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Heterozygous loss-of-function variants significantly expand the
phenotypes associated with loss of GDF11
Thomas A. Ravenscroft1,2, Jennifer B. Phillips3, Elizabeth Fieg4, Sameer S. Bajikar1,2, Judy Peirce3, Jeremy Wegner3, Alia A. Luna3,
Eric J. Fox3, Yi-Lin Yan3, Jill A. Rosenfeld1,5, Jonathan Zirin6, Oguz Kanca1,2, Undiagnosed Diseases Network*, Paul J. Benke7,
Eric S. Cameron7, Vincent Strehlow8, Konrad Platzer8, Rami Abou Jamra8, Chiara Klöckner8, Matthew Osmond9, Thomas Licata9,
Samantha Rojas9, David Dyment9, Josephine S. C. Chong10, Sharyn Lincoln11, Joan M. Stoler11, John H. Postlethwait3,
Michael F. Wangler1,2, Shinya Yamamoto1,2,12, Joel Krier4, Monte Westerfield3 and Hugo J. Bellen1,2,12,13✉

PURPOSE: Growth differentiation factor 11 (GDF11) is a key signaling protein required for proper development of many organ
systems. Only one prior study has associated an inherited GDF11 variant with a dominant human disease in a family with variable
craniofacial and vertebral abnormalities. Here, we expand the phenotypic spectrum associated with GDF11 variants and document
the nature of the variants.
METHODS: We present a cohort of six probands with de novo and inherited nonsense/frameshift (4/6 patients) and missense (2/6)
variants in GDF11. We generated gdf11 mutant zebrafish to model loss of gdf11 phenotypes and used an overexpression screen in
Drosophila to test variant functionality.
RESULTS: Patients with variants in GDF11 presented with craniofacial (5/6), vertebral (5/6), neurological (6/6), visual (4/6), cardiac
(3/6), auditory (3/6), and connective tissue abnormalities (3/6). gdf11 mutant zebrafish show craniofacial abnormalities and body
segmentation defects that match some patient phenotypes. Expression of the patients’ variants in the fly showed that one
nonsense variant in GDF11 is a severe loss-of-function (LOF) allele whereas the missense variants in our cohort are partial LOF
variants.
CONCLUSION: GDF11 is needed for human development, particularly neuronal development, and LOF GDF11 alleles can affect the
development of numerous organs and tissues.
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INTRODUCTION
Growth differentiation factor (GDF) proteins are members of the
bone morphogenetic proteins (BMP) subfamily of transforming
growth factor-beta (TGF-β) ligands and are key signaling proteins for
development.1,2 Loss-of-function (LOF) variants in GDF genes are
associated with disorders affecting many different organs and
tissues (Supplementary Table 1). Additionally, individual LOF variants
within the same GDF gene can lead to pleiotropic effects.3,4

Pleiotropy of individual GDF genes is likely due to the complex role
of these genes in the development of multiple tissues5,6 and
functional redundancies among GDF/BMP genes.7–9

GDF11 has three domains: a signal peptide (amino acid [AA]
1–24), a mature proprotein (AA25–298), and the TGF-β domain
(AA299–407) (Fig. 2c).10 The signal peptide localizes the protein to
the plasma membrane, where Furin proteases cleave the TGF-β
domain at an RXXR motif (AA295–298) allowing secretion of the
mature protein containing TGF-β domain while the cleaved
propeptide is retained in the membrane.11 Secreted GDF11 binds
to Activin receptors, which triggers phosphorylation of SMAD2
and subsequent translocation to the nucleus, upregulating genes
required for cell differentiation and tissue patterning.12–15

GDF11 is broadly expressed, with expression highest in skeletal
muscle, pancreas, kidney, retina, and the brain.10,16–18 GDF11 is
expressed ubiquitously within the brain with expression highest in
oligodendrocytes, oligodendrocyte precursors, and astrocytes,
followed by neurons.19 GDF11 is most highly expressed during
development and early life and its levels decline with aging.20,21

The breadth of GDF11 expression, coupled with high levels during
pre- and postnatal developmental stages, indicates that GDF11
may be required for proper organogenesis and homeostasis
after birth.
A GDF11 variant (NP_005802.1:p.[R298Q]) with a dominant

inheritance pattern and variable penetrance and expressivity has
been documented in a large family whose members presented
with cleft lip/palate as well as rib and vertebral hypersegmenta-
tion.22 The affected arginine (R) is the second arginine in the RXXR
motif essential for TGF-β domain cleavage.11 When this arginine is
replaced with glutamine, the TGF-β domain is not cleaved by Furin
proteases.22 The biochemical data, coupled with the dominant
inheritance pattern, suggest that this allele behaves as a dominant
LOF variant.
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Model organism studies have defined a developmental role
for GDF11.10,23–27 Gdf11-deficient (Gdf11−/−) mice die within
24 hours of birth with renal and palate abnormalities.10 The
skeleton of Gdf11−/− mice exhibits an increased number of ribs,
anteriorly directed homeotic transformations, posterior displa-
cement of hindlimbs, and defective inner ear structure.10,28

