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Summary: 
 
Uncovering how transcription factors (TFs) regulate their targets at the DNA, RNA and protein levels over 
time is critical to define gene regulatory networks (GRNs) in normal and diseased states. RNA-seq has 
become a standard method to measure gene regulation using an established set of analysis steps. 
However, none of the currently available pipeline methods for interpreting ordered genomic data (in time 
or space) use time series models to assign cause and effect relationships within GRNs, are adaptive to 
diverse experimental designs, or enable user interpretation through a web-based platform. Furthermore, 
methods which integrate ordered RNA-seq data with transcription factor binding data are urgently 
needed. Here, we present TIMEOR (Trajectory Inference and Mechanism Exploration with Omics data 
in R), the first web-based and adaptive time series multi-omics pipeline method which infers the 
relationship between gene regulatory events across time. TIMEOR addresses the critical need for 
methods to predict causal regulatory mechanism networks between TFs from time series multi-omics 
data. We used TIMEOR to identify a new link between insulin stimulation and the circadian rhythm cycle. 
TIMEOR is available at https://github.com/ashleymaeconard/TIMEOR.git. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 15, 2020. ; https://doi.org/10.1101/2020.09.14.296418doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.296418


 

2 

Introduction: 
 

Cellular responses are a complex cascade of interacting factors, including many genes that 
influence each other at the DNA, RNA and protein levels, either directly or indirectly. These cascades 
become apparent when altering a specific regulatory mechanism through a biological experiment, with 
the end goal of constructing a directed gene regulatory network (GRNs), which provides a temporal model 
to define such cellular responses (Chai et al., 2014). Most interactions within GRNs are poorly 
understood, with many of the genes involved remaining unidentified (Sahraeian et al., 2017). Using multi-
omics techniques, including RNA-seq (Wang et al., 2009) and protein-DNA interaction (e.g. CUT&RUN 
(Skene and Henikoff, 2017) and ChIP-seq (Johnson et al., 2007)) data, biologists measure changes in 
gene expression and transcription factor binding over time so as to accurately reconstruct GRNs (Brent, 
2016). Specifically, a system is perturbed over time in ordered ‘case’ experiments and compared with the 
normal (or ‘control’) experiment(s) to determine the differentially expressed (DE) genes, that is, the set 
of genes showing statistically significant quantitative changes in expression levels between two 
experiments. These time series data are essential to accurately identify altered regulatory mechanisms 
and reconstruct GRNs. 
 

To identify key regulators of a system of interest, raw multi-omics data must be preprocessed, 
followed by a DE analysis and finally GRN reconstruction. No end-to-end pipeline exists that given raw 
omics data produces a GRN. Current pipeline methods that incorporate only a subset of these steps 
suffer from two additional limitations, 1) they do not accurately process and determine DE of temporal 
data, nor 2) predict the order of action of the key regulators of transcription, i.e. transcription factors (TFs) 
(Sahraeian et al., 2017; Wani and Raza, 2019). While there are several pipelines to analyze each omic 
data type (RNA-seq or ChIP-seq) in isolation, joint analysis of multiple omic data types is required to 
uncover a GRN that models changes at different molecular levels and over time (Barbosa et al., 2018; 
Marbach et al., 2012). Finally, stand-alone GRN inference methods exist but do not fully leverage 
available data. In what follows we discuss current methodology in light of these limitations. 

 
Current pipeline methods are unable to effectively uncover altered regulatory mechanisms 
 

To accurately process and determine differential expression for temporal data, it is key to 
understand that regulatory mechanisms often involve a ‘cause-and-effect’ relationship of two types. First, 
intervention cause in a system where we ask: Is there an effect upon change of input?, and second, 
predictive (i.e. Granger) cause for GRNs where we ask: Can we infer a lead and lag relationship between 
genes (Granger et al., 1969)? To address intervention cause, we need to perform a sequence of 
established steps to pre-process the RNA-seq data, by performing quality control, alignment, read count 
calculation, filtering, normalization and correction. Several pipeline methods codify these steps to enable 
users to subsequently perform DE analysis and summarize uncovered regulatory mechanisms (Afgan et 
al., 2018; Torre et al., 2018; Ge et al., 2018; Cornwell et al., 2018; de Jong et al., 2015; Jensen et al., 
2017; Kartashov and Barski, 2015; Spurney et al., 2020).  

 
However, there are many possible methods to choose from at each step in this process (STAR 

Methods), not all experimental designs are the same, and downstream results heavily depend on how 
the RNA-seq data are processed. Most current pipeline methods do not allow users to compare the many 
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possible methods, providing only one tool for each step (BioJupies (Torre et al., 2018); RSEQREP 
(Jensen et al., 2017)) even though it is recommended to consider methods for analyses such as DE 
(Spies et al., 2019). Furthermore, most only perform part of the analysis to infer altered regulatory 
mechanisms (VIPER (Cornwell et al., 2018); BioWardrobe (Kartashov and Barski, 2015)). Also, the 
majority of platforms do not use multiple data-types (iDEP (Ge et al., 2018); T-REx (de Jong et al., 2015)), 
even though we know that RNA-seq does not provide direct evidence of gene interaction. Other pipeline 
methods used to process such RNA-seq data have to be pieced together such as Galaxy (Afgan et al., 
2018) and do not use a time series DE model for time series data such as TuxNet (Spurney et al., 2020) 
thus disregarding time dependencies. Figure S1 provides an overview of the available methods. 
 

In fact, most pipeline methods used for RNA-seq data analysis use categorical DE methods that 
do not consider time dependency to determine which genes are interesting within time series data sets. 
Importantly, time series DE methods algorithms are still in their infancy and are underutilized (Spies et 
al., 2019). The few DE methods that do consider temporal dynamics are not yet part of pipeline methods 
to infer GRNs and are therefore incomplete (Fischer et al., 2018; Jensen et al., 2017; Michna et al., 2016; 
Nueda et al., 2014; Spurney et al., 2020; Wani and Raza, 2019). For time series DE methods that do 
exist, some can only analyze specific experimental designs or require normalized and corrected data on 
input (Sahraeian et al., 2017; Spies and Ciaudo, 2015; Spies et al., 2019).  

 
After DE analysis, these pipeline methods aim to output regulatory mechanisms which include 

interacting genes. There are one or more of three main analysis outputs: 1) semi-informative gene 
ontology (GO) plots, showing what processes are affected and those genes involved; 2) pathways (i.e. 
directed gene graphs), showing directionality on a predefined network at a short time-scale with no 
crosstalk connections between pathways; and 3) networks (i.e. undirected gene graphs), thus losing 
directionality between genes and conflating gene and protein identity, yet gaining crosstalk between 
pathways and longer time scales. However, these three outputs do not include a GRN: a directed network 
highlighting how the key regulatory genes influence each other over time. It is important that pipeline 
methods enable users to compare multiple methods for RNA-seq processing steps to accommodate 
diverse experimental designs (Spies et al., 2019). Overall, no current pipeline method uses time series 
algorithms to measure gene dynamics over time and integrates transcription factor binding data to 
reconstruct GRNs as directed networks from ordered RNA-seq data.  

 
Current stand-alone GRN inference methods do not fully leverage available data 
 

To predict the order of action of transcriptional regulators, there are several stand-alone methods 
which infer GRNs given processed data rather than raw sequence reads. These methods use time series 
and processed multi-omics data to establish which genes influence the expression of others downstream, 
providing information about the system dynamics (Mochida et al., 2018). Specifically, they address two 
main questions: 1) What genes are altered and exhibit dynamic expression changes?, 2) How are these 
genes within the GRN regulating each other? However, most of these stand-alone GRN inference 
methods only consider RNA-seq data from a single time point (i.e. at steady-state) (Langfelder and 
Horvath, 2008; Villaverde et al., 2014; Wang et al., 2013; Zhang et al., 2016; Huynh-Thu et al., 2010; 
Bar-Joseph et al., 2003; Faith et al., 2007; Haury et al., 2012; Liu et al., 2016; Margolin et al., 2006; Kang 
et al., 2018). While fewer methods consider consecutive time points (Huynh-Thu and Geurts, 2018; 
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Bansal et al., 2006; Radovic et al., 2017; Roy et al., 2013; Zoppoli et al., 2010). Importantly, several 
consecutive time point GRN inference methods are limited in focus, constructing GRNs only when a gene 
of interest is present such as TSNI (Bansal et al., 2006) and may inaccurately interpret the network 
because they do not consider the experimental design. Thus, there is an urgent need for a pipeline 
method to leverage time series, known experimental design, gene interactions, and multi-omics data to 
provide evidence of interaction between genes, focusing on the master regulators of transcription, TFs, 
to reconstruct interpretable and high-fidelity GRNs in a user-guided fashion. 
 

In summary, there is no integrated end-to-end analysis pipeline to accurately process and infer 
GRNs from temporal and multi-omics data. These deficiencies demand an adaptive, streamlined pipeline 
method that: a) supplies tailored methods for diverse experimental designs; b) performs multi-omics and 
experimentally determined protein-protein interaction data integration; c) uses time series models to 
generate informative predictions about altered regulatory mechanisms and GRNs; and d) provides an 
accessible and interactive interface to interpret multi-omics results.  

  
TIMEOR: new web-based tool to define regulated gene networks from multi-omics data 
 

 

Figure 1: TIMEOR enables users to interrogate and reconstruct gene regulatory networks. Blue 
boxes denote main user-guided steps.  
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A. Users specify a time series RNA-seq data set in the Pre-process Stage in which the data are 
automatically retrieved, normalized, corrected, filtered, and aligned to the selected reference genome 
using multiple alignment methods for comparison.  

B. The resulting count matrix after alignment is passed to Primary Analysis where multiple differential 
expression (DE) methods are run to produce a time series clustermap of DE over time. The user may 
also input the count matrix directly, skipping step A.  

C. DE results are passed to Secondary Analysis for gene ontology, pathway, network, motif, ChIP-seq 
analysis, and gene regulatory network construction. 

To address the critical gap to analyze and integrate time series RNA-seq and TF binding data, 
we present TIMEOR: Trajectory Inference and Mechanism Exploration using Omics data in R (Figure 1). 
This is the first automated interactive web (Chang et al., 2020; Sievert et al., 2020) (Figure S2, S3) and 
command line time series, multi-omics pipeline method for DE and comprehensive downstream analysis. 
TIMEOR reconstructs interpretable and user-guided GRNs. Specifically, TIMEOR’s web-interface 
leverages users’ knowledge of the biological process by providing options to users during each analysis 
phase. TIMEOR retrieves raw sequence reads (RNA-seq .fastq files) and performs all analysis from 
quality control and DE to enrichment (Figure 1A, B). Next, TIMEOR integrates motif and ChIP-seq data 
to define TF binding patterns, and reconstructs a TF GRN (Figure 1C). The web-interface enhances 
reproducibility and ease for users to dedicate more time to interpreting results and planning follow-up 
experiments (Figure S2, S3). Overall, TIMEOR is an adaptive method to predict GRNs from time series 
RNA-seq which integrates motif enrichment, ChIP-seq data, and temporal gene interactions. 

