Single-cell isolation

2020
Justin A Bosch, Shannon Knight, Oguz Kanca, Jonathan Zirin, Donghui Yang-Zhou, Yanhui Hu, Jonathan Rodiger, Gabriel Amador, Hugo J Bellen, Norbert Perrimon, and Stephanie E Mohr. 2020. “Use of the CRISPR-Cas9 System in Drosophila Cultured Cells to Introduce Fluorescent Tags into Endogenous Genes.” Curr Protoc Mol Biol, 130, 1, Pp. e112.Abstract
The CRISPR-Cas9 system makes it possible to cause double-strand breaks in specific regions, inducing repair. In the presence of a donor construct, repair can involve insertion or 'knock-in' of an exogenous cassette. One common application of knock-in technology is to generate cell lines expressing fluorescently tagged endogenous proteins. The standard approach relies on production of a donor plasmid with ∼500 to 1000 bp of homology on either side of an insertion cassette that contains the fluorescent protein open reading frame (ORF). We present two alternative methods for knock-in of fluorescent protein ORFs into Cas9-expressing Drosophila S2R+ cultured cells, the single-stranded DNA (ssDNA) Drop-In method and the CRISPaint universal donor method. Both methods eliminate the need to clone a large plasmid donor for each target. We discuss the advantages and limitations of the standard, ssDNA Drop-In, and CRISPaint methods for fluorescent protein tagging in Drosophila cultured cells. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Knock-in into Cas9-positive S2R+ cells using the ssDNA Drop-In approach Basic Protocol 2: Knock-in into Cas9-positive S2R+ cells by homology-independent insertion of universal donor plasmids that provide mNeonGreen (CRISPaint method) Support Protocol 1: sgRNA design and cloning Support Protocol 2: ssDNA donor synthesis Support Protocol 3: Transfection using Effectene Support Protocol 4: Electroporation of S2R+-MT::Cas9 Drosophila cells Support Protocol 5: Single-cell isolation of fluorescent cells using FACS.
2014
Benjamin E Housden, Shuailiang Lin, and Norbert Perrimon. 2014. “Cas9-based genome editing in Drosophila.” Methods Enzymol, 546, Pp. 415-39.Abstract

Our ability to modify the Drosophila genome has recently been revolutionized by the development of the CRISPR system. The simplicity and high efficiency of this system allows its widespread use for many different applications, greatly increasing the range of genome modification experiments that can be performed. Here, we first discuss some general design principles for genome engineering experiments in Drosophila and then present detailed protocols for the production of CRISPR reagents and screening strategies to detect successful genome modification events in both tissue culture cells and animals.

2014_Methods Enzymol_Housden.pdf