
R E S E A R C H R E S O U R C E
S Y S T E M S B I O L O G Y
Protein Complex–Based Analysis Framework for
High-Throughput Data Sets
Arunachalam Vinayagam,1* Yanhui Hu,1,2† Meghana Kulkarni,1†‡ Charles Roesel,2,3

Richelle Sopko,1 Stephanie E. Mohr,1,2 Norbert Perrimon1,2,4*
D
ow

nloaded
Analysis of high-throughput data increasingly relies on pathway annotation and functional information
derived fromGeneOntology. This approach has limitations, in particular for the analysis of network dynamics
over time or under different experimental conditions, in whichmodules within a network rather than complete
pathways might respond and change. We report an analysis framework based on protein complexes, which
are at the core of network reorganization. We generated a protein complex resource for human, Drosophila,
and yeast from the literature and databases of protein-protein interaction networks, with each species having
thousands of complexes. We developed COMPLEAT (http://www.flyrnai.org/compleat), a tool for data mining
and visualization for complex-based analysis of high-throughput data sets, as well as analysis and integration
of heterogeneous proteomics and gene expression data sets. With COMPLEAT, we identified dynamically
regulated protein complexes among genome-wide RNA interference data sets that used the abundance of
phosphorylated extracellular signal–regulated kinase in cells stimulated with either insulin or epidermal
growth factor as the output. The analysis predicted that the Brahma complex participated in the insulin
response.
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INTRODUCTION

The analysis of data sets from genome-scale screens typically involves raw
data processing, such as calculating z scores and fold changes, where
genes are given a score and identified as “hits.” Because these screens
output hundreds of genes, it is standard practice to identify the enrichment
for a group of genes that are part of particular functional categories or
pathways (1). The advantage of such analysis is that it is less prone to
the inherent false positives and false negatives associated with the data.
For example, in RNA interference (RNAi) screens, a gene might be con-
sidered a false negative due to ineffective knockdown or as a false positive
due to off-target effects; however, it is less likely that an entire group of genes
could be falsely classified. Further, analyses based on gene enrichments im-
prove confidence in the results by placing them in biological context and
helps generate new hypotheses. About 70 different enrichment analysis tools
have already been developed, most of which use Gene Ontology (GO) (2)
or pathway databases such as Kyoto Encyclopedia of Genes and Genomes
(KEGG) (3) to group functionally related genes (1).

Although GO and pathway annotations are useful, they can be either
too specific or too broad in the context of network dynamics. For example,
annotations from the KEGG MAPK (mitogen-activated protein kinase)
pathway spans from the membrane receptor complexes that receive a sig-
nal to the nuclear transcription factor complexes that constitute the signal
readout. It is difficult to identify changes in response to stimuli over time
because these changes are likely to affect only a subset of pathway com-
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ponents. In contrast to pathways, protein complexes are the functional
units of proteome organization, and their dynamic assembly is fundamen-
tal to induce cellular responses to different internal and external cues (4).
Thus, for data sets that include multiple conditions or time points, a pro-
tein complex–based analysis might be preferable because it could reveal
network dynamics that are missed in other types of analyses. Moreover,
the individual protein complexes that participate in a signaling pathway
assemble in different compartments and at different times, and some,
but not all, complexes associated with a pathway might integrate signals
from other pathways. Thus, to understand how cells reorganize at a sys-
tems level, we must be able to visualize and study the dynamics of protein
complexes.

Recently, genome- or proteome-scale data sets have been generated
under different conditions and time points with an objective of capturing
the dynamics of the biological system (5–10). To efficiently analyze the
network dynamics of these data sets, there is a need for analysis tools for
data related to protein complexes. Even the most commonly used enrich-
ment analysis tools, including the Database for Annotation, Visualization,
and Integrated Discovery (DAVID) (11) and gene set enrichment analysis
(GSEA) (12), do not support complex-based analysis, mainly due to the
lack of availability of comprehensive protein complex resources. For exam-
ple, the existing protein complex databases either focus on a specific organ-
elle or cover only a few protein complexes for a single species (13–15).
Further, the current analysis tools do not support direct comparison and
visualization of dynamic data sets. Hence, there is a need for both a com-
prehensive complex-based resource and a tool that uses the resource to
analyze dynamic high-throughput data sets. Moreover, such a complex-
based analysis is not restricted to dynamic data sets but could also be used
for the analysis of single data sets.

