu et al., 2013).

Transcript knockdown assessment in shRNA-expressing embryos

Germline-specific expression of shRNAs targeting EGFP (control) or various protein kinases and phosphatases was induced using the Gal4-UAS system (Brand and Perrimon, 1993). Specifically, 70 females heterozygous for the UAS-shRNA and either MTD-Gal4 (Petrella et al., 2007), a line

expressing three Gal4 drivers sequentially throughout oogenesis, or tub-Gal4, a line expressing Gal4 from a maternal tubulin promoter at two insertion sites during mid and late oogenesis (Staller et al., 2013), were crossed to 40 UAS-shRNA males to recover fertilized embryos. RNA was isolated as described above, from approximately 250 embryos (0-4 hour old) derived from Gal4/shRNA females cultured at 27° C. cDNA was synthesized from 1 microgram of purified RNA as indicated above. cDNA synthesis and quantitative real time PCR analysis was carried out twice, with technical triplicates, using validated primers in iQ SYBR Green Supermix (Bio-Rad), with a CFX96 Real-Time PCR detection system (Bio-Rad). Query gene expression was relative to a control sample, normalized to the expression of three reference genes: *ribosomal protein L32, alpha-tubulin*, and either *nuclear fallout* or *Gapdh1*, using the $\Delta\Delta$ C(t) analysis method. These reference genes range in expression from high to low in 0-4 hour embryos, based on RNA-Seq data (Graveley et al., 2011). The extent of knockdown is reported as 1) an average of the remaining transcript relative to two independent reference genes; and 2) a single remaining transcript value derived from comparison to the reference gene for which the control sample and the knockdown sample are closest in terms of cycle threshold (Ct) value for that specific reference gene (the preferred method).

Stat92E target gene expression in *slik* shRNA and *EGFP* shRNA-expressing embryos

cDNA was synthesized from 1 microgram of RNA purified from *slik* shRNA and *EGFP* shRNAexpressing embryos as described above. Quantitative real time PCR analysis was carried out with technical triplicates using validated primers (Rajan and Perrimon, 2013) in iQ SYBR Green Supermix (Bio-Rad), with a CFX96 Real-Time PCR detection system (Bio-Rad). Query transcript detection was normalized to the expression of the reference gene *ribosomal protein L32*.

Immunoblotting of embryos

Embryos were collected and incubated in 50% bleach for 5 minutes. Post washing with 0.1% TritonX-100, an equal volume of 2x SDS loading buffer was added to the dechorionated embryos in an Eppendorf Safe-Lock 1.5ml microcentrifuge tube. Homogenization of embryos was by bead beating at 4^oC at a setting of 8 in a Bullet Blender (Next Advance) for 3 minutes. Samples were boiled for 3 minutes and spun at 13,000 rpm for 2 minutes. Twenty micrograms of protein was loaded per SDS-PAGE lane for immunoblot. Primary antibodies to assess knockdown included: anti-Fused (Hybridoma bank 22F10); anti-Wee (a kind gift from T.T. Su); anti-Grp (a kind gift from T.T. Su); anti-Punt (Abcam ab14680); anti-Cdk8 (Abcam ab52779); anti-ERK (Cell Signaling #9102); anti-NAK (Abcam ab109693); anti-CKS2 (Abcam ab155078); anti-AMPK alpha (Abcam 80039); anti-Ptp69D (Hybridoma bank 3F11); anti-Ptp10D (Hybridoma bank 8B22F5); anti-Csw (L. Perkins); anti-Mts (Cell Signaling #2259); and anti-Ptp99A (Hybridoma bank 3A6). Other antibodies in this study included anti-Cdk1-pTyr15 (Cell Signaling #9111); anti-Akt-pSer473 (Cell Signaling #9271); anti-Stwl (a kind gift from D. McKearin); anti-pTyr (Cell Signaling #9416); anti-Stat92E (a kind gift from S. Hou); anti-dpERK (Cell Signaling #4377); anti-ERK (Cell Signaling #4695); anti-HH3-pSer10 (CST#9701); anti-HH3-pSer28 (Abcam ab5169); anti-tubulin (Sigma T5168); anti-HA (Roche 11867423001); and anti-FLAG (Sigma F3165).