 
We validated TIMEOR on both simulated and real data, demonstrating that TIMEOR can predict 

known and novel gene relationships within TF GRNs. Using real time series RNA-seq data collected after 
insulin stimulation (Zirin et al., 2019), TIMEOR discovered a novel ordered cascade of TF-TF interactions, 
providing a new link between insulin stimulation and a validated circadian clock GRN (Fathallah-Shaykh, 
2010; Kadener et al., 2007; Maury, 2019; Zhou et al., 2016). TIMEOR revealed that insulin regulates 
several key circadian clock TFs, providing a new molecular mechanism linking a high sugar diet to sleep 
disruption (Qian and Scheer, 2016; Sharp et al., 2017; Stenvers et al., 2019). Overall, TIMEOR facilitates 
future analyses of integrated omics data to uncover novel biological and disease mechanisms from 
temporal gene expression data sets.  
 
Results: 
 
The TIMEOR application package: accessible and streamlined tool to uncover novel regulatory 
mechanisms 

 
The TIMEOR web-app (www.timeor.org) hosted at DRSC/TRiP 

(https://fgr.hms.harvard.edu/tools) and Harvard Medical School Research Computing, allows users to 
automatically and interactively analyze their time series data from Drosophila melanogaster, Mus 
musculus, and Homo sapiens (Figure S2, S3). The web-app and software package consists of multiple 
stages (Figure 1). First, the Pre-process Stage automatically chooses several methods to optimally pre-
process the user data and generate results after the user answers six questions (Figure 1A, S2A, S2B, 
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S2C, S2D). Second, in the Primary Analysis stage, DE results are compared between multiple continuous 
and categorical time series methods (Fischer et al., 2018; Nueda et al., 2014; Love et al., 2014). The 
user can also compare new results with a previous study to determine which DE method results to use 
for downstream analysis. TIMEOR then automatically clusters and plots (Sievert et al., 2020) the selected 
DE gene trajectories over time (Figure 1B, S2D). Third, the results are sent to the Secondary Analysis 
phase (Figure 1C) where three categories of analysis are performed in different tabs: Enrichment, 
identifies the genes and gene types that are over-represented within each cluster (Figure S3A); Factor 
Binding, predicts which TFs are post-transcriptionally influencing the expression of each gene cluster 
using motif and ChIP-seq data (Figure S3B); and Temporal Relations, identifies TFs GRN (Figure S3D). 
Each tab takes users through a series of exploratory results to determine the best predicted TF GRN 
(STAR Methods). In the following, we provide additional details on these three stages. 

 
Overall, compared to current pipeline methods, TIMEOR has five unique features: 1) adaptive 

default analysis methods that can be customized to each experimental design; 2) multiple method 
comparisons for alignment and DE (for distant and close time point data); and 3) statistical, graphical and 
interactive results for data exploration. 4) Within each cluster of similarly regulated genes, TIMEOR 
performs automated gene enrichment, pathway, network, motif, and ChIP-seq analysis. 5) Lastly, 
TIMEOR merges experimentally determined gene networks (Franceschini et al., 2013), time series RNA-
seq and motif and ChIP-seq information to reconstruct TF GRNs with directed causal interaction edges 
by labeling the causal interaction and regulation (activation or repression) between genes and gene 
products. 

 
Pre-process Stage. The first stage of the TIMEOR package is the pre-process stage where users 

can load and retrieve published data sets of interest and perform preliminary analyses (Figure 1A). To 
do so, users can find their desired time series RNA-seq data on Gene Expression Omnibus (GEO) and 
upload GEO’s automatically generated file (Edgar et al., 2002). TIMEOR will then automatically generate 
a corresponding metadata file for subsequent analyses. After answering six basic questions regarding 
the experimental design, TIMEOR establishes the tailored adaptive default methods to use for RNA-seq 
data processing (Figure S2A). TIMEOR then automatically: 1) retrieves and stores the raw FASTQ files 
of interest in a unique directory created for each user; 2) checks RNA-seq data quality; 3) uses the 
adaptive defaults to compare and choose from several methods to align and calculate read counts per 
gene, resulting in a gene-by-replicate read count matrix (Figure S2B). TIMEOR provides several options 
to correlate and perform principal component analysis (PCA) between sample replicates, both 
automatically output as interactive plots. From these results, users can choose from several options to 
filter, normalize, and correct the resulting count matrix in preparation for the next stage (Figure S2C, 
S2D). 
 

Primary Analysis. In Primary Analysis, users leverage the adaptive default methods to perform 
the most appropriate gene DE analysis on their data, or if the user answered “yes” to the question 
“Compare multiple methods (alignment/mapping, and differential expression)”, then multiple DE methods 
(continuous and categorical) are automatically run, and users can visualize the output in both a table and 
Venn diagram illustrating overlapping DE genes at a p-value threshold input by the user (Fischer et al., 
2018; Nueda et al., 2014; Love et al., 2014). A previous study can be added to this Venn diagram to help 
the user determine which DE method results to use for downstream analysis. TIMEOR automatically 
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clusters the chosen method’s DE gene trajectories, while also providing suggestions for manual cluster 
choice (Figure 1B, S2E). These cluster results are then passed to Secondary Analysis (STAR Methods). 
 

Secondary Analysis. On the first tab of Secondary Analysis (Figure 1C) called Enrichment, 
users can toggle through each cluster to explore several types of enrichment within each cluster, including 
GO, pathway (Luo and Brouwer, 2013), network (Franceschini et al., 2013), and de novo motif discovery 
(Bailey and Elkan, 1994) (Figure S3A). On the second tab, Factor Binding, TIMEOR determines 
observed TFs (i.e. DE genes that are TFs) and predicted TFs (i.e. TFs enriched to bind to DE genes 
within a cluster) (Figure S3B). TIMEOR provides four predicted TF tables: 1) Top Predicted Transcription 
Factors by Orthology table, 2) Top Predicted Transcription Factors by Motif Similarity table, and their 
associated Top Transcription Factors Table per Method for both orthology and motif similarity (Figure 
S3C).  

 
In order to identify predicted TFs and produce the first two tables described above, TIMEOR uses 

Rcistarget (Aibar et al., 2017) to scan up to 21 TF prediction methods for evidence of enriched TF binding 
to each cluster of genes by both orthology and motif similarity (STAR Methods). That is, each enriched 
motif is associated with candidate TFs based on orthologous sequences or based on similarities between 
annotated and unknown motifs (Aibar et al., 2017; Verfaillie et al., 2014). TIMEOR then summarizes the 
top predicted TFs for each TF prediction method and reports the percent concordance (i.e. the percent 
of methods that report the same most frequent TF) among these methods for the top four (default but 
changeable by user) predicted TFs. TIMEOR provides a consensus if more than 40% (default threshold 
but changeable by user) of the methods report the same top TFs. (STAR Methods) TIMEOR then scans 
ENCODE (Davis et al., 2018; Joly Beauparlant et al., 2020) for ChIP-seq data identifiers (IDs) for all 
predicted TFs. TIMEOR uses this ranking technique to output four predicted TF tables, that are 
distinguished by the type of evidence (orthology or motif similarity) and the method (consensus TF among 
all methods or a TF rankings within each method) (see STAR Methods and Figure S3C). 

 
On the third tab, TIMEOR uses this observed and predicted TF information to determine the 

Temporal Relations Table between TFs, which defines a directed TF GRN (Figure S3D). By default, 
TIMEOR uses the Top Predicted Transcription Factor by Orthology table results to infer the GRN but the 
user is encouraged to consider all four predicted TF tables (Figure S3C). To characterize each temporal 
TF interaction within the GRN, we define a quadruple: (source TF, target TF, regulation type, interaction 
type) which we will explain next. Interaction types are: “predicted TF to observed TF, known interaction”; 
“predicted TF to observed TF, predicted interaction”; “observed TF to observed TF, known interaction”; 
or “observed TF to observed TF, predicted interaction”. Regulation types are “activation” or “repression” 
(STAR Methods). TIMEOR does this by using the temporal dynamics between clusters to assign known 
or predicted interaction edges between observed and predicted TFs observed within a window of time 
defined by users (question six Figure S1A). Additionally, for each known (i.e. experimentally determined) 
edge in STRINGdb (Franceschini et al., 2013), TIMEOR provides PubMed 
(https://www.ncbi.nlm.nih.gov/pubmed) identifiers to publications supporting that edge where applicable. 
Thus, using time series RNA-seq, motif and ChIP-seq analysis, and experimentally determined network 
information, TIMEOR generates an experimentally testable TF GRN (Figure S3D). TIMEOR provides a 
tutorial (Figure S3E) and outputs all results in the user’s personal analysis session folder to download 
for future use (Figure S3F). 
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Evaluation of TIMEOR on Simulated Data 
 

To determine TIMEOR’s robustness to recover TF GRNs, we simulated temporal expression 
patterns in Homo sapiens for genes known to interact with each other. Specifically, we used Polyester 
(Frazee et al., 2015) to simulate four RNA-seq expression cascading activation patterns over two 
biological replicates of six time points (Figure S4E) for 63 genes at approximately 20x sequencing 
coverage. We used the first time point as the control for the subsequent five time points. To simulate 
adequate background gene expression, we sampled and analyzed two biological replicates from a real 
time series RNA-seq experiment of fusobacterium nucleatum-stimulated human gingival fibroblasts 
control samples (GEO: GSE118691) taken at 2, 6, 12, 24, 48 hours (Kang et al., 2019a; Kang et al., 
2019b). We simulated a constant RNA-seq expression of one fold across all six timepoints for all those 
genes that were active in at least one time point. To assess TIMEOR’s performance in inferring the 
ground truth GRN, we varied the percent concordance of the top TF identified by each method. For a 
concordance value of 35% and above, TIMEOR recovered simulated TF GRNs with perfect precision 
(Figure 2A). As expected, at low percent concordance between TF prediction methods TIMEOR predicts 
other TF interactions which were not simulated. Furthermore, TIMEOR achieved perfect recall for all 
percent concordance thresholds except at high percent concordance (65% and above) which lead to one 
ground truth TF to drop out. This simulation highlights TIMEOR’s ability to recover true temporal relations 
between TFs by integrating time series RNA-seq, motif data, and experimentally determined gene 
interaction information (STAR Methods). 
 
Evaluation of TIMEOR on Real Data 
 

We next ran TIMEOR on insulin stimulation from Zirin et al., 2019 (Zirin et al., 2019), who 
performed an RNA-seq time series experiment where they incubated Drosophila SR2+ cells with insulin 
and performed RNA-seq on 10 consecutive time points every 20 minutes with three biological replicates. 
In the previous study with these data, Zirin et al. found that the MYC TF regulates tRNA synthetases 
which enhance growth of cells where MYC is overexpressed. Another class of MYC targets, ribosome 
biogenesis genes, are also affected in the time series RNA-seq data. Next, we describe how TIMEOR 
recapitulated previous findings and generated novel insights by analyzing each cluster separately (Figure 
2), uncovered temporal dynamics among observed and predicted TFs by merging cluster information 
(Figure 3), and enabled us to formulate a new biological hypothesis regarding insulin stimulating the 
circadian rhythm cycle (Figure 4). 
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Figure 2: TIMEOR accurately recovers known and novel genomic relationships.  
A. Precision by percent concordance curve of TIMEOR’s ability to recover a simulated Homo sapiens TF 
GRN where the percent concordance between TF prediction methods ranges from 2% - 85%.  
B. TIMEOR’s clustermap (Sievert et al., 2020) of significant genes’ trajectories using z-score to denote 
change in downregulation (blue) and upregulation (red). 
C. Without clustering, we recapitulate previous findings (Zirin et al., 2019) and illustrate these through 
GO analysis.  
D. TIMEOR’s pathway analysis for largest cluster b, which identifies the same ribosome biogenesis 
pathway as Zirin et al. 2019.  
E. TIMEOR output shows that in cluster e snoRNA pseudogenes and 28SrRNA pseudogenes are 
enriched (hypergeometric test). 
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F. TIMEOR identified Lobe, which interacts directly with MYC (Wang and Huang, 2009). This interaction 
was not identified by prior analysis even though MYC was the focus of the previous study (Zirin et al., 
2019). 