To fill this gap, we developed a framework for the analysis of high-
throughput data sets at the level of protein complexes (Fig. 1). Because the
currently available databases of complex information underrepresent the
full picture, we first generated comprehensive protein complex resources for
Homo sapiens (human), Drosophila melanogaster (fly), and Saccharomyces
cerevisiae (yeast). Using the protein complex resources as back-end annotations,
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we developed the protein Complex Enrichment Analysis Tool (COMPLEAT)
and created a Web interface (http://www.flyrnai.org/compleat) that is freely
available to the research community. We applied COMPLEAT to the analysis
of genome-wide RNAi data sets that measured extracellular signal–regulated
kinase (ERK) activity as represented by the presence of phosphorylated
ERK (pERK) in cells stimulated with either insulin or epidermal growth
factor (EGF) (5, 6). Using pERK abundance as a measure, we identified
insulin stimulus–dependent regulation of the Brahma protein complex and
demonstrated experimentally that it is essential for mediating the insulin
response.
 on July 3, 2016
em
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RESULTS

Generation of comprehensive protein complex resources
We generated comprehensive protein complex resources for humans,
Drosophila, and yeast by combining two different approaches: (i) We per-
formed systematic identification of protein complex data reported in the
literature, and (ii) we predicted protein complexes on the basis of protein-
protein interaction (PPI) networks (Fig. 2A). To compile protein complex
data for humans from the literature, we used Comprehensive Resource of
Mammalian protein complexes (CORUM) (15), Proteins Interacting in the
Nucleus database (PINdb) (13), protein complexes annotated by GO, and
pathway modules and structural complexes from KEGG modules (3). For
yeast, we used a manually curated catalog of protein complexes (denoted
as CYC2008) (14), PINdb, and GO complexes. ForDrosophila, we included
complexes from GO and 556 protein complexes identified in an affinity
purification mass spectrometry (AP-MS) pull-down study (16). We also
mapped complexes in the human, Drosophila, and yeast data sets using
the DRSC Integrative Ortholog Prediction Tool (DIOPT), an ortholog
mapping tool (17) (table S1). In total, we compiled 3638, 3077, and 2173
literature-based protein complexes for humans, Drosophila, and yeast, re-
spectively (Table 1). This collection includes both transient signaling com-
plexes and stable complexes, such as proteasomes and ribosomes. Although
the KEGG metabolic pathway modules are not necessarily physical
complexes, they are included in our analysis because the metabolic pathways
are underrepresented in these resources.

To predict protein complexes, we compiled experimentally identified
PPIs for humans, Drosophila, and yeast by integrating PPI networks from
www
major PPI databases, organism-specific databases, and high-throughput
data sets (table S2). These integrated networks consist of 108,059 PPIs
among 14,495 human proteins, 98,500 PPIs among 9373 Drosophila
proteins, and 118,603 PPIs among 5729 yeast proteins (table S2). Next,
we applied two different complex prediction tools, CFinder (18) and
NetworkBLAST (19), that identify biologically meaningful protein com-
plexes from PPI networks (20). CFinder is a clique percolation method
to identify protein complexes from a single PPI network. NetworkBLAST
is a network alignment tool for identifying conserved protein complexes.
In the case of the CFinder analysis, we further filtered the PPI networks
using coexpression values (for humans and Drosophila) or colocalization
information (for yeast) to remove low-confidence PPIs. We did not apply
the same filters for the NetworkBLAST analysis because false-positive in-
teractions are unlikely to be reproduced across species (21). Together, we
identified 6251 human complexes, 3639 Drosophila complexes, and 5551
yeast complexes (Table 1 and table S3). Finally, we integrated both literature-
based and predicted complexes to create a comprehensive protein complex
resource, resulting in 9881, 6703, and 7713 complexes for human,Drosophila,
and yeast, respectively (Table 1).