Embryo preparation for mass spectrometric analysis

Eggs were collected, dechorionated with 50% bleach for 5 minutes, washed with 0.1% Triton X-100, sorted under the microscope to remove any contaminating aged embryos, and delivered to denaturing urea buffer for lysis. Embryos were lysed with a glass homogenizer on ice in: 8M urea, 75mM sodium chloride, 50mM Tris-HCl pH 8.2, 1mM sodium fluoride, 1mM β -glycerophosphate, 1mM sodium orthovanadate, 10mM sodium pyrophosphate, 1mM PMSF, EDTA-free Protease Inhibitor Cocktail Tablet (Roche). Lysates were stored at -80°C until further processing. For quantitative phosphoproteomic analyses, one milligram of protein (approximately 700 embryos) from each sample was reduced with 5mM dithiothreitol at 56°C for 25 minutes. Cysteines were alkylated with 14mM iodoacetamide for 30 minutes at room temperature in the dark. Unreacted iodoacetamide was guenched by incubation with additional dithiothreitol to 5mM for 15 minutes at room temperature in the dark. Lysates were diluted 1:5 with 25mM Tris-HCl, pH 8.2 and calcium chloride added to 1mM. Digestion with 5 micrograms sequencing grade trypsin (Promega) was overnight at 37°C with agitation. Peptides were acidified with 10% trifluoroacetic acid and desalted using 1cc Sep-Pak tC18 solid-phase extraction cartridges (Waters). Eluted peptides were lyophilized, resuspended in 200mM Na-HEPES pH8.2, and labeled with TMT reagent (Thermo Scientific) in anhydrous acetonitrile (2) milligram TMT reagent per sample) for 1 hour at room temperature. TMT labeling was as follows:

Experiment 1: Cdk8 shRNA: TMT126; *Cks30A* shRNA: TMT127; *mei-41* shRNA: TMT128; *tefu* shRNA: TMT129; *wee* shRNA: TMT130; *white* control shRNA: TMT131

Experiment 2: Atg1 shRNA: TMT126; *cg3608* shRNA: TMT127; *Csk* shRNA: TMT128; *Gprk2* shRNA: TMT129; *Pak* shRNA: TMT130; *white* control shRNA: TMT131

Experiment 3: Bub1 shRNA: TMT126; *cdc2rk* shRNA: TMT127; *Eip63E* shRNA: TMT128; *grp* shRNA: TMT129; *slik* shRNA: TMT130; *white* control shRNA: TMT131

Experiment 4: gish shRNA: TMT126; *lkb1* shRNA: TMT128; *mos* shRNA: TMT129; *Tao-1* shRNA: TMT130; *white* control shRNA: TMT131

Reactions were quenched by the addition of hydroxylamine to 0.3% and incubation at room temperature for 15 minutes. Labeled peptides were combined, lyophilized, and stored at -80°C until

further processing. Samples were acidified with 10% trifluoroacetic acid and desalted using a 3cc Sep-Pak tC18 solid-phase extraction cartridge (Waters). Phosphopeptides were separated by strong cation exchange chromatography (SCX: (Villen and Gygi, 2008). Lyophilized peptides were resuspended in SCX buffer A (7mM potassium phosphate, pH 2.65, 30% acetonitrile) and injected onto a SCX column (Polysulfoethyl aspartamide, 9.4 mm×250mm, 5 uM particle size, 200 Å pore size, PolyLC). A gradient was developed over 35 min from 0% to 30% buffer B (7mM potassium phosphate, pH 2.65, 30% acetonitrile, 350mM potassium chloride) at a flow rate of 2.5 ml/min. Twelve fractions were collected and lyophilized. Peptides were then desalted with 1cc Waters Sep-Pak tC18 solid-phase extraction cartridges and subjected to titanium dioxide based phosphopeptide enrichment (Kettenbach and Gerber, 2011) using 500 micrograms titanium dioxide microspheres (GL Sciences) per milligram protein. Eluates were further desalted using STAGE tips (Rappsilber et al., 2003) and lyophilized. Samples were reconstituted in 5% formic acid / 5% acetonitrile.