 
Using these time series data, TIMEOR recapitulates previous findings (Zirin et al., 2019) and 

discovers novel insights into insulin signaling. TIMEOR compared results from three different DE 
methods: DESeq2 (Love et al., 2014), Next maSigPro (Nueda et al., 2014), and ImpulseDE2 (Fischer et 
al., 2018). ImpulseDE2 showed the most significant overlap with the list of 1211 DE genes from Zirin et 
al. (p-value = 5.33342e-127 using the hypergeometric test) and the highest overlap with other methods 
(Figure S4C). Zirin et al. filtered and followed up on 33 of these 1211 genes to create a highly specific 
set. When TIMEOR overlapped these three methods with those 33 genes, ImpulseDE2 again showed 
the highest overlap with the previous study (p-value = 7.929393e-137 using the hypergeometric test) and 
other methods. We used GO analysis within TIMEOR to restate the findings from Zirin et al., 2019 (Zirin 
et al., 2019) which showed enrichment for genes regulating ribosome biogenesis before clustering the 
DE data (Figure 2C).  

 
Next, TIMEOR clustered (Sievert et al., 2020) the DE data from ImpulseDE2 into six clusters using 

Euclidean distance between gene trajectories and Ward’s Method (Murtagh et al., 2014) to relate clusters 
of genes (Figure 2B). TIMEOR then generated the pathway, network, and GO analysis for each cluster. 
We found that the cluster b, the largest cluster, showed enrichment in the ribosome biogenesis (Figure 
2D) pathway which was previously identified (Figure 2C). Moreover, TIMEOR’s clustering analysis 
(Figure 2B) showed that there were five additional clusters with different temporal patterns that were not 
identified by Zirin et al. 
 

Importantly, TIMEOR determined that new information may be gained by considering the 
dynamics of gene expression patterns when performing time series experiments. TIMEOR found that the 
other gene trajectories represented by clusters a, c, d, e, and f each reveal new insights about insulin 
signaling (Figure 2B). Clusters a and e contained novel genes identified by TIMEOR that did not overlap 
with the previous study (Zirin et al., 2019): snoRNA and 28SrRNA pseudogenes. For these sets of non-
coding genes, most pathway and GO analysis do not work, but TIMEOR is able to still demonstrate that 
these genes are enriched through a hypergeometric significance test (Figure 2E). These 28SrRNA-Psi 
may encode ribosomal RNA fragments that have been mislabeled as pseudogenes (Berk, 2016; Sharp, 
1991, 2009). Cluster a only contained two genes, one snoRNA and one 28SrRNA pseudogene and 
interestingly these DEs followed a similar trajectory to cluster e genes that differed only late in the time 
series. Cluster f contains the group of genes that are repressed earliest in the regulatory cascade, 
including Lobe which was not identified as DE in the previous study even though it interacts directly with 
MYC (Figure 2F) (Wang and Huang, 2009).  
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Figure 3: TIMEOR leverages temporal and multi-omics data to identify a novel gene regulatory 
network. 
A. TIMEOR’s clustermap (Sievert et al., 2020) highlighting TIMEOR’s temporal clustering with observed 
TFs present in the earliest changing clusters.  
B. Validation of predicted TFs using ChIP-seq data provided through TIMEOR to show binding affinity to 
genes across each cluster.  
C. Excerpt of TIMEOR’s Temporal Relations Table showing temporal relationship between TFs. D. 
Combining TIMEOR’s Temporal Relations Table, predicted TF information, and STRINGdb (Franceschini 
et al., 2013), TIMEOR outputs a gene regulatory network connecting insulin signaling and the circadian 
rhythm cycle.  
 

The key task is to uncover how each gene cluster influences the expression of the other gene 
clusters through TFs by generating a GRN. To this end, TIMEOR integrates temporal dynamics between 
gene trajectory clusters with predicted TFs and STRINGdb’s experimentally determined network to 
temporally relate both observed (Figure 3A arrows) and predicted TFs (Figure 3B, S3C) within each 
cluster in a Temporal Relations Table (Figure 3C). TIMEOR identified the circadian rhythm TFs pdp1 
and cwo as observed in gene expression in response to insulin early in the regulatory cascade (Figure 
3A). In the earliest regulated cluster f (repressed over time), TIMEOR identified the observed TF gene 
cg32772, followed by cwo in cluster d and pdp1 in cluster c.  

 
Next, TIMEOR leveraged motif analysis and ChIP-seq data to uncover and validate TF regulators 

for each cluster (Figure 3B). TIMEOR identified the available ENCODE data for all predicted TFs, as 
ChIP-seq data were not available after insulin stimulation. We chose the most comparable ChIP-seq data 
to input into TIMEOR to generate predicted TF binding profiles (Figure 3B). As predicted by the Top 
Predicted Transcription Factors Table by Orthology, Hnf4 showed the strongest binding affinity to the 
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early repressed cluster f genes (gene body) and to the promoters of the next activated cluster (cluster d 
genes).  

 
Next, we examined the two most popular TF prediction methods JASPAR (Sandelin et al., 2004) 

and HOMER (Heinz et al., 2010) and found that CYC ranks as the second most likely TF to bind cluster 
d (Figure S4F). As predicted, when examining TF binding, CYC bound most strongly to cluster d at the 
promoter. Moreover, CYC is known to bind to most of the observed TFs, and is known to bind to many 
of the other top predicted TFs (Franceschini et al. 2013; Fathallah-Shaykh, 2010; Zhou et al., 2016). CYC 
also showed strong binding within the gene body of genes in cluster f. CYC is likely the most enriched to 
bind cluster d.  

 
CWO was observed in cluster d and bound strongly to the transcription start sites (TSS) of genes 

in that cluster (Figure 3B), as well as cluster c where there is a known interaction with pdp1 (Fathallah-
Shaykh, 2010; Zhou et al., 2016). In the next activated cluster, MYC showed strong binding to the later 
expressed genes in cluster b as predicted in the Top Predicted Transcription Factors by Orthology table. 
Therefore, average profiles in combination with TF prediction results (Figure S4F) provide support that 
the predicted TFs identified by TIMEOR are likely to be involved in regulating insulin signaling. 

 
Importantly, Cluster d demonstrates how the user can leverage TIMEOR’s four predicted TF 

tables to identify temporal relationships between TFs (Figure S4F). Each TF prediction method is run 
individually on each cluster of genes, hence not integrating information across clusters. Thus, TIMEOR 
enables the user to view results across all clusters and generates new testable hypotheses through its 
four predicted TF tables and GRNs. The Top Predicted Transcription Factors by Motif Similarity table 
reported CG9272 as the most likely TF to bind cluster d and ChIP-seq results showed strong binding to 
the gene body of genes in cluster d (Figure S4H). In the Top Predicted Transcription Factors by Orthology 
table, TIMEOR reported TBP as the top predicted TF to bind (Figure S4F). However, TBP had an 
indistinguishable average binding profile across most clusters likely because it is a general TF (Figure 
S4G). Yet, there are known (i.e. experimentally determined) interactions between TBP and the observed 
TF CG32772 and TBP and the predicted TF Hnf4 in cluster f (Franceschini et al., 2013) (Figure 3D). 
Therefore, TIMEOR generated a testable hypothesis that TBP functions with CG32772 and Hnf4 to 
modulate gene regulation.  

 
Integrating the observed and predicted TFs within TIMEOR’s Temporal Relations Table, TIMEOR 

augmented the experimentally determined STRINGdb network to predict a new GRN stimulated by 
insulin (Figure 3D, 4). That is, TIMEOR posited that the top predicted TF Hnf4 binding to cluster f 
repressed the observed gene cg32772. CG32772 was then predicted to activate cwo in the next activated 
cluster. Both of these interactions were predicted. CYC was predicted to bind genes in cluster d and 
activate the cwo gene in a known (i.e. experimentally determined) interaction. CWO is known to bind to 
pdp1 in the next activated cluster c.  

 
CYC, CWO and PDP1 are essential TFs regulating the circadian rhythm cycle and coordinate in 

the temporal order identified by TIMEOR (Fathallah-Shaykh, 2010; Zhou et al., 2016). These data support 
a model in which the TF CYC is binding to the cwo gene, which is then activated and influences the 
expression of cluster c (Figure 4B). Further, the CWO TF is found to bind to the gene encoding the 
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observed TF pdp1 in cluster c, and this information is thus highlighted by directed arrows in these 
networks (Figure 4A and B). Consistent with our predicted GRN, Zhou et al. (Zhou et al., 2016) and 
Fathallah-Shaykh et al. (Fathallah-Shaykh, 2010) illustrate that CYC functions earlier than CWO and cwo 
functions earlier than pdp1 during the regulation of circadian rhythms.  

 

 
Figure 4. TIMEOR identifies that insulin acts as a cue for the circadian clock.  
A. TIMEOR identifies a GRN comprising both observed and the top predicted TFs binding each cluster 
(i.e. event order). The grey box denotes a known circadian rhythm causal interaction subnetwork 
(Fathallah-Shaykh, 2010; Zhou et al., 2016).  
B. Schematic showing that TIMEOR found two new players predicted to influence circadian rhythm cycle 
and are induced by insulin: HNF4, which is known to regulate glucose-dependent insulin secretion, and 
CG32772, which could regulate the cwo gene.  
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In contrast to the circadian rhythm genes, little is known about observed TF CG32772 with the 
exception that it contains a zinc finger domain. However, given the temporal dynamics showed that 
CG32772 was repressed prior to the activation of the cwo gene, TIMEOR predicted that when repressed, 
CG32772 activates the expression of the observed cwo gene which is a novel and testable hypothesis. 
For example, the CG32772 gene could be depleted to test its role in insulin signaling. Overall TIMEOR 
linked insulin signaling to a known circadian GRN and identified a new predicted TF that can be 
investigated in the future. 
  
Discussion: 
 
Novel, accessible and reproducible pipeline method integrating time series RNA-seq data 

 
Here, we presented Trajectory Inference and Mechanism Exploration with Omics data in R 

(TIMEOR). This pipeline method provides several advances including being the first accessible, adaptive 
and streamlined pipeline method to infer temporal dynamics between genes by intelligibly using multi-
omics data, including time series RNA-seq and protein-DNA data (ChIP-seq or CUT&RUN) from multiple 
experimental designs. TIMEOR can compare multiple alignment and DE methods automatically and 
provide options for users to choose which results to use downstream. Our method provides multiple close 
and distant time point DE methods, and performs automatic gene trajectory clustering while also enabling 
users to manually cluster their data. The web-interface for TIMEOR provides users with the ability to 
interact, explore, and test variants of multiple types of analysis. Importantly, TIMEOR enables users to 
infer temporal relations between TFs and their gene targets through joint use of time series and multi-
omics data and experimentally determined gene interaction networks.  
 