Almost 50% of the literature-based and predicted protein complexes
are redundant, comprising complexes that either are subsets of other com-
plexes or differ from other complexes by only a few components (Fig. 2B
and table S4). Because protein complexes are not rigid or fixed structures,
we intentionally preserved such redundancies. Comparison of literature-
based and predicted complexes reveals a low overlap, suggesting that dis-
tinct complexes are captured using these different approaches (Fig. 2C).
For example, in Drosophila, there is a 15% overlap at the complex level
and a 46% overlap at the protein level, suggesting that the computational-
based predictions expand the resource with a large number of new proteins
(table S5). We also observed that few proteins are part of many complexes,
meaning that most of the proteins belong to one or very few complexes
(Fig. 2D), an observation consistent with the scale-free behavior of PPI
networks (22). Our complex resources include 68% of yeast proteins
and ~50% of human and Drosophila proteins (Fig. 2E and table S6). Ad-
ditionally, our resources include 75 to 90% of highly conserved proteins
because we took advantage of evolutionary conservation to increase the
coverage for individual species (Fig. 2E).

We analyzed various features of the complexes in the compiled re-
sources. As expected, the size distribution of the protein complexes shows
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Fig. 1. Schematic representation of the protein complex–based analysis
framework. The framework handles a variety of high-throughput data

three major components of the framework are (1) the protein complex re-
source, (2) the complex enrichment analysis tool, and (3) data visualization,
sets, including RNAi screen, proteomics, and expression data sets. The
 including the visualizations that facilitate comparison of multiple data sets.
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that they are smaller than the size of KEGG pathway annotations. For ex-
ample, the median size of the human complexes is 8, compared with 52 for
KEGG (Fig. 2F). We also analyzed co-citation of the members of a com-
plex in the literature by mapping the genes to PubMed citations to assess
www
the biological relevance of protein complexes. To assess their significance,
we compared them with 1000 random sets containing the same number of
proteins as those in the complexes. For our human complexes, 96% showed
significant co-citation, a proportion that was comparable to that found for
 on July 3, 2016
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Fig. 2. Overview of the protein complex resources generated for humans, complex resource, and the inner pie chart corresponds to highly conserved

Drosophila, and yeast. (A) Schematic representation of the protein complex
resource compilation. (B) Redundancies within the complex resource; blue
bar corresponds to nonredundant complexes at 80% cutoff, and gray bar
corresponds to redundant complexes. (C) Overlap between literature-
based and predicted protein complexes. The overlap was computed at
the nonredundant complex level (80% cutoff). (D) Distribution of the pro-
teins against the number of complexes the protein belongs to. (E) The outer
pie chart represents the percentage of the entire proteome covered by the
proteins. (F) Box plot showing the size distribution of the complex resource
compared to the GO and KEGG pathways. (G) Bar graph of the significant
fraction of the complexes and GO and KEGG annotations that are co-cited
in the literature, compared to 1000 random sets. (H) Bar graph of the sig-
nificant fraction of the complexes and GO and KEGG annotations that are
coexpressed (human and Drosophila) or colocalize (yeast), compared to
1000 random sets. (I) Pie chart showing the contribution of different sources
of annotations to the complex resources.
.SCIENCESIGNALING.org 26 February 2013 Vol 6 Issue 264 rs5 3

http://stke.sciencemag.org/


R E S E A R C H R E S O U R C E

 on July 3, 2016
http://stke.sciencem

ag.org/
D

ow
nloaded from

 

KEGG (98%) and better than that found for GO (85%) (Fig. 2G and table S7).
For Drosophila, the proportion of complex member co-citation was lower
than it is for GO and KEGG, and in yeast, it was comparable to GO and
KEGG (Fig. 2G).

We also analyzed the evidence of colocalization for yeast and coex-
pression for components of the human or Drosophila complexes. For this
analysis, we removed complexes predicted by CFinder because CFinder
uses networks enriched for coexpression or colocalized PPIs for complex
prediction (Fig. 2A). For yeast, we benefited from a large-scale effort to
determine the subcellular localization of proteins and analyzed evidence
for colocalization of the members of specific complexes (23). Fifty-three
percent of the complexes showed significant colocalization of their con-
stituents, which was twofold higher than that in GO (26%) and 1.25-fold
higher than that in KEGG (Fig. 2H and table S8). With respect to co-
expression, 63% of the human genes encoding proteins in complexes were
significantly coexpressed, which was comparable to the proportion in KEGG
and twofold higher than that in GO (Fig. 2H and table S9). Drosophila
complexes showed a similar enrichment of coexpressed pairs, and the frac-
tion was significantly higher than that in GO. Together, these results indi-
cate that the complexes that we compiled are more likely to be accurate and
physiologically relevant than those identified in GO and KEGG, and these
complexes represent an alternative resource for enrichment analysis.

