Ben Ewen-Campen, Stephanie E Mohr, Yanhui Hu, and Norbert Perrimon. 10/9/2017. “
Accessing the Phenotype Gap: Enabling Systematic Investigation of Paralog Functional Complexity with CRISPR.” Dev Cell, 43, 1, Pp. 6-9.
AbstractSingle-gene knockout experiments can fail to reveal function in the context of redundancy, which is frequently observed among duplicated genes (paralogs) with overlapping functions. We discuss the complexity associated with studying paralogs and outline how recent advances in CRISPR will help address the "phenotype gap" and impact biomedical research.
Yanhui Hu, Aram Comjean, Stephanie E Mohr, The FlyBase Consortium, and Norbert Perrimon. 8/7/2017. “
Gene2Function: An Integrated Online Resource for Gene Function Discovery.” G3 (Bethesda).
AbstractOne of the most powerful ways to develop hypotheses regarding biological functions of conserved genes in a given species, such as in humans, is to first look at what is known about function in another species. Model organism databases (MODs) and other resources are rich with functional information but difficult to mine. Gene2Function (G2F) addresses a broad need by integrating information about conserved genes in a single online resource.
2017_G3_Hu.pdf
Supplemental Methods.pdf
Table S1.xlsx Julia Wang, Rami Al-Ouran, Yanhui Hu, Seon-Young Kim, Ying-Wooi Wan, Michael F Wangler, Shinya Yamamoto, Hsiao-Tuan Chao, Aram Comjean, Stephanie E Mohr, Undiagnosed Diseases Network, Norbert Perrimon, Zhandong Liu, and Hugo J Bellen. 6/1/2017. “
MARRVEL: Integration of Human and Model Organism Genetic Resources to Facilitate Functional Annotation of the Human Genome.” Am J Hum Genet, 100, 6, Pp. 843-853.
AbstractOne major challenge encountered with interpreting human genetic variants is the limited understanding of the functional impact of genetic alterations on biological processes. Furthermore, there remains an unmet demand for an efficient survey of the wealth of information on human homologs in model organisms across numerous databases. To efficiently assess the large volume of publically available information, it is important to provide a concise summary of the most relevant information in a rapid user-friendly format. To this end, we created MARRVEL (model organism aggregated resources for rare variant exploration). MARRVEL is a publicly available website that integrates information from six human genetic databases and seven model organism databases. For any given variant or gene, MARRVEL displays information from OMIM, ExAC, ClinVar, Geno2MP, DGV, and DECIPHER. Importantly, it curates model organism-specific databases to concurrently display a concise summary regarding the human gene homologs in budding and fission yeast, worm, fly, fish, mouse, and rat on a single webpage. Experiment-based information on tissue expression, protein subcellular localization, biological process, and molecular function for the human gene and homologs in the seven model organisms are arranged into a concise output. Hence, rather than visiting multiple separate databases for variant and gene analysis, users can obtain important information by searching once through MARRVEL. Altogether, MARRVEL dramatically improves efficiency and accessibility to data collection and facilitates analysis of human genes and variants by cross-disciplinary integration of 18 million records available in public databases to facilitate clinical diagnosis and basic research.
2017_Am J Hum Genet_Wang.pdf
Supplement.pdf Yanhui Hu, Aram Comjean, Norbert Perrimon, and Stephanie E Mohr. 2/10/2017. “
The Drosophila Gene Expression Tool (DGET) for expression analyses.” BMC Bioinformatics, 18, 1, Pp. 98.
AbstractBACKGROUND: Next-generation sequencing technologies have greatly increased our ability to identify gene expression levels, including at specific developmental stages and in specific tissues. Gene expression data can help researchers understand the diverse functions of genes and gene networks, as well as help in the design of specific and efficient functional studies, such as by helping researchers choose the most appropriate tissue for a study of a group of genes, or conversely, by limiting a long list of gene candidates to the subset that are normally expressed at a given stage or in a given tissue. RESULTS: We report DGET, a Drosophila Gene Expression Tool (
www.flyrnai.org/tools/dget/web/ ), which stores and facilitates search of RNA-Seq based expression profiles available from the modENCODE consortium and other public data sets. Using DGET, researchers are able to look up gene expression profiles, filter results based on threshold expression values, and compare expression data across different developmental stages, tissues and treatments. In addition, at DGET a researcher can analyze tissue or stage-specific enrichment for an inputted list of genes (e.g., 'hits' from a screen) and search for additional genes with similar expression patterns. We performed a number of analyses to demonstrate the quality and robustness of the resource. In particular, we show that evolutionary conserved genes expressed at high or moderate levels in both fly and human tend to be expressed in similar tissues. Using DGET, we compared whole tissue profile and sub-region/cell-type specific datasets and estimated a potential source of false positives in one dataset. We also demonstrated the usefulness of DGET for synexpression studies by querying genes with expression profile similar to the mesodermal master regulator Twist. CONCLUSION: Altogether, DGET provides a flexible tool for expression data retrieval and analysis with short or long lists of Drosophila genes, which can help scientists to design stage- or tissue-specific in vivo studies and do other subsequent analyses.
2017_BMC Bioinform_Hu.pdf