TIMEOR enables researchers to run new analyses while also being able to reproduce results 
from past studies in a simple to use interface. Future work includes providing an RNA-seq read trimming 
method, and more alignment and DE methods for users (Bolger et al., 2014). Further, many comparative 
studies suggest taking a union of the DE results between methods for a more robust set of genes in 
downstream analysis, thus we would like to provide this functionality to the user (Spies et al., 2019). We 
plan to provide more interactive features such as integrating visNetwork (Thieurmel et al., 2016) to 
visualize networks, and integrate methods to examine temporal differential splicing and isoform 
expression. Furthermore, we would also like to add a set of methods specifically targeted for single-cell 
RNA-seq analysis. Lastly, there are several stand-alone GRN construction methods from time series 
RNA-seq data available, which we plan to integrate into TIMEOR. Our modular framework enables 
addition of novel and existing methods for pre-processing to GRN construction in future versions. 
 
Insulin acts as a cue for the circadian clock 
 

We used TIMEOR to identify TF GRNs that are activated by insulin stimulation with two goals: 1) 
to uncover the dynamic changes in molecular function after insulin stimulation; 2) to identify the order of 
action of TFs in this process by integrating temporal RNA-seq data, ChIP-seq data, and experimentally 
determined gene interaction networks. Overall, TIMEOR recapitulated the findings from a previous study 
(Zirin et al., 2019) while also determining that insulin signaling activates the transcription of TFs that 
regulate the circadian rhythm cycle (Figure 4A). More research is needed to understand this relationship, 
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although several studies suggest that the circadian clock coordinates the daily rhythm in human glucose 
metabolism (Boden et al., 1996; Stenvers et al., 2019). 
 

Insulin resistance is a major contributor to the development of Type 2 Diabetes, caused by 
disrupting insulin, which alters metabolism (Figure 4B). The circadian rhythm cycle regulates several 
daily processes including metabolizing glucose to be used as energy and regulating insulin sensitivity 
(Qian and Scheer, 2016; Stenvers et al., 2019). Disrupting the circadian rhythm cycle (by staying up late 
or shift work) dysregulates metabolism, which can cause weight gain and type II diabetes (James et al., 
2017). Therefore, it is known that disrupting the circadian clock can dysregulate insulin signaling. 
However, TIMEOR found a novel link, which shows that insulin directly regulates TFs that are known to 
alter the circadian clock such as cyc, cwo, and pdp1. TIMEOR found two new TFs that are predicted to 
influence the circadian rhythm cycle and are induced by insulin: 1) HNF4 is known to regulate glucose-
dependent insulin secretion (Barry and Thummel, 2016); and 2) CG32772 could be regulating the cwo 
gene. Further validation experiments will be required to test these new hypotheses. 

 
Overall, TIMEOR is a new adaptive method capitalizing on cause-and-effect modeling to analyze 

time series RNA-seq data and ChIP-seq. TIMEOR’s automated pipeline structure facilitates in depth 
analysis of input data while supporting reproducibility and providing the best tools for a given experimental 
design. Importantly, TIMEOR integrates time series RNA-seq and protein-DNA data to model temporal 
dynamics between TFs in an accessible and flexible framework for user exploration and to enable 
targeted follow-up biological experiments. 
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KEY RESOURCE TABLE 
 

Reagent or Resource Source Identifier 

 
Deposited Data 

RNA-seq data NCBI https://www.ncbi.nlm.nih.gov/ 

Chip-seq data ENCODE https://encodeproject.org/ 

Drosophila melanogaster 
genome for Bowtie2 
(BDGP6) 

Illumina https://support.illumina.com/sequen
cing/sequencing_software/igenome.
html 

Homo sapiens genome for 
Bowtie2 (GRCh38) 

Illumina https://support.illumina.com/sequen
cing/sequencing_software/igenome.
html 

Mus musculus genome for 
Bowtie2 (GRCm38) 

Illumina https://support.illumina.com/sequen
cing/sequencing_software/igenome.
html 

Drosophila melanogaster 
transcription factor gene 
list 

Flybase https://flybase.org/reports/FBgg000
0745.html 
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Homo sapiens 
transcription factor gene 
list 

The Human Transcription 
Factors 

http://humantfs.ccbr.utoronto.ca/do
wnload.php 

Mus musculus 
transcription factor gene 
list 

Mouse Transcription 
Factor Knowledgebase 

https://sunlab.cpy.cuhk.edu.hk/mTF
kb/ 

Protein-protein interactions STRINGdb https://string-db.org/cgi/input.pl 

Drosophila melanogaster 
genome for HISAT2 
(BDGP6) 

Kim Lab http://daehwankimlab.github.io/hisat
2/download/#d-melanogaster 

Homo sapiens genome for 
HISAT2 (GRCh38) 

Kim Lab http://daehwankimlab.github.io/hisat
2/download/#h-sapiens 

Mus musculus genome for 
HISAT2 (GRCm38) 

Kim Lab http://daehwankimlab.github.io/hisat
2/download/#m-musculus 

Simulations This paper https://github.com/ashleymaeconard
/TIMEOR.git 

Motif collection for 
Drosophila melanogaster, 
Homo sapiens, and Mus 
musculus 

cisTarget databases 
 

https://resources.aertslab.org/cistar
get/databases/homo_sapiens/hg38/
refseq_r80/mc9nr/gene_based/hg3
8__refseq-
r80__10kb_up_and_down_tss.mc9
nr.feather 
 
https://resources.aertslab.org/cistar
get/databases/drosophila_melanog
aster/dm6/flybase_r6.02/mc8nr/gen
e_based/dm6-5kb-upstream-full-tx-
11species.mc8nr.feather 
 
https://resources.aertslab.org/cistar
get/databases/mus_musculus/mm1
0/refseq_r80/mc9nr/gene_based/m
m10__refseq-
r80__10kb_up_and_down_tss.mc9
nr.feather 

Genes gtf Drosophila 
melanogaster 

 https://support.illumina.com/sequen
cing/sequencing_software/igenome.
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html 
(Drosophila_melanogaster/Ensembl
/BDGP6/Annotation/Archives/archiv
e-2015-07-23-16-41-
33/Genes/gene.gtf) 

Genes gtf Homo sapiens Illumina https://support.illumina.com/sequen
cing/sequencing_software/igenome.
html 
(Homo_sapiens/NCBI/GRCh38/Ann
otation/Archives/archive-2015-08-
11-09-31-31/Genes/genes.gtf) 

Genes gtf Mus musculus Illumina https://support.illumina.com/sequen
cing/sequencing_software/igenome.
html 
(Mus_musculus/Ensembl/GRCm38/
Annotation/Archives/archive-2015-
07-17-14-32-40/Genes/genes.gtf) 

 
Software and Algorithms 

Polyester (v1.24.0) (Frazee et al, 2015) https://github.com/alyssafrazee/poly
ester 

Encodexplorer (v2.4.0) (Droit et al., 2020) https://www.bioconductor.org/packa
ges/release/bioc/html/ENCODExplo
rer.html 

STRING R (v1.4.0) (Szklarczyk et al., 2019) https://www.bioconductor.org/packa
ges/release/bioc/html/STRINGdb.ht
ml 

Samtools (v1.9) (Li et al., 2009) http://www.htslib.org/ 

SRA-tools (Leinonen et al., 2010) http://ncbi.github.io/sra-tools/ 

FastQC (v0.11.8) (Andrews et al., 2010) https://www.bioinformatics.babraha
m.ac.uk/projects/fastqc/ 

MultiQC (v1.8) (Ewels et al., 2016) https://multiqc.info/ 

Deeptools (v3.1.3) (Ramírez et al., 2016) https://deeptools.readthedocs.io/en/
develop/# 
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HTSeq (v0.11.2) (Anders et al., 2015) https://htseq.readthedocs.io/en/mas
ter/index.html 

HISAT2 (v2.1.0) (Kim et al., 2015) http://daehwankimlab.github.io/hisat
2/ 

Bowtie2 (v2.3.5) (Langmead et al., 2012) http://bowtie-
bio.sourceforge.net/bowtie2/manual
.shtml 

DESeq2 (v1.26) (Love et al., 2014) http://bioconductor.org/packages/rel
ease/bioc/html/DESeq2.html 

ImpulseDE2 (v1.10.0) (Fischer et al., 2018) http://bioconductor.org/packages/rel
ease/bioc/html/ImpulseDE2.html 

Next maSigPro (v (Nueda et al., 2014) https://www.bioconductor.org/packa
ges/release/bioc/manuals/maSigPr
o/man/maSigPro.pdf 

MEME (v4.11.2) (Bailey et al., 1994) http://meme-suite.org/tools/meme 

Pathview (v1.26.0) (Luo et al., 2013)  https://bioconductor.org/packages/r
elease/bioc/html/pathview.html 

R Shiny (v 1.4.0) (Chang et al., 2020) https://shiny.rstudio.com/ 

ClusterProfiler (v3.0.4) (Yu et al., 2012) https://bioconductor.org/packages/r
elease/bioc/html/clusterProfiler.html 

Plotly (v4.5.2) (Sievert et al., 2020) https://github.com/ropensci/plotly 

Rcistarget (1.6.0) (Aibar et al., 2017) https://bioconductor.org/packages/r
elease/bioc/html/RcisTarget.html 

Intervene (v0.6.4) (Khan et al., 2017) https://intervene.readthedocs.io/en/l
atest/how_to_use.html 

Cluster (v2.1.0, for partition 
around medoids function) 

(Kaufman et al., 1990) https://cran.r-
project.org/web/packages/cluster/cl
uster.pdf 

Analysis pipeline This paper https://github.com/ashleymaeconar
d/TIMEOR.git 
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STAR ★ METHODS         
 
METHOD DETAILS 
 
COMPARISON OF TIMEOR TO EXISTING METHODS 
 

This is the first pipeline method to focus on comprehensive and comparative analysis of time 
series and multi-omics data with the goal to infer gene regulatory mechanisms. Figure S1 shows a 
comparison of multiple pipeline methods most similar to TIMEOR, including BioJupies and iDEP. We 
compared these methods in terms of 14 features (Figure S1). Some of these methods analyze RNA-seq 
data from raw .fastq files and perform gene ontology, claim to be able to analyze time series RNA-seq 
data, and/or report gene regulatory networks (Afgan et al., 2018; Torre et al., 2018; Ge et al., 2018; 
Cornwell et al., 2018; de Jong et al., 2015; Jensen et al., 2017; Kartashov and Barski, 2015; Spurney et 
al., 2020). TIMEOR fills a gap by providing at least twice as many features to uncover gene regulatory 
mechanisms from time series data compared to existing methods. 

 

 
Figure S1. TIMEOR provides new functionalities to uncover regulatory network characteristics. 
Comparison between most similar pipeline methods where each feature (on left), or a close variant, is 
available (green) or not (red). The features are listed in a progressive fashion following the flow of data 
analysis. 
 