Gdf11 is a haploinsufficient locus in mice and skeletal
abnormalities are seen in heterozygous animals; Gdf11+/− mice
present fewer additional ribs and less severe craniofacial
abnormalities than Gdf11−/− mice indicating that the effect of
GDF11 function on skeletal development is dose-dependent.10

Gdf11 is also required for the timing and progression of
neurogenesis during the development of the spinal cord, retina,
and olfactory epithelium.23,26,29 Gdf11-related defects are
typically attributed to aberrant Hox gene expression down-
stream of Gdf11 signaling, which in turn causes major tissue
patterning defects in development.10

We have identified a cohort of patients with both de novo and
inherited variants in GDF11 presenting with complex neurological,
cardiovascular, connective tissue, ocular, and auditory pheno-
types, in addition to the craniofacial and skeletal abnormalities
previously described. Additionally, we generated a gdf11 LOF
zebrafish model and we used Drosophila to evaluate the function
of three of the patients’ GDF11 variants.

MATERIALS AND METHODS
Human genetics
All probands were exome or genome sequenced (Supplementary Methods
[SM]). All GDF11 variants were Sanger confirmed. GDF11 variants are
mapped onto the NM_005811.5 RefSeq transcript.

Sequence alignment
Protein sequences from human GDF11 (NP_005802.1), mouse Gdf11
(NP_034402.1), zebrafish gdf11 (NP_998140.1), and Drosophila myo
(NP_726604.1) were obtained from the National Center for Biotechnology
Information (NCBI) and aligned using BoxShade (https://embnet.vital-it.ch/
software/BOX_form.html).

Quantification of GDF11 gene and protein levels from peripheral
blood mononuclear cells
Peripheral blood mononuclear cell (PBMC) samples were quickly thawed at
room temperature and centrifuged at 500g for 5 minutes at room
temperature. RNA and protein were isolated and analyzed using separate
protocols described in SM. The primers used to quantify gene expression
are provided in SM. For western blotting standard protocols were used and
are described in the SM alongside antibodies used. For enzyme-linked
immunosorbent assay (ELISA) circulating GDF11 levels in plasma were
quantified using the human GDF11/GDF-11 Sandwich ELISA kit (LSBio #LS-
F11519) according to the manufacturer’s recommendations. Plasma
samples were diluted 1:1 in sample diluent before processing. Quantitative
polymerase chain reaction (qPCR) was performed with one technical
replicate and the ELISA was performed with three technical replicates.
Center values in Fig. 1b, c represent mean.

Generation of zebrafish gdf11 mutants
Three zebrafish indel alleles were generated using CRISPR-Cas9 (SM). We
generated three different frameshift deletions: b1407, a 2-bp deletion in
exon 1, c.374-5, resulting in an E125Vfs*15 truncation; b1408 a 7-bp
deletion in exon 3, c.922-28, creating an F308Gfs*53 truncation; and b1396,
which has a 703-bp deletion removing the 5’UTR and most of the first
exon. All alleles were confirmed by sequencing aligned to the GRCz11
reference transcript ENSDART00000066033.8. Surviving F1s for each allele
were raised to adulthood and genotyped to identify heterozygotes that
were then increased. Homozygous viable F2 mutants were raised to
adulthood and increased to obtain larvae for the described experiments,
alongside control larvae from homozygous wild-type F2 siblings.

Analysis of gdf11 expression in zebrafish
In situ hybridization was performed as described.30 Primers used are
described in SM. Image acquisition detailed in SM.
Single-cell RNA-seq expression for gdf11 was retrieved from the zebrafish

single-cell transcriptome atlas (http://cells.ucsc.edu/?ds=zebrafish-dev).
Tissue-specific assignments of cell-type identities are those previously
annotated.31

Analysis of zebrafish craniofacial structures
Zebrafish skeletal elements were fixed and stained with Alcian blue and
Alizarin red as previously described.32 Image acquisition and statistical
analysis are detailed in SM.

Fly stocks and maintenance
All fly stocks used in this study were either generated in-house or were
obtained from the Bloomington Drosophila Stock Center (BDSC). All flies
were reared on standard fly food and maintained at room temperature
unless specified. Fly lines used are listed in SM.

Generation of UAS-myo and myo-T2A-GAL4 flies
The Drosophila melanogaster complementary DNA (cDNA) for myo (isoform
myo-PA, FlyBase ID: FBal0267088) was generously provided by Michael
O’Connor.33 Identification of conserved amino acids corresponding to
variants in human GDF11 (fly variant in myo in parenthesis): p.E306K (p.
E500K), p.Y336* (p.F530*), and p.R295P (p.R489P) was done using multiple
protein alignment DIOPT v634 via Marrvel1.2 (www.marrvel.org).35 Muta-
genesis and transgene injection were done as previously described.36 Two
independent lines were made for each injected construct, and both
constructs were used in all future studies. The myo-T2A-GAL4 allele was
made as previously described.37 Detailed reagents are available in the SM.

Overexpression of myo assay
To determine the viability of each myo variant when overexpressed, UAS-
myo-WT and variant flies, as well as UAS-empty, were crossed to various
GAL4 driving lines (Act-GAL4, repo-GAL4, mef2-GAL4, and myo-T2a-GAL4) at
18 °C, 22 °C, 25 °C, and 29 °C. Following standard practice in the fly
community, two biological replicates of each cross were performed
(unblinded) from each cross to determine the percentage of viable flies
(N > 150: exact numbers are provided in Supplementary data file 1). A
chi-squared test, with expected totals derived from the number of viable
GAL4 > UAS-empty (pUAST-attB without any insert injected into VK00033)
animals with the respective GAL4, was performed to determine if
differences in viability were significant. No variation was estimated.