For shotgun mass spectrometry, 1 milligram of protein was alkylated and digested peptides were subjected to SCX fractionation into twenty fractions without labeling and desalted eluates lyophilized and reconstituted in 5% formic acid / 5% acetonitrile.

Preparation of Drosophila cells for mass spectrometric analysis

Confluent *Drosophila* S2R+ cells grown in Schneider's Medium (Gibco) supplemented with Fetal Bovine Serum (FBS) (final concentration of 10%), Penicillin (50 units/milliliter final concentration), and Streptomycin (50 micrograms/milliliter final concentration), were serum starved for 1 hour. Fresh media with insulin at a final concentration of 5 microgram/milliliter was then added to the cells. After 10 and 30 minutes the media was aspirated and cells were lysed in denaturing urea buffer on ice. Lysates were stored at -80°C until further processing. One milligram of protein from each sample was processed for phosphopeptide purification and mass spectrometry as described above for embryonic lysates. TMT labeling was as follows: untreated, biological replicate #1: TMT126; untreated, biological replicate #2: TMT127; 10 minutes insulin, biological replicate #1: TMT128; 10 minutes insulin, biological replicate #2: TMT130; 30 minutes insulin, biological replicate #2: TMT130; 30 minutes insulin, biological replicate #2: TMT131.

Mass spectrometric analysis

Ratio distortion in isobaric quantitative proteomic experiments is a major concern due to interference by contaminating ions in the isolation envelope subjected to MS/MS (Ting et al., 2011). We reasoned interference should be less of an issue with phospho-enriched samples: we anticipated 4

phosphopeptides to be isolated for each protein (4x 6,980 = 27,920 phosphopeptides) based on the average number of phosphosites per protein found to date in yeast (Amoutzias et al., 2012). The predicted number of peptides generated by digestion of the *D. melanogaster* proteome with trypsin is 321,297 (Brunner et al., 2007). We therefore estimated a phospho-enriched mixture would have approximately 10-fold reduced complexity compared to the entire proteome, thus justifying our rationale for proceeding with MS/MS-based analysis. Moreover, the 12% reduction in protein quantifications observed with an alternative MS³ method (Ting et al., 2011) would translate to an even greater loss for phosphopeptide quantifications given that individual protein quantifications are an average of many peptide measurements while phosphopeptide quantifications are derived from a single measurement. For these reasons we decided to proceed with MS/MS based analyses.