As indicated in Figure S1, TIMEOR supports all aforementioned features. Specifically, TIMEOR 
pre-processes raw time series RNA-seq data by catering to its unique features through adaptive default 
methods before performing quality control and downstream processing (Figure S2A, S2C, S2D). This 
novel method also compares multiple methods for alignment and differential expression (DE, both 
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categorical and continuous time points) to dynamically determine the best tools for the user’s analyses 
(Figure S2B, S2E). TIMEOR automatically determines the number of gene trajectory clusters before 
performing enrichment and de novo motif analyses on each cluster (Figure S2E, S3A). Because RNA-
seq data alone does not provide information about direct interactions between transcription factors and 
their target genes, it is important to consider other types of omics data. To that end, TIMEOR predicts, 
provides and integrates transcription factor (TF) binding (mostly ChIP-seq) data from ENCODE (Davis et 
al., 2018; Joly Beauparlant et al., 2020) to help the user validate temporal gene-gene interactions (Figure 
S3B). Using these validated interactions, TIMEOR constructs the temporal TF gene regulatory network 
(Figure S3D). Overall, TIMEOR’s accessible RShiny (Chang et al., 2020) web interface enables 
researchers to determine the most suitable tools for their analyses, while producing paper ready and 
interactive figures. Furthermore, TIMEOR enables the user to inspect details on the methods used, their 
parameters and output, thereby facilitating reproducible research. See Supplementary Data 3 for a table 
of itemized main features.  
 
INSTALLATION AND AVAILABILITY 
 
TIMEOR can be run through a conda environment (timeor_conda_env.yml). The web-app is going to be 
hosted online via (www.timeor.org) at DRSC/TRiP (https://fgr.hms.harvard.edu/tools).  
 
To run TIMEOR, there are 3 prerequisites: 1) TIMEOR is downloaded; 2) R >= 3.6.1 is installed; 3) 
Anaconda/miniconda version 4.8.3 is installed. 

1. Assuming Anaconda is installed in <CONDA_DIRECTORY>, in the command line type: 
a. source <CONDA_DIRECTORY>/bin/activate 
b. conda env create -f timeor_conda_env.yml 
c. conda activate timeor_conda_env 

2. Navigate to the TIMEOR folder and start R. Type: 
a. library(shiny) 
b. runApp("app/", launch.browser = F) 

3. Proceed to the indicated address in your browser (preferably Chrome) to launch TIMEOR. 
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Figure S2. TIMEOR Application Pre-processing and Primary Analysis.  
A. In the Pre-processing stage in the “Process Raw Data” tab, the user chooses RNA-seq time series 
data and answers six questions about their data and desired analyses. TIMEOR subsequently sets the 
adaptive default methods that are customized to the user data.  
B. TIMEOR then retrieves and checks the data quality, providing interactive results to the user. These 
data are then aligned using either one or two alignment methods (Bowtie2 and HISAT2), and the user 
can choose which gives optimal results. The alignment .bam files are then used to create a gene-read 
count matrix which is then passed to the next tab “Load Count Matrix”.  
C. The gene-read count matrix is visualized through both interactive principal component analysis (PCA) 
and replicate (i.e. sample) correlation plots. Note that the user can pause the analysis at any time by 
clicking the “save your place” button and saving the link. 
D. The gene-read count matrix can then be passed to the “Normalize and Correct Data” tab where it is 
normalized (trimmed mean of M-values and upper quartile) and corrected. These altered data are again 
visualized using PCA and replicate (i.e. sample) correlation plots.  
E. The gene-read count matrix is passed to Primary Analysis (one tab only) where differential expression 
(DE) is performed using at least one of DESeq2, ImpulseDE2, and Next maSigPro, depending on how 
the user answered the adaptive default questions. The DE results between methods can be visualized 
using a Venn diagram. The user can also compare results with an outside gene list (e.g. from a past 
study) (Figure 1B). The results of each DE method are presented in the bottom left. The user can toggle 
to each method and TIMEOR will generate the associated gene trajectory clustermap. TIMEOR 
automatically chooses the number of clusters in the DE results. The number can also be chosen 
manually. Once the user chooses which DE method’s result to use, results are passed to Secondary 
Analysis (Figure S3). 
 
PRE-PROCESSING - PROCESS RAW DATA 
 

In the Pre-process Stage on the first tab “Process Raw Data”, the user is directed to the Gene 
Expression Omnibus (GEO) to find their desired time series RNA-seq data (Figure S2A). The user is 
instructed to upload the GEO generated data information file (SraRunTable.txt), which TIMEOR parses 
into a metadata file and generates the user’s personal analysis session folder for use in subsequent 
analysis. The user is instructed to answer six questions about their data. Namely, 1) “what type of 
organism (Drosophila melanogaster, Homo sapiens, or Mus musculus)”, 2) “what type of sequencing 
(paired-end or single-end)”, 3) “what type of experiment (case vs. control, or just case or control)”, and 
4) “what type of time series (close time point and long time series, distant time point, and close time point 
and short time series)”. In addition, TIMEOR can compare two methods for multiple alignment (HISAT2 
(Kim et al., 2015) and Bowtie2 (Langmead et al., 2012)) (Figure 1A, S2B, S4A, S4B) and several 
methods for differential expression (DE, DESeq2 (Love et al., 2014), ImpulseDE2 (Fischer et al., 2018), 
and Next maSigPro (Nueda et al., 2014) (Figure 1B, S2E, S4C), should the user choose ‘yes’ to 5) 
“compare multiple methods (that is, both alignment and DE methods)”. Lastly TIMEOR infers direct 
interactions between genes up to the maximum number of time steps input by the user by asking: 6) 
“What is the maximum number of time steps over which one gene can influence the transcription of 
another gene?”.  

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 15, 2020. ; https://doi.org/10.1101/2020.09.14.296418doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.296418


 

24 

Once the user clicks “Run”, TIMEOR begins processing the answers to the six questions to 
choose the most appropriate adaptive default methods to run, followed by retrieving the raw .fastq data 
supplied in the uploaded GEO file. The retrieved .fastq files are then run through quality control using 
FastQC (Andrews et al., 2010) and summarized using MultiQC (Ewels et al., 2016). TIMEOR outputs the 
results in a summary table and interactive results for download. Next, each .fastq file (i.e. sample) is 
aligned to the reference genome for the organism designated in question 1. If the user chose to compare 
alignment methods, an alignment plot is output to the screen showing the overall alignment scores for 
each sample for both alignment methods (Figure S2B). If the user chose not to compare, HISAT2 (Kim 
et al., 2015) alignment results are plotted to show the uniquely mapped read percentage and overall 
alignment. These alignment results are then passed to HTSeq (Anders et al., 2015) to produce a read 
count matrix of samples by read counts per gene. Then for each sample and for each gene, a read count 
method is used to calculate the number of mapped reads to each gene, resulting in a vector of transcript 
counts per gene for each sample. All read count vectors for all samples are then merged to form one 
large transcript count matrix of genes by samples. TIMEOR indicates that each of the aforementioned 
steps is complete with a check mark (Figure S2B). 

 
PRE-PROCESSING - LOAD COUNT MATRIX, NORMALIZE AND CORRECT DATA 
 

The read count matrix is then passed to the next tab "Load Count Matrix" (Figure S2C) where 
filtering and principal component analysis (PCA) are performed. Importantly, the user can also begin on 
this tab by simply loading the pre-computed read count matrix and associated metadata file. TIMEOR 
visualises PCA in an interactive plot, along with a loadings plot below it. TIMEOR performs replicate (or 
sample) correlations using either the Spearman or Pearson correlation, which are displayed in an 
interactive symmetrical heatmap (Figure S2C).  

 
This read count matrix can be normalized and corrected on the next tab "Normalize and Correct 

Data" (Figure S2D). The user can choose between two normalization methods: trimmed mean of M-
values, and upper quartile, and correction is performed by Harman (Oytam et al., 2016). Once the user 
clicks "Run", TIMEOR outputs the resulting PCA plots of the normalized and corrected read count data. 
The user can again perform replicate (or sample) correlations on the normalized and corrected data. Note 
that at any point in this analysis, the user can save their current location by clicking on the button at the 
bottom on each web-page (Figure S2C bottom left). 

 
PRIMARY ANALYSIS 
 

In the Primary Analysis stage, the user is asked to name the results folder and set up the adjusted 
p-value threshold (Figure S2E). If the user selected to compare multiple differential expression methods 
(as part of the six initial questions to set the adaptive default methods) and the data are close time series, 
TIMEOR will run DESeq2 (Love et al., 2014), ImpulseDE2 (Fischer et al., 2018), and Next maSigPro 
(Nueda et al., 2014). If the user selected that these timepoints are distant, DESeq2 (Love et al., 2014) 
will be run using the gene-by-sample read count matrix. Note that TIMEOR inputs the raw read count 
matrix for DESeq2 (Love et al., 2014) and ImpulseDE2 (Fischer et al., 2018), as they require non-
normalized and corrected read count data and the pre-normalized and corrected data for Next maSigPro 
(Nueda et al., 2014). When the user clicks “Go” the method(s) are run. Once finished, the user can 
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compare the overlap of DE genes between methods in a Venn diagram (Figure S2E). The user can also 
compare these results with a list of genes (from a past study for example). TIMEOR outputs the results 
for each method in a table that can be selected using the dropdown menu. When a method is selected, 
TIMEOR produces the associated gene trajectory clustermap on the right (Figure S2E).  

 
The clustermap (Sievert et al., 2020) interactively highlights clusters of DE genes’ expression 

trajectories in the form of a log2 fold change or z-score, formed using Euclidean distance and Ward.D2 
(Murtagh et al., 2014) hierarchical clustering. Importantly, TIMEOR addresses the challenge of clustering 
by taking the mode of 3 unsupervised clustering methods (partition around medoids (Reynolds et al., 
2006), Silhouette (Rousseeuw et al, 1987), and Calinski criterion (Caliński et al., 1974)) to automatically 
return the number of gene trajectory clusters to the user. Given that clustering is an NP-hard problem 
(Křivánek et al., 1986), TIMEOR also provides an Elbow plot (Figure S4D) to aid the user in choosing 
the number of clusters manually. Once the user determines which DE method to use, those results are 
passed to Secondary Analysis to determine temporal relations between genes and TFs.  
 
SECONDARY ANALYSIS 
 

TIMEOR performs three types of Secondary Analysis, all in separate tabs. Namely “Enrichment” 
(Figure S3A), “Factor Binding” (Figure S3B), and “Temporal Relations” (Figure S3D) to uncover both 
what processes are enriched (i.e. affected) in the user’s time series experiment, and how those genes 
are regulating that enriched process. In the following sections we describe the details of each tab 
separately. 
 