RESULTS
Patients with variants in GDF11 exhibit multisystemic phenotypes
Probands 1–6, with both de novo and inherited variants in GDF11
(NM_005811.4, NP_005802.1), present with complex neurological,
craniofacial, skeletal, cardiovascular, connective tissue, ocular, and
auditory phenotypes (Fig. 1, Table 1).22 Of the six patients in our
cohort, four have predicted nonsense or frameshift variants (p.
N94Rfs*47, p.Q147Gfs*82, p.T319Nfs*5, p.Y336*), and two have
missense variants (p.R295P, p.E306K) (Supplementary Table 2).
One missense variant perturbs the first arginine in the RXXR motif
(p.R295P) and the other missense variant reverses the charge
of a conserved residue in the TGF-β domain (p.E306K) (Table 1)
(Fig. 2b, c). RNA expression in PBMCs from proband 1 (p.Y336*)
showed GDF11 levels comparable to the patient’s unaffected
mother (Fig. 1b), suggesting that this variant does not undergo
nonsense-mediated decay (NMD), which is expected as this
variant lies in the final coding exon (Fig. 2c). However,
quantification of GDF11 protein levels in blood plasma using
ELISA showed 50% less GDF11 protein when compared to an
unaffected relative (Fig. 1c). This is expected as the truncating
mutant protein does not contain the antibody epitope in the TGFβ
domain (Fig. 1b). The frameshift variants are not documented in
gnomAD2.1.138 and are expected to produce a protein that lacks
the functional TGF-β domain (Fig. 2b, c). Additionally, the
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probability of LOF intolerance (pLI) score for GDF11 is 0.98 with an
observed/expected (o/e) score of 0.06 in gnomAD indicating a
high intolerance for LOF variants in GDF11.38 A query of missense
variants in GDF11 in MARRVEL35 revealed that p.R295P has a high
CADD score39 of 34 and is not seen in the gnomAD database
(Supplementary Table 2).38 Although the p.E306K variant is
observed once in gnomAD, the variant also has a high CADD
score of 27 (Supplementary Table 2). Both missense variants are
predicted to be damaging by various in silico prediction

algorithms.40,41 Additionally, the missense Z-score for GDF11 is
2.98, with an o/e score of 0.45, which indicates that GDF11 is
intolerant of missense variants.38 Table 1 lists clinical presentations,
which are summarized in the following paragraphs (more
information is available in the Supplementary information).
Proband 1 has a de novo p.Y336* (NP_005802.1) (NM_005811.4:

c.1008C>G) variant in GDF11. The patient was born with breathing
problems, hypotonia, poor suck, and many craniofacial abnorm-
alities including a high palate, wide nose, and a broad forehead.

Proband 1
p.Y336*

Exon 1-2 spanning Exon 2-3 spanning
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Fig. 1 Overview of patients with GDF11 variants. (a) Pictures of proband 1. (b) GDF11 expression was measured in peripheral blood
mononuclear cells (PBMCs) derived from the proband or unaffected mother by quantitative polymerase chain reaction (qPCR) using primer
sets spanning exons 1 and 2 (left) or 2 and 3 (right) normalized to GUSB loading control expression. RNA was collected from n= 2 technical
replicates from N= 1 blood draws per patient. Error bars = SD. (c) GDF11 expression was measured in plasma derived from the proband or
unaffected mother using a commercial GDF11 enzyme-linked immunosorbent assay (ELISA) kit (LSBio #LS-F11519) Error bars = SEM.
Quantification was performed in n= 4 technical replicates from N= 1 blood draw per patient. Pictures of proband 2 (d) and proband 6 (e).
X-ray of proband 5 (f).

T.A. Ravenscroft et al.

1891

Genetics in Medicine (2021) 23:1889 – 1900



He displayed overlapping toes and vertebral abnormalities
including a spinal fusion that led to scoliosis (Fig. 1a). He had
profoundly delayed motor milestones, global developmental
delay (DD), and intellectual disability (ID). Additionally, he has a
dilated aortic root, macrocephaly, brain anomalies including
agenesis of the corpus callosum, seizures, pronounced visual
problems including congenital cataracts, bilateral central lens
opacities, and myopia, and bilateral hearing loss.
Proband 2 has a maternally inherited heterozygous p.Q147Gfs*82

(NP_005802.1) (NM_005811.4:c.434_437dup) variant in GDF11. She
presented with respiratory problems secondary to tracheomalacia at
birth as well as a cleft lip and cleft palate (Fig. 1b). She has mild DD
and mild bilateral hearing loss with receptive and expressive speech
delays that improved greatly over time. She has craniofacial
abnormalities including a large and mildly dolichocephalic head with
a narrow forehead. She displays vertebral abnormalities (a long neck)
and additional skeletal abnormalities with short fingers, small feet,
and syndactyly of the fourth and fifth toes bilaterally. She is mildly
hypotonic but otherwise normal neurologically and has no observed
cardiac phenotype. The proband’s mother also carries the variant and
presented with similar but milder symptoms. The mother has cleft lip
and palate and dolichocephaly and a long neck, missing wisdom
teeth, and has narrow feet and toe abnormalities. Neurologically, the
mother is normal with no ID or DD. It is not known if the mother is
mosaic for the GDF11 variant.
Proband 3 has a de novo p.T319Nfs*5 (NP_005802.1)