Samples were subjected to LC-MS/MS with an Orbitrap Velos Pro mass spectrometer (Thermo Scientific) using higher energy collision dissociation (HCD: (Olsen et al., 2007) and a top ten method (Dephoure et al., 2008). MS/MS spectra were searched against a composite database of D. melanogaster proteins derived from Flybase version 5.23 in both the forward and reverse orientation using the Sequest algorithm (Eng, 1994). Search parameters included: a precursor mass tolerance of 20 ppm; up to two missed cleavages; static modification of TMT tags on lysine residues and peptide N termini (+229.162932 Da) and +57.021464 Da accounting for carbamidomethylation on Cys; dynamic modification of phosphorylation (+79.966330 Da) on Ser, Thr and Tyr and oxidation (+15.994915 Da) on Met. A target-decoy database search strategy (Elias and Gygi, 2007) enabled thresholding of the false discovery rate (FDR) for MS/MS spectral assignment at 1%. Correct spectral matches were distinguished from incorrect matches using linear discriminant analysis based on parameters including Xcorr, ΔCn , precursor mass error, peptide length, and charge state (Huttlin et al., 2010). The localizations of individual phosphorylations were assigned using the probability-based AScore algorithm (Beausoleil et al., 2006) and only phosphosites with AScores greater than 13 (p < 0.05) were considered in our analysis. Moreover, only phosphopeptides with isolation specificity greater than 0.75 were considered for further analysis. Further filtering of the dataset resulted in a final protein FDR of ~2% and a peptide FDR near 0.15%. TMT labeling was >98% efficient. For TMT reporter ion quantification, a 0.03 Da window centered on the expected mass of each reporter ion was monitored and the intensity of the signal closest to the expected mass was recorded. Reporter ion signals were further adjusted to correct for impurities associated with each TMT label, as described elsewhere (McAlister et al., 2012). Raw TMT reporter ion intensities for individual phosphopeptides were normalized to the summed reporter ion intensity for each TMT label. Adjusted reporter ion intensities were averaged between replicates. Only phosphopeptides for which the summed signal intensity, corrected for noise, among all channels was equal to or greater than 100

were considered. Further, phosphopeptide consideration required signal detection in a least five of six TMT channels for single genotype experiments, and four of six TMT channels for experiments with duplicate samples. Peptides generating detectable TMT reporter ions in only one replicate sample were excluded. A website to query proteins and view identified phosphosites and their levels in kinase-deficient conditions can be found at http://www.flyrnai.org/PhosphoSite.html. Proteomics data have been submitted to the PRIDE Archive repository via ProteomeXchange.

Maternal phenotype derivation

In order to examine maternal phenotypes, 10 maternal-GAL4>UAS-shRNA females, derived from a cross between maternal-GAL4 females and UAS-shRNA bearing males, were crossed to 5 UAS-shRNA males and embryos collected at 27^oC. Hatch rate was calculated based on the ratio of hatched to unhatched embryos, from counting approximately one hundred embryos twenty-four hours after egg deposition. For those genotypes with defective hatching, cuticles were prepared to examine patterning defects using Hoyer's mounting media. Imaging was with a Zeiss Axiophot microscope mounted with a Zeiss AxioCam HRC Camera.

Co-immunoprecipitations

Drosophila cells transfected (Qiagen Effectene Transfection Reagent) with pAHW-Wee together with candidate Wee substrates in pAFW or pAWF were lysed in TNTE lysis buffer (50mM Tris-HCl pH 7.4, 150mM sodium chloride, 1mM EDTA, 0.5% Triton X-100, 1mM sodium fluoride, 1mM β-glycerophosphate, 1mM sodium orthovanadate, 10mM sodium pyrophosphate, 1mM PMSF, EDTA-free Protease Inhibitor Cocktail Tablet (Roche) on ice. Clarified lysates were subjected to immunoprecipitation for 2 hours with anti-FLAG antibody (Sigma F3165) and Protein G Sepharose (GE Healthcare), or HA-agarose (Sigma A2095) for 1 hour at 4^oC. Immunoprecipitates were washed 5x with wash buffer (50mM Tris-HCl pH 7.4, 150mM sodium chloride, 1mM EDTA, 0.1% Triton X-100), boiled in 3x SDS loading buffer, and analyzed by immunoblotting with anti-HA-HRP (Sigma H6533) and anti-FLAG-HRP (Sigma A8592) antibodies. To probe whether Wee expression alters Stwl Tyrosine phosphorylation, clarified lysate were subjected to immunoprecipitation for 2 hours with anti-PTyr antibody (Cell Signaling #9411) and Protein G Sepharose (GE Healthcare) for 1 hour at 4^oC.

