Metabolism

2019
Stephanie E. Mohr and Norbert Perrimon. 9/27/2019. “Drosophila melanogaster: a simple system for understanding complexity.” Dis Model Mech, 12, 10. Publisher's VersionAbstract

Understanding human gene function is fundamental to understanding and treating diseases. Research using the model organism Drosophila melanogaster benefits from a wealth of molecular genetic resources and information useful for efficient in vivo experimentation. Moreover, Drosophila offers a balance as a relatively simple organism that nonetheless exhibits complex multicellular activities. Recent examples demonstrate the power and continued promise of Drosophila research to further our understanding of conserved gene functions.

2019_DMM_Mohr.pdf
Andrey A Parkhitko, Patrick Jouandin, Stephanie E Mohr, and Norbert Perrimon. 2019. “Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species.” Aging Cell, Pp. e13034.Abstract
Methionine restriction (MetR) extends lifespan across different species and exerts beneficial effects on metabolic health and inflammatory responses. In contrast, certain cancer cells exhibit methionine auxotrophy that can be exploited for therapeutic treatment, as decreasing dietary methionine selectively suppresses tumor growth. Thus, MetR represents an intervention that can extend lifespan with a complementary effect of delaying tumor growth. Beyond its function in protein synthesis, methionine feeds into complex metabolic pathways including the methionine cycle, the transsulfuration pathway, and polyamine biosynthesis. Manipulation of each of these branches extends lifespan; however, the interplay between MetR and these branches during regulation of lifespan is not well understood. In addition, a potential mechanism linking the activity of methionine metabolism and lifespan is regulation of production of the methyl donor S-adenosylmethionine, which, after transferring its methyl group, is converted to S-adenosylhomocysteine. Methylation regulates a wide range of processes, including those thought to be responsible for lifespan extension by MetR. Although the exact mechanisms of lifespan extension by MetR or methionine metabolism reprogramming are unknown, it may act via reducing the rate of translation, modifying gene expression, inducing a hormetic response, modulating autophagy, or inducing mitochondrial function, antioxidant defense, or other metabolic processes. Here, we review the mechanisms of lifespan extension by MetR and different branches of methionine metabolism in different species and the potential for exploiting the regulation of methyltransferases to delay aging.
Michael D Rotelli, Anna M Bolling, Andrew W Killion, Abraham J Weinberg, Michael J Dixon, and Brian R Calvi. 2019. “An RNAi Screen for Genes Required for Growth of Wing Tissue.” G3 (Bethesda), 9, 10, Pp. 3087-3100.Abstract
Cell division and tissue growth must be coordinated with development. Defects in these processes are the basis for a number of diseases, including developmental malformations and cancer. We have conducted an unbiased RNAi screen for genes that are required for growth in the wing, using GAL4-inducible short hairpin RNA (shRNA) fly strains made by the Drosophila RNAi Screening Center. shRNA expression down the center of the larval wing disc using , and the central region of the adult wing was then scored for tissue growth and wing hair morphology. Out of 4,753 shRNA crosses that survived to adulthood, 18 had impaired wing growth. FlyBase and the new Alliance of Genome Resources knowledgebases were used to determine the known or predicted functions of these genes and the association of their human orthologs with disease. The function of eight of the genes identified has not been previously defined in The genes identified included those with known or predicted functions in cell cycle, chromosome segregation, morphogenesis, metabolism, steroid processing, transcription, and translation. All but one of the genes are similar to those in humans, and many are associated with disease. Knockdown of , a subunit of the Myb-MuvB transcription factor, or β, a gene involved in protein folding and trafficking, resulted in a switch from cell proliferation to an endoreplication growth program through which wing tissue grew by an increase in cell size (hypertrophy). It is anticipated that further analysis of the genes that we have identified will reveal new mechanisms that regulate tissue growth during development.
3087.full_.pdf
2016
Alfeu Zanotto-Filho, Ravi Dashnamoorthy, Eva Loranc, Luis HT de Souza, José CF Moreira, Uthra Suresh, Yidong Chen, and Alexander JR Bishop. 2016. “Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.” PLoS One, 11, 4, Pp. e0153970.Abstract