(NM_005811.4:c.955dup) variant in GDF11. He has ID and DD with
delayed speech and language development. Besides a pectus
excavatum and mild scapula alata, he had no craniofacial or
vertebral abnormalities. This individual also presented with

absence seizures; however, seizures were also observed in a sister
who does not have the T319Nfs*5 variant in GDF11.
Proband 4 has a paternally inherited heterozygous p.N94Rfs*47

(NP_005802.1) (NM_005811.4:c.279_289del) variant in GDF11. She
presented with hypoglycemia and neonatal seizures. The indivi-
dual has significant DD, microcephaly, and cerebral atrophy in
addition to a lack of visual fixation. This proband has no skeletal
abnormalities. The father of this proband has no reported
phenotypes. It is not known if the father is mosaic for the
GDF11 variant.
Proband 5 has a de novo p.R295P (NP_005802.1) (NM_005811.4:

c.884G>C) variant in GDF11. He has craniofacial abnormalities with
marked brachycephaly and bilateral ptosis, prominent ears, and
short stature with preservation of head circumference. He has
additional skeletal abnormalities with marked scoliosis with
hypersegmentation of his vertebrae (Fig. 1f) and has a mildly
dilated aortic root. He presented with a history of regression at
18 months of age following scarlet fever with a loss of speech and
language skills and delayed motor milestones. He developed
spasticity, episodes of dystonia, small joint hypermobility, and
contractures to hips, knees, and elbows. Prior sequencing
identified a p.P193A (maternal) and a p.W1211C (paternal) variant
in Adenosine deaminase RNA specific (ADAR) (NM_001111.4), that
has been associated with a diagnosis of Aicardi–Goutières type 6
(AGS6, MIM 615010).42–44 His seizures, dystonia, and spasticity can
probably be attributed to ADAR; however, the remaining
phenotypes have not been previously associated with AGS6.
Proband 6 has a de novo p.E306K (NP_005802.1) (NM_005811.4:

c.916G>A) variant in GDF11. She presented with proximal
weakness and myasthenic syndrome in addition to recurrent

Table 1. Summary of clinical information from each proband.

Proband 1 Proband 2 Proband 3 Proband 4 Proband 5 Proband 6

Human variant Y336* Q147Gfs*82 T319Nfs*5 N94Rfs*47 R295P E306K

Inheritance pattern De novo Autosomal
dominanta

De novo Autosomal
dominanta

De novo De novo

Age of onset (y/o) 1 month 0 3 0 0 2 months

Current age (y/o) 32 17 8 15 months 11 12

Sex Male Female Male Male Male Female

Intellectual disability + − + NA + − 3/5

Developmental delay + + + + − + 5/6

Seizures + − +b + +c − 4/6

Neurological abnormalities + + + + + + 6/6

Visual disorders + + − + − + 4/6

Hearing disorders + + − − + − 3/6

Craniofacial abnormalities + + − + + + 5/6

Palate abnormalities + + − − − + 3/6

Vertebral abnormalities + + + − + + 5/6

Scoliosis + − − − + + 3/6

Toe abnormalities + + − − − + 3/6

Connective tissue
abnormalities

+ − − − + + 3/6

Cardiac abnormalities + + − − + − 3/6

Aortic dilation + − − − + − 2/6

Detailed reports can be found in the Supplemental materials. Proband 2 inherited the variant from her mother who has a milder phenotypic presentation.
aProband 4 inherited his variant from his father, the father did not report any shared phenotypes. It is not known if the mother of proband 2 or father of
proband 4 is mosaic.
bFor proband 3 absence seizures were also reported in a sister who did not carry a variant in GDF11.
cFor proband 5 seizures are likely due to Aicardi–Goutières type 6.
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Fig. 2 GDF11 is conserved across species. (a) GDF11 is highly conserved, sharing very high DIOPT scores with mice, fish, and flies. (b) Both the
missense variants (p.R298P and p.E306K) modeled in this study affect conserved amino acids in Drosophila. (c) Both missense variants lie within
the Furin cleavage site or the TGF-β signaling domain of GDF11 and its homologs.
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retinal vasculitis (Fig. 1g) and recurrent abdominal adhesions and
hepatitis with an unclear etiology. She has mild dysmorphic facial
features including a slender nasal bridge with prominent
columella, significant malar flattening, a prominent forehead, flat
midface, and mildly high-arched palate in addition to scoliosis,
pectus carinatum, spina bifida occulta, Bertalotti syndrome, and
hypermobile joints. This individual has DD but no ID or cardiac
abnormalities.
In summary, most patients presented with craniofacial (5/6) and