Transcript knockdown assessment in cells

Drosophila S2R+ cells were cultured in in Schneider's Medium (Gibco) supplemented with Fetal Bovine Serum (FBS) (final concentration of 10%), Penicillin (50 units/milliliter final concentration), and Streptomycin (50 micrograms/milliliter final concentration). All dsRNA experiments were performed using the bathing method described at www.flyrnai.org. Briefly, S2R+ cells were re-suspended and diluted in serum free medium before seeding with dsRNAs targeting *slik* (DRSC37061) or EGFP. After 30 minutes incubation, complete medium with FBS was added. Cells were harvested following four days of RNAi.

In vitro kinase assay

40 nanograms of recombinant human Wee1 kinase (Invitrogen) was incubated with 100 nanograms of truncated versions of Stwl: amino acids 97-375 (Y305 fragment), amino acids 1-375 (SANT domain + Y305 fragment), amino acids 376-690 (BESS motif), amino acids 690-1037 (Cterm). All Stwl truncations were expressed as N-terminal 6x His fusions in *Escherichia coli* and purified using HisPur Ni-NTA resin. 100 nanograms of recombinant human histone H2B was included as a positive control. Kinase reactions were performed in 20 microliter volumes containing 50 mM Tris-HCl at pH 7.5, 10 mM magnesium chloride, 1 mM dithiothreitol, and 200uM ATP, for 20 minutes at 30°C. Reactions were stopped by addition of 2x sample buffer. Samples were resolved by SDS-PAGE and analyzed by immunoblotting with anti-pTyr (Cell Signaling #9416).

Correlative analysis

Correlative analysis was adapted from (Vinayagam et al., 2013). Briefly, for each phosphosite in a kinase-deficient phosphorylation profile we computed a log2 fold-change value compared to the white shRNA control. The phosphosites with significant increase (\geq 0.58 log2 fold change) or decrease (\leq -0.58 log2 fold change) were distinguished with values +1 and -1 respectively. Phosphosites that did not show significant change (-0.585 > x < 0.585) were assigned a value of zero. We constructed a phosphosite matrix by combining multiple kinase-deficient phosphorylation profiles, where the rows correspond to phosphosites and columns correspond to the kinase-deficient datasets. Next, we analyzed all pair-wise combinations of phosphosites to compute the correlation. In a given dataset, if both phosphosites have non-zero values, then the relationship is classified as either positive correlation (both +1 or both -1) or negative correlation (one is +1 and the other is -1). For each pair of phosphosites, we computed the total number of positive and negative correlations. Then we used a simple model to calculate a correlation sign score (CSscore) for each pair of phosphosites as follows:

$$CS_{score} = \frac{P_c - N_c}{T_p} \sqrt{T_p}$$

Pc, *Nc* corresponds to the number of positive and negative correlations, respectively. *Tp* is the total number of kinase-deficient phosphorylation profiles where both phosphosites show significant change (*Pc* + *Nc*). Note that *Tp* should be ≥ 2 in order to be considered for correlation analysis. \sqrt{Tp} is the weight factor to assign more confidence for sign correlations predicted based on a larger number of kinase-deficient data. If a score has a positive value (CSscore ≥ 1) then the pair is primarily positive correlated, if the score has negative value (CSscore ≤ -1) then the pair is primarily negatively correlated. The significance of overlap between the correlation network and the reference networks (NetPhorest and Yeast Gold Standard set) was computed using the random overlap (RD), estimated from random correlation networks. To generate a random correlation network the phosphosites (IDs) are randomly permuted. Note that we preserved the same number of correlations for kinase phosphosites. Mean and standard deviation of RD is computed from 1,000 simulations of random networks. The p-value is computed by modeling the RD distribution as a Gaussian distribution.