Alkylating agents are a key component of cancer chemotherapy. Several cellular mechanisms are known to be important for its survival, particularly DNA repair and xenobiotic detoxification, yet genomic screens indicate that additional cellular components may be involved. Elucidating these components has value in either identifying key processes that can be modulated to improve chemotherapeutic efficacy or may be altered in some cancers to confer chemoresistance. We therefore set out to reevaluate our prior Drosophila RNAi screening data by comparison to gene expression arrays in order to determine if we could identify any novel processes in alkylation damage survival. We noted a consistent conservation of alkylation survival pathways across platforms and species when the analysis was conducted on a pathway/process level rather than at an individual gene level. Better results were obtained when combining gene lists from two datasets (RNAi screen plus microarray) prior to analysis. In addition to previously identified DNA damage responses (p53 signaling and Nucleotide Excision Repair), DNA-mRNA-protein metabolism (transcription/translation) and proteasome machinery, we also noted a highly conserved cross-species requirement for NRF2, glutathione (GSH)-mediated drug detoxification and Endoplasmic Reticulum stress (ER stress)/Unfolded Protein Responses (UPR) in cells exposed to alkylation. The requirement for GSH, NRF2 and UPR in alkylation survival was validated by metabolomics, protein studies and functional cell assays. From this we conclude that RNAi/gene expression fusion is a valid strategy to rapidly identify key processes that may be extendable to other contexts beyond damage survival.

2016_PLOS One_Zanotto-Filho.pdf Supplemental Files.zip
Iiro Taneli Helenius, Ryan J Haake, Yong-Jae Kwon, Jennifer A Hu, Thomas Krupinski, Marina S Casalino-Matsuda, Peter HS Sporn, Jacob I Sznajder, and Greg J Beitel. 2016. “Identification of Drosophila Zfh2 as a Mediator of Hypercapnic Immune Regulation by a Genome-Wide RNA Interference Screen.” J Immunol, 196, 2, Pp. 655-67.Abstract

Hypercapnia, elevated partial pressure of CO2 in blood and tissue, develops in many patients with chronic severe obstructive pulmonary disease and other advanced lung disorders. Patients with advanced disease frequently develop bacterial lung infections, and hypercapnia is a risk factor for mortality in such individuals. We previously demonstrated that hypercapnia suppresses induction of NF-κB-regulated innate immune response genes required for host defense in human, mouse, and Drosophila cells, and it increases mortality from bacterial infections in both mice and Drosophila. However, the molecular mediators of hypercapnic immune suppression are undefined. In this study, we report a genome-wide RNA interference screen in Drosophila S2* cells stimulated with bacterial peptidoglycan. The screen identified 16 genes with human orthologs whose knockdown reduced hypercapnic suppression of the gene encoding the antimicrobial peptide Diptericin (Dipt), but did not increase Dipt mRNA levels in air. In vivo tests of one of the strongest screen hits, zinc finger homeodomain 2 (Zfh2; mammalian orthologs ZFHX3/ATBF1 and ZFHX4), demonstrate that reducing zfh2 function using a mutation or RNA interference improves survival of flies exposed to elevated CO2 and infected with Staphylococcus aureus. Tissue-specific knockdown of zfh2 in the fat body, the major immune and metabolic organ of the fly, mitigates hypercapnia-induced reductions in Dipt and other antimicrobial peptides and improves resistance of CO2-exposed flies to infection. Zfh2 mutations also partially rescue hypercapnia-induced delays in egg hatching, suggesting that Zfh2's role in mediating responses to hypercapnia extends beyond the immune system. Taken together, to our knowledge, these results identify Zfh2 as the first in vivo mediator of hypercapnic immune suppression.

2016_J Immunol_Helenius.pdf Supplement.pdf
Huajin Wang, Michel Becuwe, Benjamin E Housden, Chandramohan Chitraju, Ashley J Porras, Morven M Graham, Xinran N Liu, Abdou Rachid Thiam, David B Savage, Anil K Agarwal, Abhimanyu Garg, Maria-Jesus Olarte, Qingqing Lin, Florian Fröhlich, Hans Kristian Hannibal-Bach, Srigokul Upadhyayula, Norbert Perrimon, Tomas Kirchhausen, Christer S Ejsing, Tobias C Walther, and Robert V Farese. 2016. “Seipin is required for converting nascent to mature lipid droplets.” Elife, 5.Abstract

How proteins control the biogenesis of cellular lipid droplets (LDs) is poorly understood. Using Drosophila and human cells, we show here that seipin, an ER protein implicated in LD biology, mediates a discrete step in LD formation-the conversion of small, nascent LDs to larger, mature LDs. Seipin forms discrete and dynamic foci in the ER that interact with nascent LDs to enable their growth. In the absence of seipin, numerous small, nascent LDs accumulate near the ER and most often fail to grow. Those that do grow prematurely acquire lipid synthesis enzymes and undergo expansion, eventually leading to the giant LDs characteristic of seipin deficiency. Our studies identify a discrete step of LD formation, namely the conversion of nascent LDs to mature LDs, and define a molecular role for seipin in this process, most likely by acting at ER-LD contact sites to enable lipid transfer to nascent LDs.