vertebral (5/6) abnormalities, in agreement with previously reported
phenotypes.22 However, additional shared neurological phenotypes
were present, with ID identified in 3/5 individuals, DD in 5/6, and
some form of abnormal neurological presentations were identified
in all probands. Other phenotypes shared among probands are
visual disorders (4/6), hearing disorders (3/6), toe abnormalities (3/6),
cardiac disorders (3/6) (with two individuals exhibiting aortic
dilations), and connective tissue disorders (3/6). Additional indivi-
duals with copy-number variants (CNVs) in GDF11 were identified
using the DECIPHER database.45 Of the eight patients with a CNV
involving GDF11, three were deletions (1.28Mb, 2.94Mb, and
101.3Mb) and five were duplications (2.18Mb, 3.16Mb, 3.42Mb,
8.80Mb, and 9.15Mb). These individuals are reported to have
craniofacial (4/8), vertebral (4/8), and neurological abnormalities
including DD (5/8) and ID (5/8). The CNVs in the DECIPHER database
include many genes neighboring GDF11 (70 total genes in the
smallest deletion [1.28Mb] and 1,305 genes in the largest deletion
[101.3Mb]) that may influence the phenotypes in each patient.
Given that GDF11 is an established key signaling protein required in
the development of multiple tissues in mice,10,11 the diverse array of
phenotypes presented in this cohort and the DECIPHER database, is
consistent with these observations.

gdf11 expression in zebrafish is analogous to GDF11 expression in
humans
In mice and zebrafish, the orthologs of human GDF11 are highly
conserved at the protein level (Fig. 2a). The conservation of the
structure of GDF11 across species predicts that the functions of
GDF11 may be conserved. In zebrafish, gdf11 is expressed in
numerous tissues throughout embryonic and larval development.
Strong gene expression in the tailbud region at the end of
gastrulation27 is consistent with a role in posterior body axis
patterning noted in avian and mammalian studies,10,25 and
expression in the brain and pharyngeal arches was noted at later
larval stages.46 Using in situ hybridization and analysis of a
recently published single-cell transcriptomics data set we show
that gdf11 is expressed in organs and cell types that are affected in
the probands (Supplementary results, Fig. S1, Fig. S2).

gdf11 loss-of-function in zebrafish phenocopies some patient
phenotypes
Published functional analyses of gdf11 in zebrafish are limited in
scope and reported only for transient knockdown by morpholino
oligonucleotide (MO) injection. In the initial analysis, gdf11 was
knocked down to evaluate the histone deacetylase regulation of
liver growth.46 In a second report, gdf11 depletion by MO resulted
in a caudal shift of hoxc10a expression and a corresponding
caudal displacement of the pelvic fin,27 similar to mouse mutant
phenotypes.10 To determine the role of gdf11 in additional organ
systems in fish using clean genetic tools, we used CRISPR/Cas9
gene editing to generate gdf11 variants predicted to be LOF
alleles (Fig. 3a): one allele, b1407, contains a truncating frameshift
variant in the first exon, abrogating most of the open reading
frame. The second, b1408, is a truncating frameshift in the third
exon, removing the region that encodes the C-terminal TGF-β
domain at the region similar to the truncating variant documen-
ted in proband 1. The third, b1396, is a 703-bp deletion removing
the 5’UTR and most of the first exon to eliminate transcription and

hence avoid genetic compensation.47 Homozygotes for all three
gdf11 alleles are viable but display notable abnormalities in larval
and adult stages. Alcian blue and Alizarin red staining to label
cartilage and bone, respectively, in 7-dpf larval zebrafish revealed
a disrupted arrangement of craniofacial elements in mutants
compared to wild-type siblings (Fig. 3b–d). Mutants displayed an
increased angle of articulation between the ceratohyal cartilage
elements in young fish homozygous for the early and late
truncating variants of 60.1 ± 4.9° and 73.3 ± 11.2°, respectively,
compared to 54.4 ± 1.1° in wild-type fish (p= 0.014 and 0.0006).
Although both are statistically significant, the defects in the later
truncating b1408 mutant were more severe and extended
throughout the other cartilage elements of the jaw and face,
including a morphological defect in the shape of the opercular
bone (Fig. 3d). The opercular bone is one of the first ossified bone
structures formed in developing fish and provides an effective
model of morphogenic variations.48,49 In 7-dpf wild-type larvae,
the opercular bone had a distinctive shape, narrow medially with a
fan-shaped expansion of the distal end. The wild-type opercular
bone had a measured mean area of 1,950 ± 92 µm2. By contrast,
opercular bones of gdf11b1396 and gdf111408 homozygous larvae
were narrow and stick-like, lacking the distal fan, with mean areas
reduced by 38% and 32% (1,207 ± 82 µm2; p < 0.0001 and 1,323 ±
73.17 µm2; p < 0.0001), respectively. The gdf11b1407 allele had a
slightly reduced operculum (1,719 ± 62.7 µm2), but the 12%
reduction is not statistically significant (p= 0.072). Other signs of
facial dysmorphia were apparent in animals homozygous for the
b1396 large deletion allele, where sagittal sections of the larval
head revealed an abnormal rostral protrusion of the upper jaw
element (Fig. 3f). This phenotype persisted in mutant adult fish
(Fig. 3g, h) in which the rostral portion of the face was elongated,
and the dorsoventral head width diminished relative to wild types.
While we were unable to examine adult skeletal elements,
measurements of live fish revealed that the body axis of young
adult b1396 homozygotes was also abnormal; the pelvic fin was
posteriorized by one body segment (Fig. 3i, j), consistent both
with the earlier MO study in zebrafish27 and the mouse model in
which homeotic transformations in the anterior–posterior axis
were noted.10 We conclude that zebrafish lacking gdf11 function
have several phenotypes similar to those observed in human
probands.