Finally, we annotated the complexes on the basis of either literature an-
notation (for the literature-based complexes) or GO term enrichment. For
literature-based complexes, we kept track of the complex nomenclature,
purification method, references, and the species from which the complex
was identified. The complexes for which such annotation is not available
were annotated with up to five of the most informative GO terms enriched
for complex members. For Drosophila, 50% of the complexes were anno-
tated on the basis of the published literature, and 40% on the basis of GO
term enrichment. Ten percent of the Drosophila complexes could not be
annotated, suggesting either that they are previously unknown protein
complexes with well-known protein components or that they contain un-
annotated components (Fig. 2I and table S10). Finally, each complex was
associated with coexpression, colocalization, and co-citation information,
and information about both known PPIs and interacting homologs in other
organisms (known as interologs) was included.

Developing an interactive protein complex enrichment
analysis tool
To analyze high-throughput data sets, we developed COMPLEAT. The
tool handles complete high-throughput data without preselecting hits, al-
though preselected hits could also be used as the input. First, individual
protein or gene values from a data set are mapped to complexes. Next, the
complexes are assigned scores by calculating the interquartile mean (IQM)
of data points corresponding to individual protein components of the com-
plex (see Materials and Methods; fig. S1). By assigning an IQM to each
complex on the basis of the input data, COMPLEAT preserves the direc-
www
tion (stimulation or inhibition, or increased or decreased abundance) and
the magnitude of changes associated with the individual components. For
some complexes, the data corresponding to individual protein components
within a complex include both positive and negative z scores or fold-
change values, meaning that the complex is “incoherent,” and IQM values
of such incoherent complexes tend to be insignificant (24). Furthermore,
COMPLEAT computes a P value to estimate the significance of complex
scores as compared to 1000 random complexes of the same size. A key
feature of COMPLEAT is that it enables comparison of multiple data sets.
In such cases, the enrichment analysis is performed for each data set in-
dependently and the complex scores are compared. COMPLEATalso pro-
vides a Cytoscape-based visualization of the enriched complexes (25).

COMPLEAT (fig. S2) is accessible through a Web-based interface,
where users can upload single or multiple data sets from small-scale or
high-throughput studies. The tool accepts any type of data set that asso-
ciates genes or proteins from human, Drosophila, or yeast with normalized
values or scores, including z scores (from RNAi screens) or fold-change
values (from gene expression analysis). COMPLEAT supports a number
of commonly used identifiers, including Entrez gene identifier, UniProt
identifier, and species-specific database identifiers (table S11). The tool cal-
culates complex scores for each data set, and the results are visualized as an
interactive scatter plot using iCanPlot (http://www.icanplot.org/) (26). In the
case of multiple data sets (data from multiple conditions or time points), the
user can choose which data sets to display on the x and y axes. In addition,
the tool has a search box that allows the user to interactively query a com-
plex or gene of interest, which then becomes highlighted in the scatter plot.
The tool supports complex query functions, including search with Boolean
operators “AND,” “OR,” and “NOT.” Further, the user can restrict the search
to specific fields like gene names, complex names, or complex resource
(for example, to select literature-based complexes). Because the complex
resource preserves redundant configurations of the complexes, the tool
provides an option to hide redundant complexes and to select only non-
redundant enriched complexes.

Moreover, using the interactive scatter plot, users can select complexes
of interest (based on complex score or P value), and the network illustra-
tions of the selected complexes are displayed on the same screen [using
Cytoscape Web (27)]. When comparing multiple data sets, the tool dis-
plays the complexes from each data set side by side. Users can obtain
more information about a given complex or proteins within the complex
by clicking on that complex or gene in the visualized network. Finally, the
tool provides the option to save the enriched complexes as a table, along
with associated values, and can export scatter plots as well as Cytoscape
visualizations of selected complexes as image files.