SECONDARY ANALYSIS - ENRICHMENT 
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Figure S3: TIMEOR Application Secondary Analysis.  
A. In the Secondary Analysis Stage “Enrichment” tab, each gene trajectory is assessed for gene ontology, 
pathway, network, and de novo motif enrichment.  
B. TIMEOR scans for the observed and top four predicted transcription factors (TFs) to bind to each gene 
trajectory cluster (table top right) from the Top Predicted Transcription Factor Binding by Orthology table. 
TIMEOR returns ENCODE IDs where ChIP-seq data exist for each TF. The user can then choose which 
TFs to plot over each gene trajectory cluster to help validate key regulators.  
C. TIMEOR displays four predicted TF tables: 1) Top Predicted Transcription Factors by Orthology table, 
giving information regarding: the observed, predicted TFs by orthology, and associated ENCODE IDs 
(not shown), which is built from a consensus between multiple methods’ results, visible in 2) Top 
Predicted Transcription Factors by Orthology per Method table consisting of the top predicted TFs for 
each individual method by orthology. If there is a consensus among methods in table 2 for any of the top 
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four TFs above 40%, those results are displayed in table 1. 3) Top Predicted Transcription Factors by 
Motif Similarity table, giving information regarding: the observed, predicted TFs by motif similarity, and 
associated ENCODE IDs (not shown), which is built from a consensus between multiple methods’ results, 
visible in 4) Top Predicted Transcription Factors by Motif Similarity per Method table, consisting of the 
top predicted TFs for each individual method. If there is a consensus among methods in table 3 for any 
of the top four TFs above 40%, those results are displayed in table 4. 
D. TIMEOR infers the temporal relations between the observed and predicted transcription factors. The 
user can move nodes in the desired order using the STRINGdb interface.  
E. TIMEOR provides two tutorials, one for the web-app and one for the command line version of TIMEOR.  
F. Each session’s results are clearly organized in the user’s personal analysis session folder to download 
for future use. Blue indicates a folder; black indicates a file, webpage, or image; and an asterisk indicates 
many files or folders of the same type.  
 
The resulting gene trajectory clusters are passed to the “Enrichment” tab in the “Secondary Analysis” 
stage. The user can toggle through the clusters to see the gene trajectory cluster (i.e. gene set) they wish 
to analyze (Figure S3A). Once the user clicks on the analyze button, the following enrichment analyses 
are performed: gene ontology (GO), pathway, network, and de novo motif. For GO analysis, 
ClusterProfiler (Yu et al., 2012) is run with a Benjamini Hochberg adjusted p-value cutoff of 0.05. If 
particular GO terms (molecular function, biological process, and cellular component) are significantly 
enriched for that group of genes, those results are depicted as “dot plots” under the clustermap on the 
“Enrichment” tab. Dot plots highlight the enriched GO terms (x-axis) vs. the ratio of the genes within the 
cluster that are enriched for that GO term (y-axis). The radius of the dot shows the count of genes 
enriched for that GO term and the color of the dot indicates how significant the GO term is. 
 

TIMEOR stores other GO result formats including ontology plots, where the leaves of the tree are 
the most specific enriched terms, and a relationship graph, highlighting which GO terms are related to 
each other. The radius of each node shows the count of genes enriched for that GO term and the color 
of the dot indicates how significant the GO term is. TIMEOR also outputs spreadsheets of all results into 
the user’s personal analysis session folder.  

 
Next, pathway level analysis is performed on each selected gene trajectory cluster using 

PathView (Luo et al., 2013), where an enriched pathway (Benjamini Hochberg adjusted p-value ≤ 0.05) 
is output with temporal highlighting for genes (-1 is most downregulated and 1 is most upregulated).  

 
TIMEOR then uses STRINGdb (Franceschini et al., 2013) to search for enriched protein-protein 

interaction networks, if the enrichment for that group of genes is below a q-value ≤ 0.05. STRINGdb 
highlights various types of known interactions between genes, namely ‘experimentally determined’ and 
from ‘curated databases’. StringDB also highlights predicted edges from ‘gene neighborhoods’, ‘gene 
fusion’, and ‘gene co-occurrence events’. Lastly STRINGdb provides ‘text-mining’, ‘co-expression’, and 
‘protein-homology’ interaction edge types. TIMEOR also stores a table of these interactions, along with 
the PubMed IDs that support ‘experimentally determined’ edges in the user’s personal analysis session 
folder. 
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Lastly, TIMEOR uses MEME (Bailey et al., 1994) to discover novel (i.e. de novo), ungapped motifs 
in the sequences within each gene trajectory cluster, and returns the top three motifs. The positive strand 
motifs are shown, along with MEME’s downloadable interactive results. TIMEOR stores the reverse 
complement motifs, and each gene’s DNA sequence files in the user’s personal analysis session folder. 
If the user desires, TIMEOR’s command line tools can be run to scan each cluster to output any RNA 
types which are significantly enriched within each gene cluster using the hypergeometric test of 
significance. The RNA types are lncRNA, miRNA, pre-miRNA, snRNA, snoRNA, tRNA, pseudogene, 
rRNA, and protein coding. 
 
SECONDARY ANALYSIS - FACTOR BINDING 
 

On the next tab “Factor Binding” within Secondary Analysis, TIMEOR scans across all clusters to 
identify both observed and predicted TFs (Figure S3B), and list any ENCODE (Davis et al., 2018; Joly 
Beauparlant et al., 2020) IDs associated with predicted TF binding data. TIMEOR displays the following 
four predicted TF tables: 1) Top Predicted Transcription Factors by Orthology table, consisting of three 
pieces of information: a. observed TFs, predicted TFs by orthology, and c. associated ENCODE IDs. 2) 
Top Predicted Transcription Factors by Orthology per Method table lists the four top predicted TFs by 
orthology for each individual method. 3) Top Predicted Transcription Factors by Motif Similarity table lists 
three pieces of information: a. observed TFs, b. predicted TFs by motif similarity, and c. associated 
ENCODE IDs. 4) Top Predicted Transcription Factors by Motif Similarity per Method table lists the four 
top predicted TFs by motif similarity for each individual method (Figure S3C). In what follows we describe 
how each table is made.  

 
TIMEOR performs this TF prediction using RcisTarget (Aibar et al., 2017) to first identify TF 

binding motifs which are over-represented (i.e. enriched) in a gene list. RcisTarget uses a database (Key 
Resource Table Deposited Data) containing genome-wide motif rankings, collected through multiple 
methods including HOCOMOCO (Kulakocskiy et al., 2017), Transfac (Wingender et al., 1996), Jaspar 
(Sandelin et al., 2004), CIS-BP (Weirauch et al., 2014), HOMER (Heinz et al., 2010), and several labs’ 
datasets including Dr. Jussi Taipale (Aibar et al., 2017). RcisTarget performs motif-enrichment analysis 
on a gene list by first estimating the over-representation of each motif on the gene set. RcisTarget 
displays the resulting selection of significant motifs in ranked order by the Normalized Enrichment Score 
(NES). This is calculated for each motif based on the area under the curve distribution of all the motifs 
for the gene-set. Those motifs that pass the given threshold (3.0 by default by changeable by user) are 
considered significant.  

 
Rcistarget’s results are mostly long lists of redundant significantly enriched motifs and associated 

candidate TFs that are derived from multiple databases. TIMEOR prioritizes this long list by first forming 
a consensus about the top four (default but changeable by user) candidate TFs which bind to the input 
group of genes. This consensus is formed in three steps. First, enriched motif search is a widely studied 
problem, and TIMEOR leverages this fact to scan across all motif databases for which TF binding motifs 
are enriched. TIMEOR does this by first splitting the RcisTarget ranked list results into smaller ranked 
lists, one for each database used to identify enriched motifs. If at least 40% (default but changeable by 
user in command line version of TIMEOR) of the databases agree on their top ranked TF, then 
ENCODExplorer (Joly Beauparlant et al., 2020) is used to scan for any ChIP-seq data that exists for this 
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TF. This procedure continues for the second, third, and fourth candidate TFs. TIMEOR repeats the run 
of RcisTarget and ENCODExplorer on each cluster to identify its recommendation for at most the top four 
candidate TFs. This process is repeated to find two types of candidate TFs. 

 
Each enriched motif is associated with candidate TFs of two kinds, and are output into two tables: 

1) based on orthologous sequences and placed in Top Predicted Transcription Factors by Orthology 
table, and 2) based on similarities between annotated and unknown motifs and placed in Top Predicted 
Transcription Factors by Motif Similarity table (Aibar et al., 2017; Verfaillie et al., 2014). TIMEOR then 
uses ENCODExplorer to find associated factor binding data from ENCODE where possible. The user can 
also see the associated Top Predicted Transcription Factors for Method table, consisting of the top 
predicted TFs for each individual method for both orthology and motif similarity (Figure S3C). 

 

 
Figure S4: TIMEOR’s visual outputs assist the user to make analysis decisions.  
A. Alignment metrics from HISAT2 for data from Zirin et al. 2019.  
B. Alignment metrics from Bowtie2 for data from Zirin et al. 2019. 
C. TIMEOR produces a Venn diagram comparing categorical (DESeq2) and continuous (ImpulseDE2, 
Next maSigPro) differential expression methods and the previous study (Zirin). ImpulseDE2 shows the 
highest percent overlap with the previous study and other methods.  
D. TIMEOR uses multiple methods to assess stability of the number of clusters. The Elbow method 
showed decreasing error stabilized at six clusters. 
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E. Simulation design, 1. The simulated ground truth network, 2. STRINGdb’s TF network highlighting 
known (i.e. experimentally determined) interactions, and 3. TIMEOR’s ground truth temporal relations 
table (gene regulatory network). 
F. Multiple predicted TF tables were used to help identify the top predicted TFs binding to each cluster 
from Zirin et al., 2019 data. In i. are the top transcription factors called by popular TF prediction methods 
highlighting that CYC has known observed and predicted TF interactions and ChIP-seq data to validate 
interactions. In ii. are the top transcription factors by orthology (table titled Top Predicted Transcription 
Factors by Orthology), and in iii. are the top transcription factors by motif similarity (table titled Top 
Predicted Transcription Factors by Motif Similarity). Each table also provides any ENCODE identifiers for 
ChIP-seq data if applicable (Davis et al., 2018; Joly Beauparlant et al., 2020). 
G. TBP average ChIP-seq profile over the gene body ±1KB for all six clusters. 
H. CG9727 average ChIP-seq profile over the gene body ±1KB for all six clusters. 
 

TIMEOR then prompts the user to upload their own or processed (using the ENCODE IDs 
provided by TIMEOR) TF binding data in the form of a .bigWig file, to see how the candidate TF(s) bind 
to genes within each gene trajectory cluster. DeepTools (Li et al., 2009) is used to generate an average 
profile and heatmap over the gene body ±1kb from the transcription start and end site (Figure S3B). 
TIMEOR can process three TFs at a time through the web interface. All results are stored in the user’s 
personal analysis session folder.  

 
SECONDARY ANALYSIS - TEMPORAL RELATIONS 
 

On the “Temporal Relations” tab, TIMEOR harnesses the time series RNA-seq data which 
TIMEOR clustered, STRINGdb’s “experimentally determined” edges, and knowledge of the observed and 
predicted TFs that bind each cluster. Specifically, the observed and predicted TFs within the Top 
Predicted Transcription Factors by Orthology table are combined with the temporal dynamics across 
gene trajectory clusters to form the “Temporal Relations Between Observed and Top Predicted Factors” 
table. This latter table defines the GRN and specifically highlights four relationships in the form of a 
quadruple (source TF, target TF, regulation type, interaction type). Interaction types are: “predicted to 
observed known interaction”, “predicted to observed predicted interaction”, “observed to observed known 
interaction”, or “observed to observed predicted interaction”. Regulation types are “activation” or 
“repression”. Specifically, if a predicted TF interacts with an observed TF and this is a known interaction 
(as specified by STRINGdb’s experimentally determined edges) then that gene is denoted to have an 
edge type “pred_obs_known_int” (i.e. predicted TF and observed TF have known interaction). 
Furthermore, this edge can show that the predicted TF is activating or repressing the observed TF. 
Similarly, an observed TF can interact with another observed TF through a known interaction (denoted 
“obs_obs_known_int”). TIMEOR proposes possible novel interactions between a observed TF activating 
or repressing another observed TF, or a predicted TF activating or repressing a observed TF. These 
edge types are denoted “obs_obs_pred_int” and “pred_obs_pred_int”, respectively (Figure S4D).  