Overexpression based assays of GDF11 variants in Drosophila
indicates that they are LOF variants
Variant pathogenicity prediction programs suggest that the
human GDF11 variants are damaging. To test this hypothesis,
we used the fruit fly Drosophila melanogaster. Flies have been
used effectively to identify LOF variants in human genes, elucidate
mechanisms, and identify therapeutic drugs.50 In Drosophila, the
closest homolog to GDF11 is myoglianin (myo) (Fig. 2a).51 The fly
myo gene is the only orthologue of both GDF11 (DIOPT 7/15) and
GDF8/MSTN (myostatin, DIOPT 8/15).34 myo encodes a larger
protein than human GDF11 (598 vs. 405 AA), which affects protein
similarity and identity scores. However, the amino acid similarity of
the secreted TGF-β domain is 76%, indicating that the key
signaling domain of GDF11 is highly conserved in flies (Fig. 2a).
LOF alleles in myo have been reported to cause pupal lethality
before head eversion.33

To determine the functionality of the probands’ variants, we
generated constructs containing the wild-type myo gene
(myo-WT) with an upstream activation sequence (UAS). We also
generated UAS-myo constructs with variants in the location
homologous to three of the probands in this cohort, one nonsense
variant p.Y336* from proband 1 (myo-F530*), and two missense
variants, p.R298P from proband 5 (myo-R489P) and p.E306K from
proband 6 (myo-E500K) (Fig. S4C). We used site-directed mutagen-
esis and injected each construct into the VK00033 landing site via
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phiC31 integrase mediated transgenesis to ensure constant
transgene expression across constructs (Fig. S4B).52,53 To assess
the function of each myo variant, we first replaced the
endogenous myo by inserting a T2A-GAL4 CRISPR-Mediated
Integration Cassette (CRIMIC) into the first coding intron of

myo,54 creating a myo-T2A-GAL4 allele (Figure S4A). Unfortunately,
we were not able to rescue myo null induced homozygous
lethality (Supplemental results).
Ubiquitous overexpression of myo has been shown to cause

pupal lethality when driven with Actin-Gal4 (Act-GAL4).33 To detect

Fig. 3 Zebrafish models of gdf11 loss of function exhibit craniofacial and body axis patterning defects. (a) Overview of the gdf11 mutants
generated via CRISPR/Cas9 gene editing (b–d) Alcian and Alizarin staining of the 7-dpf larval head skeleton labels cartilage (blue) and bone
(red) elements. From the ventral aspect, Meckel’s cartilage (m) in the wild-type larval fish (b) extends rostrally beyond the ethmoid plate of the
upper jaw (e, red dotted line delineates the rostral-most edge), the bilateral ceratohyal elements (ch) meet at the midline in a constrained
angle of articulation (yellow dotted lines), and the opercular bone (op, red dotted circle) is ossified in with a broadening flare at its distal end.
gdf11 mutants (c, d) exhibit defects in the alignment of upper and jaw elements, in the angle of ch articulation, and the morphology of the op
with a more severe phenotype observed in the late truncating allele (d). (e, f) Upper and lower jaw element alignment are visualized again in
sagittal sections of hematoxylin and eosin (H & E) stained 7-dpf wild-type (e) and gdf11mutant (f) larvae, in which the ethmoid plate protrudes
beyond the rostral limit of Meckel’s cartilage. (g, h) Six-month gdf11 mutant (h) rostral length measured from the anterior edge of the eye to
the tip of the nose (white arrow) is 15% longer than in stage-matched wild-type (g; p= 0.0007) while the dorsoventral thickness of the head
posterior to the eye (white double arrowhead, also marked in i,j) is an average of 15% less (p= 0.001) than in wild-type. (i, j) Regular
anterior–posterior arrangements of body segments are visible on the lateral exterior or the juvenile fish (shown at 2 months in i and j), with
eight such segments (white dotted lines) falling between the pectoral and pelvic (p) fins. One additional segment is noted in gdf11 mutants
(j, white, and red dotted lines). N ≥ 8 for each group; scale bars: (b–f) 250 µm; (g–j) 1 mm.
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differences in functionality of the myo variants, we overexpress
myo-WT, myo-F530*, myo-E500K, or myo-R489P using Act-GAL4 to
assess the lethality of each of the variants (Fig. 4a). As a control, we
use animals containing an empty UAS promoter (UAS-empty)
inserted into the same docking site. When UAS-myo-WT is driven