Analysis of genome-wide, cell-based RNAi screens to
identify dynamic regulation of protein complexes
To demonstrate the usefulness of COMPLEAT, we used the tool to analyze
the dynamic regulation of protein complexes after either insulin or EGF
stimulation. We analyzed the results from four genome-wide, cell-based
RNAi screens in Drosophila cells aimed at identifying components of the
ERK signaling pathway (5, 6). RNAi screens, measuring the abundance of
pERK normalized to total ERK as the output, were performed in Schneider
2 receptor-plus (S2R+) cells in the absence (baseline) of either EGF or
insulin stimulation and at 10 min after addition of either EGF or insulin.
With pERK as the phenotypic readout, we identified complexes that be-
haved consistently across the baseline and stimulus conditions (common
complexes) and others that showed dynamic changes (dynamic complexes)
(tables S12 to S15).

Analysis of the baseline versus EGF-stimulated data sets revealed 11
common complexes and 184 dynamic complexes (Fig. 3, A and B, tables
Table 1. Summary of literature-based, predicted, and combined protein
complexes for human, Drosophila, and yeast.
Literature
 Predicted
 Combined

Organism

C
omplexes P
roteins C
omplexes P
roteins C
omplexes P
roteins
Human
 3638
 7524
 6251
 6334
 9881
 9293

Drosophila
 3077
 5619
 3639
 3933
 6703
 6536

Yeast
 2173
 3280
 5551
 3366
 7713
 3994
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S16 and S17, and figs. S3 to S7). Analysis of baseline versus insulin-
stimulated cells identified 84 common complexes and 110 dynamic com-
plexes (Fig. 3, C and D, tables S18 and S19, and figs. S8 to S11). Among
the common complexes found in the EGF data sets was the EGF receptor
(EGFR) complex, consisting of EGFR, drk (a homolog of human GRB2),
and Sos (son of sevenless homolog), which binds EGF and activates down-
stream signaling. In addition, the Drosophila TORC1 complex, consisting
of Tor, Raptor, Lobe, and Sin1 (28), and the Akt1-CDK (cyclin-dependent
kinase) complex, which includes core components of the insulin pathway,
were among the dynamic complexes found only under the insulin stimulus
condition. Among all of the dynamic complexes, we identified complexes
that regulate pERK only in the presence or absence of stimulus, meaning
that most complex members scored similarly only in the baseline (baseline-
specific) or in the stimulus condition (stimulus-specific), and others that
regulate pERK in both conditions but for which the stimulus appears to
act as a switch between positive and negative regulation. For example, the
Ksr1 (kinase suppressor of Ras)–PP2A (protein phosphatase 2) holoenzyme
complex scored positively under the EGF stimulus condition (Fig. 3B), sug-
gesting that the assembly or disassembly of the Ksr-PP2A complex can be
potentially regulated by EGF signaling. Ksr1 is a conserved scaffold that facil-
itates signal propagation through the MAPK pathway and PP2A is a critical
regulator of Ksr1 (29). Further, our analysis indicated that the coatomer-Arf1
(ADP-ribosylation factor 1) complex, which mediates transport between
cellular compartments by coated vesicles and is regulated by MAPK in
mammalian systems (30), acted as a negative regulator of pERK at baseline
but a positive regulator in response to EGF (Fig. 3B), suggesting that EGF
signaling changes the activity of this complex. Finally, all members of the
nucleoporin complex, implicated as a scaffold for signal propagation (31),
scored negatively only at baseline, suggesting that EGF signaling poten-
tially regulates this complex.

Validation of COMPLEAT’s prediction of the Brahma
complex in the insulin response
In addition to the core components of the insulin pathway, we identified
the Brahma complex (also called SWI/SNF chromatin-remodeling com-
plex, a transcriptional regulator that activates many transcription factors or
regulates global chromatin remodeling to facilitate transcription), only
when the cells were stimulated with insulin, suggesting that this com-
plex plays a role in the insulin response (Figs. 3D and 4A). A role for
Brahma in insulin signaling was supported by the observation that 2
(Moira and MBD-R2) of 11 Brahma complex components were phos-
phorylated within 10 min after insulin treatment (Fig. 4A and table S20).
Further, ribosomal S6 kinase 2 (S6KII), a core component of the insulin
pathway, associated with the Brahma complex component Dalao at 10 min
after stimulation (Fig. 4B), and this association was enhanced by insulin
treatment.