Partial Complementarity Matching of shRNAs

In order to evaluate off-target effects caused by seed-region matches of shRNA reagents, we: 1) extracted the seed sequences of each shRNA reagent, defined as the seven nucleotide sequence between positions 2-8 on anti-sense strand; 2) compared the shRNA seed sequences with the 3UTR or full transcript sequences of genes encoding phosphoproteins downregulated in corresponding shRNA-expressing embryos, considering different levels of confidence; and 3) calculated enrichment P-values based on hyper-geometric distribution. The analysis indicates that the likelihood of phosphoprotein downregulation as a result of transcript degradation due to targeting of the corresponding transcript by the shRNA reagent itself is small is most cases (P-values > 1). Specifically, as the number of downregulated phosphosites for any one protein increases (compare Type 2 and Type 3 phosphoproteins: majority versus all identified phosphosites downregulated respectively), the less likely are off-target effects due to seed-region matches.

	P value (3UTR match)		P value (transcript match)			
downregulated phosphopeps/protein	<u>≥</u> 1	≥ 2 Type 2	All Type 3	≥1	≥ 2 Type 2	All Type 3
Atg1 shRNA	0.04126	0.08189	1	0.01875	0.15333	1
Bub1 shRNA	0.30481	1	NA	0.68358	1	NA
cdc2rk shRNA	0.24071	NA	NA	0.21613	NA	NA
Cdk8 shRNA	0.77181	0.48833	1	0.00103	0.00919	0.93122
CG3608 shRNA	0.54999	0.34769	1	0.02582	0.038	1
Cks30A shRNA	0.41284	0.08455	0.75632	0.05222	0.15812	0.76493
Csk shRNA	0.05961	0.62779	0.25645	0.00073	0.09238	0.59762
Eip63E shRNA	0.62702	1	1	0.18518	0.87547	0.5652
gish shRNA	0.10171	1	1	0.00034	0.64949	0.1185
Gprk2 shRNA	2.5E-10	0.00047	1	1	0.91772	1
grp shRNA	0.73225	1	1	0.3602	1	1
lkb1 shRNA	0.07638	1	1	0.00338	0.19877	1
mei-41 shRNA	0.30451	0.34915	1	0.00405	0.09421	0.93948
mos shRNA	0.01545	0.70575	0.34624	0.00659	0.18434	0.01225
Pak shRNA	0.98115	1	1	0.02103	0.2778	0.43271
slik shRNA	0.10608	1	1	0.00288	0.15739	0.74567
Tao shRNA	0.59414	1	NA	0.00087	0.2447	NA
tefu shRNA	0.51184	0.44943	1	0.12622	0.2193	1
wee shRNA	0.64833	0.87213	1	0.09016	0.28393	0.2984

Probability of partial complementarity of kinase-targeting shRNAs

Germline-specific knockdown of ten candidate off-targets predicted for six kinase-targeting shRNAs

Candidate off-target	Kinase Targeted	Phospho- protein Type	count 7mer trx match	count 7mer 3UTR match	Bloomington shRNA stock #	candidate off-target phenotype?	Match kinase phenotype?
Rfabg	Atg1	Туре 3	3	2	28946	F1 lethal	
Ptr	Pak	Туре 3	3		no line exists		
Smg5	gish	Туре 3	6		no line exists		
Smg5	mos	Туре 3	3		no line exists		
Etl1	mos	Туре 3	1	1	33891	No	No
Bx42	slik	Туре 3	1		34777	no eggs	No
GAPcenA	wee	Туре 3	2		34976	No	No
garz	mos	Туре 3	2		34987	no eggs	No
jumu	Cks30A	Туре 3	1		no line exists		
retn	gish	Туре 3	1		35688	No	No
MIc2	Csk	Туре 3	1	1	36694	F1 lethal	
MRP	Cks30A	Туре 3	3		38316	No	No
slpr	Cdk8	Туре 3	3		41605	dorsal closure defects	No
CycB3	Eip63E	Туре 3	1		no line exists		
Dab	gish	Туре 3	2		42646	No	No
CG4004	Cks30A	Туре 3	1	1	no line exists		
CG5728	wee	Туре 3	1	1	36592	No	No
poe	wee	Туре 3	1		32945	no eggs	No

References

Amoutzias, G.D., He, Y., Lilley, K.S., Van de Peer, Y., and Oliver, S.G. (2012). Evaluation and properties of the budding yeast phosphoproteome. Mol Cell Proteomics *11*, M111 009555. Beausoleil, S.A., Villen, J., Gerber, S.A., Rush, J., and Gygi, S.P. (2006). A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol *24*, 1285-1292.