ubiquitously we observe lethality at 22 °C or higher. However
ubiquitous expression of myo is toxic even at low levels, as only
1.91% of Act-GAL4>UAS-myo-WT eclose as adults compared to Act-
GAL4>UAS-empty at 18 °C (Fig. 4b). We observe no toxicity when
overexpressing UAS-myo-F530X with Act-GAL4, suggesting that this
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truncation is indeed a LOF allele. In contrast, the two missense
(p.E500K, p.R489P) alleles do cause lethality when overexpressed,
but to different degrees when compared to WT. UAS-myo-E500K
had similar toxicity as UAS-myo-WT (lethal at all temperatures).
However, the number of Act-GAL4>UAS-myo-E500K animals that
eclose at 18 °C (9.00%) is significantly greater (χ2, p value = 0.0003)
than the number of Act-GAL4>UAS-myo-WT animals that eclose
(1.91%), indicating a possible minor loss of myo toxicity (Fig. 4b, c).
UAS-myo-R489P is viable at low temperatures (18 °C and 22 °C), but
the viability decreased at temperatures >25 °C, suggesting the
impaired function of this variant. In addition to lethality, we also
find that ectopic expression of myo variants causes morphological
phenotypes in the eye (Fig. 4e). Act-GAL4 driving UAS-myo-E500K
or UAS-myo-R489P at 18 °C causes a rough eye phenotype. This
phenotype was not seen with Act-GAL4 > UAS-myo-F530* again
suggesting residual functions of the two missense variants. We did
not obtain enough UAS-myo-WT animals to analyze whether this
transgene causes a rough eye phenotype or not.
To assess the consequences of overexpression of the myo WT

and variant alleles in the cells wheremyo is normally expressed we
used myo-T2A-GAL4 (muscle and glia), mef2-GAL4 (muscle), and
repo-GAL4 (glia) to drive various myo transgenes at different
temperatures. The same trend for toxicity was seen for each driver
with UAS-myo-WT showing the strongest toxicity, followed by UAS-
myo-E500K then UAS-myo-R489P, and finally UAS-myo-F530* and
UAS-empty causing no lethality (Supplementary results, Fig. 4a–d).
The absence of increased lethality at any temperature when the
myo-F530* allele is expressed with any GAL4 driver indicates that
the allele is unlikely to have a dominant negative effect. These
data indicate that myo-F530* is a strong LOF allele, myo-R489P a
partial LOF allele, and myo-E500K a milder LOF allele.

DISCUSSION
Craniofacial and vertebral abnormalities are related to LOF
variants in GDF11 in human patients22 and rodent knockout
models.10 Here, we report four patients with strong LOF variants in
GDF11, with only one patient having severe craniofacial and
vertebrae abnormalities. Patients with truncation alleles in GDF11
present with a higher prevalence of neurological abnormalities,
developmental delays, and visual problems. Additionally, neuro-
logical, developmental, and ocular abnormalities have a stronger
correlation with the degree of GDF11 LOF than do vertebral and
craniofacial abnormalities, indicating GDF11 dosage may have a
greater influence on nervous system development than on the
development of other tissues.
In zebrafish, craniofacial abnormalities vary in severity among

LOF alleles. Variants that result in NMD have been found to trigger
genetic compensation through the activation of related genes.47

Thus, the milder phenotype observed in the early truncating allele
(b1407) may be due to this transcriptional switch, whereas the
later truncation (b1408), would be presumed to escape genetic
compensation. The large deletion (b1396), which was designed to

block transcription altogether, is predicted to be immune from
genetic compensation and thus a complete LOF. The viability and
somewhat milder phenotypes of these zebrafish mutant alleles,
compared to the mouse and fly models, suggest some functional
redundancy, which may mirror some of the clinical phenotypes of
the probands in this study.
Interestingly, the severity of the LOF alleles reported from the

fly experiments correlates with the severity of the neurological
phenotypes seen in our patient cohort. The four probands with
nonsense variants all show profound DD and 3/4 probands have
associated ID. The patient with a partial LOF allele (proband 5—
p.R295P) presents with ID but not DD, a milder presentation than
the complete LOF variant patients but more severe than the
milder LOF patient (proband 6—p.E306K). This gradient of
symptom severity indicates that the degree of GDF11 function
loss in patients reflects the severity of the neurological disorder. In
agreement with this observation, LOF alleles in Drosophila myo33

and mice Gdf1110 have severe nervous system defects. Addition-
ally, overexpression ofmyo variants causes a rough eye phenotype
in Drosophila, indicative of a neurodevelopmental defect in the fly
visual system. Although the severity of craniofacial and vertebral
dysmorphism in probands is variable, genotype–phenotype
correlation can be seen in these organ systems. Probands with
full cleft lip/palate have a complete LOF nonsense variant and
those with minor craniofacial phenotypes have partial/milder LOF
alleles. However, the minor phenotypic presentation in the mother
of proband 2 and the lack of any reported phenotypes in the
father of proband 4 is an indicator of the variable expressivity and
incomplete penetrance associated with GDF11 LOF variants.
In agreement with this is the lack of vertebral phenotypes in
probands 3 and 4, the lack of craniofacial dysmorphism in
proband 3 and the variability of phenotypes in a previously
reported family with a GDF11 variant.22 These phenotypes are
likely more influenced by other genetic or environmental factors
than the neurological phenotypes, which more closely correlate
with the severity of the GDF11 LOF variants.
How loss of GDF11 disrupts neuronal development is unclear. In