To validate a role for the Brahma complex in insulin signaling, we ex-
amined its role in the regulation of cell cycle genes because insulin signal-
ing regulates both growth and cell proliferation (32–37). Overexpression
of the Brahma complex component dalao in S2R+ cells reduced the
amount of cyclin D mRNA expression (Fig. 4C). Further, consistent with
a role for the Brahma complex downstream of insulin signaling, inhibition
of cyclin D expression by ectopic expression of dalao was relieved when
cells were treated with insulin (Fig. 4C). Finally, to test the requirement of
the Brahma complex in vivo, we analyzed whether it regulated muscle
mass and nuclear and nucleolus sizes in fly larval muscles, a process under
the control of insulin signaling (38, 39). Knockdown of Brahma complex
components, brahma, dalao, and moira, by RNAi in larval muscle resulted
in larger muscle fibers, nuclei, and nucleoli (Fig. 4D), which is consistent
with an increase in insulin signaling (38).
www
DISCUSSION

GO and pathway annotations have been the most common back-end an-
notation sources for high-throughput data mining (1). To complement
these resources, we have created comprehensive protein complex resources
for human, Drosophila, and yeast. In building such resources in parallel
for three species, we took advantage of evolutionary conservation, increas-
ing coverage for each individual species. In the case of literature-curated
complexes, 40% of human and 80% of Drosophila complexes were mapped
from other species. Spurious interactions in the PPI networks are of great
concern for complex prediction approaches, and we addressed this issue
at the stage of data collection and by filtering the PPIs with additional
data sets. The poor overlap between literature-curated and predicted com-
plexes in the complex resources is mainly due to the fact that the resources
capture different proteins. Currently, both resources are complementary,
and the overlap will improve as more PPIs are identified. The current re-
source covers almost 70% of the yeast proteome and half of the human and
Drosophila proteomes, and we expect this coverage to improve in the future
as new data become available from ongoing PPI mapping projects, includ-
ing studies that map interactomes across multiple conditions, species, or
time points (9, 16, 40–44). To handle the dynamic or alternative forms of
protein complexes, such as “core-complex” with different “attachments”
(43), we preserved all possible configurations of protein complexes reported
in the complex databases and those by the prediction tools. Comparison of
the biological relevance of the protein complexeswith GO andKEGGpath-
way annotations, for example, in the context of coexpression, colocalization,
and co-citation, reveals the high quality of the resource.

Using the complex resource as a foundation, we developed COMPLEAT,
an enrichment analysis tool. About 70 enrichment analysis tools are cur-
rently available that can be broadly classified as tools facilitating singular
enrichment analysis (SEA), GSEA, or modular enrichment analysis (MEA)
(1). Most of these tools depend on GO or pathways as the back-end anno-
tation data. COMPLEAT is unique with respect to back-end annotation
because it uses our newly compiled protein complex resources and incor-
porates many useful features from other tools. COMPLEAT is flexible in
handling high-throughput data because the tool accepts complete lists, sim-
ilar to GSEA, as well as preselected hit lists, similar to SEA and MEA.
COMPLEAT integrates experimental values (for example, z score or fold
change) into the enrichment calculations, similar to recently reported GSEA
tools (1). Indeed, the COMPLEAT complex scores directly reflect the ex-
perimental values of individual genes. A major limitation that is consistent
across all the SEA, GSEA, and MEA tools is that a few highly changing
(ranking) genes drive the enrichment calculation (1). We handled this issue
by calculating the IQM of the values. Like the median, the IQM is robust to
outliers because the lowest 25% and the highest 25% of scores are ignored.
Like the mean, the IQM takes into account a much broader distribution
because values from 50% of the complex members are included. The com-
plex scores preserve the sign from the data set, such that the score directly
indicates that a given complex is under- or overexpressed and a positive or
negative regulator (depending on the type of data analyzed). Furthermore,
the score also enriches the complexes with members that have coherence
scores (24).