 
Note that TIMEOR only evaluates the regulation type of observed TFs. Importantly, these 

interactions are confined to a window of time set by the user for question six: “What is the maximum 
number of time steps over which one gene can influence the transcription of another gene?” to determine 
the window of time in which to look for potential causal relations between TFs. Measuring such causal 
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relations is only truly feasible using time series RNA-seq data. TIMEOR’s simple algorithm takes the time 
window defined by the user in question six, and reports which TFs might influence each other, and how 
in that window. More specifically, TIMEOR reports which interactions are known between observed TFs 
and observed and predicted TFs, and predicts novel interactions between observed TFs, while also 
indicating each repressive or activating effect. TIMEOR’s flexible framework enables the user to change 
this window threshold as desired.  

 
At the bottom of this last tab TIMEOR provides the STRINGdb web-interface to facilitate the user to 
visualize and customize the resulting temporal regulatory network. In this way, the user can add and 
move TF nodes around, as well as add other non-TF genes to the network (Figures 3D, S3D).  
  
SUPPLEMENTAL METHODS 
 
SIMULATIONS 

 
Polyester version 1.24.0 (Frazee et al., 2015) was used to simulate four RNA-seq expression 

cascading activation patterns over six time points (Figure S3E) two biological replicates for 63 genes at 
approximately 20X sequencing coverage. Note that the first time point was used as the control. Those 
fold change expression cascades were trajectory 1: 0.5,2,2,3,4,4.5; 2: 0.2,0.5,2,4,4.5,5; 3: 
0.1,0.5,0.8,0.9,1,3; and 4: 0.05,0.1,0.1,0.5,0.5,4. To obtain an accurate baseline gene expression across 
the five timepoints, we analyzed a five time point RNA-seq experiment of fusobacterium nucleatum-
stimulated human gingival fibroblasts control samples (GEO: GSE118691) taken from two donors (1 and 
2) at 2, 6, 12, 24, 48 hours (Kang et al., 2019a; Kang et al., 2019b). We simulated a constant RNA-seq 
expression of one fold across all five timepoints for all those genes that were active in at least one time 
point. This culminated in simulating expression for 17723 genes of which four are observed TFs and one 
TF is predicted. That is, the fourth expression trajectory activated last was enriched for the predicted TF 
SRF to bind by 22 genes (Han et al., 2018).  

 
To simulate the temporal relationships between these five TFs, TIMEOR enables the user to 

choose the window of possible interaction between TFs along the time course, which we set to be one 
time point. In this window, Figure S3E step 1 highlights our ground truth simulation of four observed TFs 
(one for each activation cascade trajectory) and one predicted TF. Specifically, at the first time point, we 
simulated initial activation of AR by NFKB1 which is a known (i.e. experimentally determined) interaction 
(Figure S3E). At the second time point we simulated AR activating FOSL1 (known interaction) and 
CREB1 (predicted interaction). At the third time point, we simulated SRF to activate the two observed 
genes (FOSL1 and CREB1) in known interactions. At this same time point, we simulated FOSL1 and 
CREB1 to activate each other in known interactions.  

 
This simulation can be described in nine steps. First, as input, Polyester takes annotated 

transcript nucleotide sequences in the form of cDNA sequences in FASTA format. We used bioMart 
(https://m.ensembl.org/biomart/martview/) to extract the first transcript sequence for each of 63 genes. 
Second, TIMEOR ran Bowtie2 version 2.3.5 (Langmead et al., 2012) to align all sample .fasta files to the 
human genome (GRCh38): 
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(bowtie2 -f -p 3 -x /genomes_info/hsa/genome_bowtie2/genome -U sample_t01.fasta --un-gz 
out_un.sam.gz --al-gz out_al.sam.gz --met-file out_met-file.tsv -S out.sam 2> summaryfile.txt),  
 
and achieved an average 83.9% alignment rate. Third, samtools version 1.9 (Li et al., 2009) then 
converted and sorted all .sam files to .bam files: 
 
(samtools view -S -b out.sam > out.bam; rm -rf out.sam out.sorted.sam; samtools sort out.bam -o 
out.sorted.bam; rm -rf out.bam). 
 
Fourth, TIMEOR ran HTSeq to produce a read count matrix of samples by read counts per gene for each 
sample, and TIMEOR then merged the samples in chronological order to create the final read count 
matrix of genes by sample (i.e. replicates). 
 
(htseq-count -f bam -r pos -i gene_id out.sorted.bam BDGP6/genes.gtf > htseq_counts). 
 
Fifth, TIMEOR ran ImpulseDE2 version 1.10.0 (Fischer et al., 2018) at an adjusted p-value threshold of 
0.05 and found 65 DE genes. Neither of the additional genes were TFs and thus not selected for 
downstream TF temporal regulation analysis. Sixth, TIMEOR clustered the gene trajectories for all DE 
genes into 4 clusters. Seventh, for each cluster TIMEOR identified and summarized the top four (default 
by changeable by user) predicted TFs across at most 21 TF prediction methods when toggling the percent 
concordance at various thresholds (2, 5, 15, 25, 35, 45, 55, 65, 75, and 85 percent), and reported the 
percent concordance among these methods’ ranks for the top four predicted TFs. Note that TIMEOR 
uses only the methods that output a TF when calculating percent concordance. Eighth, TIMEOR infers 
the temporal relationships between observed and top one predicted TFs for each cluster. This process 
of calling the top predicted TFs and inferring the temporal relations happened 10 times by toggling this 
percent concordance parameter between 2% - 85%.  
 
Ninth, we calculated recall and precision to assess TIMEOR’s robustness to recover the true underlying  
(i.e. ground truth) gene regulatory network (GRN) after determining the TF temporal relationships. We 
defined the quadruple (source TF, target TF, regulation type, interaction type). Interaction types are: 
“predicted to observed known interaction”, “predicted to observed predicted interaction”, “observed to 
observed known interaction”, or “observed to observed predicted interaction”. Regulation types are 
“activation” or “repression”. A true positive consists of all correct quadruples. A false negative is failing to 
report one of the ground truth quadruples. And a false positive consists of introducing a new quadruple. 
TIMEOR recovered the true network with perfect recall at all percent concordance thresholds except at 
high percent concordance (65% and above) which lead to just one ground truth TF to drop out. As 
expected, at low percent concordance between TF prediction methods TIMEOR predicted other TF 
interactions which were not simulated (i.e. not part of ground truth). At a concordance threshold of at 
least 35 and above we obtained perfect precision (Figure 2A). 
 
REAL DATA PROCESSING 
 

TIMEOR uncovered the complex molecular functions after insulin stimulation in Drosophila S2R+ 
cell (project ID SRP190499, Supplementary Data 1) by integrating both temporal RNA-seq and ChIP-
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seq data (Supplementary Data 2). Through TIMEOR, the steps described next were followed. The data 
were gathered from NCBI project SRP190499 using fastq-dump (Li et al., 2009). Note only 2 of 30 
samples shown. The specific command used was: 

 
(parallel -j $1 --bar fastq-dump {1} -split-files -O $2 -gzip ::: SRR8843729 SRR8843730).  
 
The sequenced reads were run through FastQC (Andrews et al., 2010) with default parameters to check 
the quality of raw sequence data and filter out any sequences flagged for poor quality. No sequences 
were flagged. The specific command used was: 
 
(fastqc SRR.fastq.gz --outdir=/fastQC_results/)  
 
Sequenced reads were then mapped to release 6 Drosophila melanogaster genome (dm6) using Bowtie2 
(Langmead et al., 2012) and HISAT2 (Kim et al., 2015) (Figure S4A, B). Bowtie2 was used to align reads 
to the dm6 genome with this command:  
 
(bowtie2 -p 3 -x /genomes_info/dme/genome_bowtie2/genome -U SRR.fastq.gz --un-gz out_un.sam.gz 
--al-gz out_al.sam.gz --met-file out_met-file.tsv -S out.sam 2> summaryfile.txt) 
 
HISAT2 was used to align reads to the dm6 genome, followed by sorting and converting to a bam file:  
 
(hisat2 -p 3 --dta -x /genomes_info/dme/genome_hisat2/genome -U SRR.fastq.gz -t --un-gz 
out_unalign.sam.gz --al-gz out_al_atleastonce.sam.gz --known-splicesite-infile 
/genomes_info/dme/splicesites.txt --novel-splicesite-outfile novel_splicesite --summary-file 
summaryfile.txt --met-file met-file.txt -S out.sam 2> alignmentsummary.txt).  
 
HISAT2 was chosen due to higher unique read mapping (Figure S4A, S4B). All sample .sam files were 
sorted and converted to .bam files: 
  
(samtools view -S -b out.sam > out.bam; rm -rf out.sam out.sorted.sam; samtools sort out.bam -o 
out.sorted.bam; rm -rf out.bam). 
 
TIMEOR plots the percent of reads mapping exactly once and overall alignment rate, which highlights 
that replicate SRR8843750_1.fastq.gz (timepoint 40 minutes) and replicate SRR8843747_1.fastq.gz 
(timepoint 180 minutes) show low alignment (Figure S4A, B). Due to contamination at the experimental 
level, replicate SRR8843750_1.fastq.gz was removed from further analysis. Next all replicates were 
converted to sorted .bam files (Li et al., 2009) to produce read counts per gene using HTSeq (Anders et 
al., 2015). Note that htseq assumes that .bam is sorted by name by default and not position, so -r pos is 
necessary if samtools sort is used without the -n flag. TIMEOR ran HTSeq to produce a read count matrix 
of samples by read counts per gene for each sample, and TIMEOR then merged the samples in 
chronological order to create the final read count matrix of genes by sample (i.e. replicates). Specifically, 
the used command for HTSeq is: 
 
(htseq-count -f bam -r pos -i gene_id out.sorted.bam BDGP6/genes.gtf > htseq_counts). 
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Removing contamination: Note that replicate SRR8843750 shows an overall mapping rate of 17.44%. 
Further, SRR8843747 shows an overall mapping rate of 47.02%. When we use BLAST (both blastn and 
megablast, Altschul et al., 1990) to identify several sequences from replicate SRR8843750 we see 
synthetic construct external RNA control and Methanocaldococcus jannaschii as the top subject 
sequence. When we use BLAST to identify several sequences from replicate SRR8843747 we see 
Drosophila simulans uncharacterized protein as the top subject sequence. In contrast, looking at several 
sequences from replicate SRR8843757 and SRR8843749 the top subject sequences are derived from 
Drosophila melanogaster. Therefore, the SRR8843750 replicate was removed. 
 