mouse olfactory epithelium, Gdf11 negatively regulates neurogen-
esis by promoting cell cycle arrest in neuronal progenitors via
27Kip1 and/or p21cip1 and inactivation of Foxg1.23,55 Also in the
brain, Gdf11 acts as a negative regulator of gliogenesis, favoring
stem cell differentiation into neuronal precursor cells.56 In
contrast, in the spinal cord, loss of Gdf11 causes a decrease in
proliferation of spinal cord motoneurons in addition to aberrant
rostral/caudal patterning of motoneurons as a result of expanded
Hoxc expression.25,29 In the retina, Gdf11 is a negative regulator of
retinal ganglion cell proliferation. Interestingly the latter is not via
cell cycle arrest as in the olfactory epithelium, but instead via
downregulation of Math5.26 Hence, although Gdf11 is a key player
in neuronal development, predicting how these disruptions
manifest in a phenotype in humans is not yet obvious.
The impact on the cardiovascular system is also seen in patients

with GDF11 LOF variants. GDF11 is expressed in cardiac muscle in

Fig. 4 Patient variants behave as strong or mild loss-of-function alleles in flies. A mutant form of myo that corresponds to three of the
proband’s variants (p.R295P, p.E306K, and p.Y336*) along with a wild-type myo construct (WT) and an empty UAS-vector (negative control)
were expressed with various GAL4 drivers to determine their effect when overexpressed. (a) Ubiquitous overexpression of myo-WT and
overexpression with myo-T2A-GAL4 allele is lethal except at low temperatures (18 °C) when GAL4 is less abundant. Ubiquitous overexpression
of myo-E500K mirrors the lethality of myo-WT, myo-R498P is viable at higher temperatures and no lethality is observed when myo-F530* is
expressed at any temperature. When overexpressed specifically in muscles, myo-WT and myo-E500K are only lethal at 29 °C while myo-R498P
and myo-F530X are viable. When overexpressed specifically in glial cells, the toxicity mirrors that seen with ubiquitous overexpression.
The numbers of viable animals were quantified for ubiquitous expression (b), glial expression (c), and with myo-T2A-GAL4 expression (d).
These data indicate a decreasing scale of toxicity of myo-WT>myo-E500K>myo-R489P >myo-F530X. This trend is also seen with repo-GAL4 and
myo-T2A-GAL4 at 18 °C. (b–d) Lower case letters represent groups significantly different (χ2, p < 0.05) from each other. (e) When myo-E500K and
myo-R489P variants are expressed ubiquitously at 18 °C a rough eye phenotype is observed indicating a developmental issue. All eye pictures
are taken under the same magnification and were processed identically. Scale bar = 200 μm. Error bars = SD.
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adults and is expressed in neural crest cells that signal the
development of cardiac structures such as the aorta in mammals
and zebrafish. In both adult mice and humans, the role of GDF11 is
controversial with debate on whether increasing circulating GDF11
helps cardiac health,20,57–59 and the role of GDF11 in the developing
heart has not been well studied in vivo in model organisms.
Cardiomyocyte Gdf11 knockout mice have left ventricular dilation,60

indicating a potential association between a loss of GDF11 and
cardiovascular abnormalities, which is consistent with the two
patients in our cohort with aortic dilation. Gdf11 initiates intracellular
Smad2 activation by binding to the Activin receptors TGFBR1 and
ACVR2B.12–14 LOF variants in human TGFBR1 and ACVR2B are
associated with defects in cardiac development.61,62 Among our
cohort of patients with GDF11 LOF variants, 3/6 patients have
cardiac abnormalities and two have aortic dilations. The influence of
GDF11 specifically on the developing human heart is likely to be
complex due to the compensatory roles of MSTN and its ability to
bind the same receptors as GDF11.63 The expression of these
different GDF paralogs, the diversity of the receptors, and
modulators, such as follistatin, may impact how cardiac malforma-
tions present in GDF11 LOF variants. However, cardiac abnormalities,
particularly aortic dilations, should be screened for in patients with
variants in GDF11.
Both partial LOF variants present in this cohort, in addition to a

family member in the previously reported family,22 present with
connective tissue abnormalities resulting in hypermobile joints.
Because the most common cause of joint hypermobility is a lack of
collagen and GDF11 induces the expression of collagen I and III,
the connective tissue disorders are seen in patients may also be
due to partial LOF variants in GDF11,64 which will require further
biological studies.
In conclusion, we have identified a cohort of six patients from

six families with LOF variants in GDF11. The cohort has complex
clinical presentations significantly expanding the phenotypes
linked to variants in this gene. We have generated gdf11 zebrafish
mutants that exhibit craniofacial and body axis patterning
abnormalities that reflect gdf11 expression patterns and some of
the key clinical presentations of the human subjects. Using
Drosophila, we have been able to determine the degree of GDF11
functional loss for a subset of variants, showing that LOF severity
measured in flies correlates with the severity of neurological
phenotypes in humans. The variable expressivity of GDF11-
associated phenotypes is likely a result of the complexities and
redundancies of GDF signaling throughout development as well
as other genetic and environmental factors. To further elucidate
these additional factors, we will need an expanded cohort of
patients with LOF variants in GDF11. This study provides the
resources for modeling and evaluating GDF11 LOF variants in
model organisms and the potential phenotypes caused by GDF11
variants.
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