Brunner, E., Ahrens, C.H., Mohanty, S., Baetschmann, H., Loevenich, S., Potthast, F., Deutsch, E.W., Panse, C., de Lichtenberg, U., Rinner, O., *et al.* (2007). A high-quality catalog of the Drosophila melanogaster proteome. Nat Biotechnol *25*, 576-583.

Chou, M.F., and Schwartz, D. (2011). Biological sequence motif discovery using motif-x. Current protocols in bioinformatics / editoral board, Andreas D Baxevanis [et al] *Chapter 13*, Unit 13 15-24. Dephoure, N., Zhou, C., Villen, J., Beausoleil, S.A., Bakalarski, C.E., Elledge, S.J., and Gygi, S.P. (2008). A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A *105*, 10762-10767. Elias, J.E., and Gygi, S.P. (2007). Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods *4*, 207-214.

Eng, J.K.M., A.L., Yates, J.R., 3rd (1994). An Approach to Correlate Tandem Mass Spectral Data of Peptides with Amino Acid Sequences in a Protein Database. J Am Soc Mass Spectrom *5*, 976-989. Groth, A.C., Fish, M., Nusse, R., and Calos, M.P. (2004). Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics *166*, 1775-1782.

Huttlin, E.L., Jedrychowski, M.P., Elias, J.E., Goswami, T., Rad, R., Beausoleil, S.A., Villen, J., Haas, W., Sowa, M.E., and Gygi, S.P. (2010). A tissue-specific atlas of mouse protein phosphorylation and expression. Cell *143*, 1174-1189.

Kettenbach, A.N., and Gerber, S.A. (2011). Rapid and reproducible single-stage phosphopeptide enrichment of complex peptide mixtures: application to general and phosphotyrosine-specific phosphoproteomics experiments. Anal Chem *83*, 7635-7644.

McAlister, G.C., Huttlin, E.L., Haas, W., Ting, L., Jedrychowski, M.P., Rogers, J.C., Kuhn, K., Pike, I., Grothe, R.A., Blethrow, J.D., *et al.* (2012). Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. Anal Chem *84*, 7469-7478.

Olsen, J.V., Macek, B., Lange, O., Makarov, A., Horning, S., and Mann, M. (2007). Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods *4*, 709-712.

Petrella, L.N., Smith-Leiker, T., and Cooley, L. (2007). The Ovhts polyprotein is cleaved to produce fusome and ring canal proteins required for Drosophila oogenesis. Development *134*, 703-712. Rajan, A., and Perrimon, N. (2013). Of flies and men: insights on organismal metabolism from fruit flies. BMC Biol *11*, 38.

Rappsilber, J., Ishihama, Y., and Mann, M. (2003). Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem *75*, 663-670.

Thomason, L.C., Calendar, R., and Ow, D.W. (2001). Gene insertion and replacement in Schizosaccharomyces pombe mediated by the Streptomyces bacteriophage phiC31 site-specific recombination system. Mol Genet Genomics *265*, 1031-1038.

Ting, L., Rad, R., Gygi, S.P., and Haas, W. (2011). MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat Methods *8*, 937-940.

Villen, J., and Gygi, S.P. (2008). The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc *3*, 1630-1638.

Vinayagam, A., Zirin, J., Roesel, C., Hu, Y., Yilmazel, B., Samsonova, A.A., Neumuller, R.A., Mohr, S.E., and Perrimon, N. (2013). Integrating protein-protein interaction networks with phenotypes reveals signs of interactions. Nat Methods.