Normalization and correction: After filtering out rows where the mean read count is 5 or less across all 
replicates and samples, 8909/17558 genes remained. This normalization and correction was used for 
Next maSigPro (Nueda et al., 2014) as it requires pre-normalization and correction. See further 
explanation in section “Next maSigPro results”. 
 
Differential expression: According to comparisons made by Spies et al., 2019 (Spies et al., 2019): all 
time course tools were outperformed by classical pairwise comparison approaches (in this case DESeq2, 
Love et al., 2014) on short time series (<8 time points) in terms of overall performance and robustness 
to noise, mostly because of high number of false positives, with the exception of ImpulseDE2 (Fischer et 
al., 2018). On longer time series, pairwise approaches were performed less well than splineTimeR 
(Michna et al., 2016) and Next maSigPro, which did not identify any false-positive candidates. 
SplineTimeR does not support Zirin et al. 2019’s experimental design and thus was unable to be run. 
Other methods consider this dataset experimental set-up within their modeling framework.  
 
There is significant overlap between the differentially expressed (DE) genes previously called by Zirin et 
al., 2019 and these three methods. ImpulseDE2 (Fischer et al., 2018) showed the most significant set of 
DE genes overlapping with the previous study (Zirin et al., 2019). This gene set was used downstream 
in TIMEOR to produce a clustermap of seven gene trajectory clusters. We recapitulate the findings of 
Zirin et al., 2019 by finding two clusters of DE genes (adjusted p-value < 0.05) enriched in the GO 
categories nucleolus and ribosome biogenesis, some of which were not identified previously. TIMEOR 
identified several additional clusters with novel characteristics. 
 
Zirin et al., 2019 identified 1211 DE genes and followed-up to identify a subset of 33 DE genes involved 
in several biological processes including ribosome biogenesis and transcription. Converting those gene 
symbols to Flybase IDs gives 36 genes, as some gene names correspond to one of several Flybase IDs. 
Comparing the gene list of 36 Flybase IDs between all methods, we observe the most significant gene 
overlap with ImpulseDE2 (p-value < 5.518766e-08 using the hypergeometric test of significance) 
compared to Next maSigPro ( p-value <0.0008382603) and DESeq2 (p-value <0.002140549). 
Comparing our results with the 1211 DE genes from Zirin et al.,TIMEOR finds that ImpulseDE2 showed 
the highest overlap with the list of 1211 DE genes (p-value = 5.33342e-127 using the hypergeometric 
test of significance) and the highest overlap with other methods (Figure S4C).  
 
ImpulseDE2 results: ImpulseDE2 requires unnormalized and uncorrected counts and replicate data. At 
an adjusted p-value cutoff of 0.05, we found 156 significantly differentially expressed genes. As 
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aforementioned in the previous paragraph, ImpulseDE2 shows the most significant gene overlap with the 
previous study when looking at the full set of 1211 DE genes (p-value = 5.33342e-127) and the follow-
up subset of 36 DE genes (p-value < 5.518766e-08). 
 
Next maSigPro results: Data must be normalized before the application of Next maSigPro because 
there is no integrated normalization method (Nueda et al., 2014). Thus, the data are first filtered to remove 
any genes across all replicates with less than a mean of 5 reads. The data are then normalized by the 
mean ratio normalization and batch effect corrected with Combat (Leek et al., 2012). Considering all case 
conditions with 3 batches, DESeq2 reported 76 differentially expressed genes. When comparing with the 
full set of 1211 DE genes there is a less significant overlap (p-value = 3.748126e-69) than with 
ImpulseDE2. The overlap between these 76 genes and the 156 from ImpulseDE2 is 76 genes. 
Furthermore, when comparing with the follow-up subset of 36 DE genes, Next maSigPro reports a less 
significant overlap with Zirin et al., 2019 than ImpulseDE2, with 3 overlapping genes, resulting in a p-
value of 0.0006961443.  
 
DESeq2 results: DESeq2 requires unnormalized and uncorrected counts with replicate data. Given that 
this is a categorical differential expression method, we must test for any differences over multiple time 
points all compared to time point 0 (i.e. the reference). Here we use a design including the factor of time, 
and use the likelihood ratio test to see if there are significant changes in expression for genes between 
T0 and the each additional time point. Considering all case conditions with 3 batches, we obtain 30 
differentially expressed genes. When comparing with the full set of 1211 DE genes there is the least 
significant overlap (p-value = 2.010729e-29) with Zirin et al., 2019. Furthermore, when comparing with 
the follow-up subset of 36 DE genes, DESeq2 reports the least significant overlap with 3 overlapping 
genes, resulting in a p-value of 4.322579e-05. 
 
TIMEOR clustermap of z-scored gene expression trajectories at an adjusted p-value<0.05: Figure 
2B and 3A show the clustermap of DEG expression as z-scores, which correspond to the observed read 
counts of a sample rescaled to a standard normal distribution (with mean 0 and standard deviation 1). 
Specifically, the z-score of an observation is the mean divided by the standard deviation of all 
observations in the sample. Thus, the z-score describes how many standard deviations an observation 
is from the mean of all observations, with positive values indicating upregulation of the gene and negative 
values indicating downregulation of a gene. These z-scored DEG trajectories were then clustered using 
Euclidean distance and Ward.D2 (Murtagh et al., 2014) hierarchical clustering. Note that z-scored 
expression values are generated for ImpulseDE2 and Next maSigPro. DESeq2 is a categorical method 
that outputs log2 fold change values across each timepoint. TIMEOR uses a variety of methods to assess 
stability of the number of clusters. In particular, the Elbow method showed that the decreasing error 
stabilized at six clusters (Figure S4D). Further human inspection showed a clear delineation of six 
clusters in the heatmap. 

 
TIMEOR GO analysis: ClusterProfiler (Yu et al., 2012) is run to determine gene ontology (GO) 
enrichment of each cluster of genes (Figure 2B and 3A) within the categories of biological process, 
cellular component, and molecular function. Within each of our six clusters using a Benjamini Hochberg 
adjusted p-value cutoff of 0.05, TIMEOR found the most significant GO term for cluster d to be cellular 
response to endogenous stimulus within “biological process”. In cluster c, the nucleolus (cellular 
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component), ribosome biogenesis (biological process) and catalytic activity acting on RNA (molecular 
function) are the most enriched terms. Within the largest cluster b, ribosome biogenesis (biological 
process), nucleolus (cellular component) and snoRNA binding (molecular function) are the most enriched 
terms. The molecular function enrichment for snoRNA binding is particularly interesting because in the 
next activated cluster e there is a significant number of snoRNAs present (Figure 2E). Our full TIMEOR 
results folder with various GO analysis visualizations can be found on Github. 
 
TIMEOR pathway analysis: Pathview (Luo et al. 2013) is run to highlight genes and their trajectories (-
1 is most downregulated and 1 is most upregulated) in any enriched pathways for each cluster of genes. 
Figure 2D shows the DE genes in cluster b which are part of the ribosome biogenesis pathway. This 
pathway was also identified in the previous study which generated these data from Zirin et al., 2019. 
 
TIMEOR factor binding analysis: For each cluster, TIMEOR found both observed and predicted TFs 
via the Top Predicted Transcription Factors by Orthology table and Top Predicted Transcription Factors 
by Motif Similarity table, and each individual method’s results which are visible in their associated Top 
Transcription Factors per Method Table for both orthology motif similarity. In TIMEOR’s factor binding 
script, the threshold normalized enrichment score was set to 3, and the percent concordance threshold 
was set to 30. Figure 3B shows the prioritized list of TFs per cluster. TIMEOR’s provided list of ENCODE 
IDs (Davis et al., 2018; Joly Beauparlant et al., 2020) enabled us to choose which factor data to upload 
and view via average profiles. See next section for those details. 
 
TIMEOR average profile generation: For each top predicted transcription factor, we identified the most 
closely related ChIP-seq dataset (in .bigwig format) on ENCODE using the IDs provided by TIMEOR 
(Supplementary Data 2). Specifically, using data from Dr. Kevin White, we used 6-24 whole organism 
embryo ChIP-seq data for CWO (ENCFF491LHJ). We used 0-16 hours whole organism embryo ChIP-
seq data for MYC (ENCFF829HXS). We used whole organism prepupa ChIP-seq data for CYC 
(ENCFF082KKV). And we used whole organism wandering third instar larva for HNF4 (ENCFF680FFM), 
TBP (ENCFF553PBY), and CG9727 (ENCFF145ATU). TIMEOR then uses deepTools (Ramírez et al., 
2016) to plot the average peak distribution over each gene trajectory cluster, specifically using the set of 
commands below:  
 
(computeMatrix scale-regions -S ${INPUT_BIGWIG} -R ${LIST_BEDS[@]} --binSize 250 --
beforeRegionStartLength 1000 --afterRegionStartLength 1000 --regionBodyLength 5000 -o 
${OUTPUT_DIR}/matrix.genes.clusters.mat.gz --skipZeros --smartLabels --sortRegions descend) 
 
(plotHeatmap -m ${OUTPUT_DIR}/matrix.genes.clusters.mat.gz -out 
${OUTPUT_DIR}/heatmap_genes.clusters.${TF}.png --heatmapHeight 25 --heatmapWidth 15 --
labelRotation 45 --missingDataColor red --whatToShow="heatmap only") 
 
(plotProfile -m ${OUTPUT_DIR}/matrix.genes.clusters.mat.gz -out 
${OUTPUT_DIR}/avg_profile.${TF}.png --plotType=se --labelRotation 45 --plotHeight 15 --plotWidth 15 
--colors ${COLORS}) 
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TIMEOR temporal relations: Between all clusters, TIMEOR highlighted the temporal relationships 
between all observed and predicted TFs (those listed by default in the Top Predicted Transcription 
Factors by Orthology table). In TIMEOR’s temporal relations script, the number of time steps over 
which one gene can influence the transcription of another gene (question six) was set to two. Within 
this time window, all possible directed interactions are considered and characterized. We used the last 
tab of Secondary Analysis (i.e. “Temporal Relations”) to visualize and interpret the temporal relations 
table (encoding the GRN) in combination with the transcription factor network (Franceschini et al., 
2013), the clustermap, and the list of predicted TFs to identify the main altered regulatory mechanisms. 
Overall, TIMEOR predicts a GRN in which first, predicted TF Hnf4 is predicted to repress observed 
gene CG32772. CG32772 is then predicted to activate the observed gene cwo. Predicted TF TBP is 
also predicted to activate cwo. Due to TBP’s poor binding profile with its predicted cluster and overall, 
we examined CYC (Figure 3B, S4F) and determined that it is likely activating cwo (Figure 3D). 
Observed TF CWO is then predicted to activate pdp1. 

RESOURCE AVAILABILITY  

The code generated during this study is available on Github at 
https://github.com/ashleymaeconard/TIMEOR.git. 

● The published article includes all code generated or analyzed during this study. 
● This study reanalysed data generated and available on GEO with accession numbers 

GSE118691, and SRP190499. This study also reanalyzed the following ChIP-seq data 
ENCFF491LHJ, ENCFF829HXS, ENCFF082KKV, ENCFF680FFM, ENCFF553PBY, and 
ENCFF145ATU. 
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