Instead of a long list of enriched annotation terms as output, COMPLEAT
provides visualization of the data within a comprehensive data mining
environment. For example, it supports interactive querying systems, where
the user can interactively optimize thresholds to select complexes and query
for a specific complex or gene of interest. In addition, the network-based
visualization of the complexes helps tovisualize individual gene scores in the
context of known protein complexes, which helps generate specific hypothe-
ses and design follow-up experiments.
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We used COMPLEAT to directly compare z scores from pERK reg-
ulators identified in the absence or presence of stimulus (EGF or insulin)
and distinguished two kinds of dynamic complexes. We identified com-
plexes regulating pERK in the presence or absence of stimulus, where
the stimulus may trigger complex assembly or disassembly. We also
identified complexes in which the stimulus appeared to act as a switch
between positive and negative regulation. In the latter case, the stimulus
may regulate the output of the complex, for example, whether the
complex functions as an activator or inhibitor, rather than assembly or
disassembly. Thus, using COMPLEAT, we have analyzed multiple data
sets to identify dynamic protein complexes based on pERK abundance.
These analyses allow the generation of specific hypotheses that can
then be validated experimentally, as we showed in the case of the Brahma
complex.
www
In summary, we developed a protein complex–based analysis tool that
efficiently addresses a current limitation in high-throughput data analysis.
The tool uses a comprehensive protein complex resource for back-end an-
notation and also incorporates several key features from various other tools.
The tool provides a data-mining environment supported by network-based
visualization and can be applied to analyze not only functional RNAi and
overexpression screens but also results fromgenome-wide association studies
and exome sequencing projects. COMPLEATmay prove useful for identify-
ing human disease genes because different members of the same protein
complex often lead to common disease phenotypes (45). Further, the tool
enables direct comparison of multiple data sets and integration of hetero-
geneous data sets. Thus, COMPLEAT complements the existing enrichment
analysis tools to provide a different dimension to the interpretation of high-
throughput data.
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Fig. 4. Functional validation of the Brahma protein complex. (A) Schematic
representation of Brahma protein complex members; core components and
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respectively (50, 51). The dynamic phospho-regulated proteins in response
to insulin stimulus are indicated with a red star. (B) Coimmunoprecipitation
for the FLAG tag followed byWestern blotting for the myc and hemagglutinin
(HA) tags on lysates from S2R+ cells cotransfected with FLAG and HA
double-tagged Dalao protein and either myc-tagged S6KII or myc-tagged
GFP. The effect of insulin on the physical interaction between Dalao and
S6KII was measured at 10 and 30 min after treatment. One representative
blot is shown from two independent experiments. (C) Comparison of fold
change expression in cyclin D mRNA in untreated cells, cells overexpressing
dalao, and cells overexpressing dalao and stimulated with insulin for 1, 3,
and 6 hours, measured by real-time quantitative reverse transcription PCR
(RT-PCR). Error bars indicate SD (n = 3). (D) Nuclei, nucleoli, and muscle
fibers are larger in L3 Drosophila larvae in which the Brahma-containing
SWI/SNF complex was knocked down by RNAi. Phalloidin (green) and
4′,6-diamidino-2-phenylindole (DAPI; blue) stained the body wall muscle
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shown are representative of experiments from five larvae.
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MATERIALS AND METHODS

Compilation of literature-based complexes
Literature-based complex information was retrieved from databases such
as CORUM, PINdb, CYC2008, GO, KEGG, and Drosophila AP-MS pull-
down complexes (table S1). With the exception of protein complexes that
are annotated by GO, all the other complexes were mapped across hu-
man,Drosophila, and yeast. We used DIOPT (http://www.flyrnai.org/diopt),
an integrative ortholog prediction tool, to map orthologs among human,
Drosophila, and yeast. DIOPT scores were used to select the best ortholog
match in case of “one-to-many” ortholog relationships (DIOPT score cutoff
≥2). Only complexes consisting of two or more proteins are included in the
complex resources. Complex annotations from the source databases, in-
cluding complex name, purification method, and PubMed ID, are also in-
cluded in the resources.

Applying CFinder to predict protein complexes
CFinder (http://www.cfinder.org/) was downloaded and implemented
locally. We applied CFinder to identify protein complexes from human,
Drosophila, and yeast PPI networks. We filtered the PPI networks using co-
expression values or colocalization information to remove low-confidence
PPIs. The coexpression values were used to filter human and Drosophila
PPI networks, and only edges with Pearson correlation ≥0.2 were retained.
For the yeast network, we used colocalization information and retained
only those PPIs where the subcellular localization of both proteins is
known and the proteins colocalize. We used the filtered human,Drosophila,
and yeast PPI networks as input and ran CFinder with the default param-
eters. The outputs were analyzed and integrated with Perl scripts.

Applying NetworkBLAST to predict protein complexes
NetworkBLAST was used to identify evolutionarily conserved protein
complexes by aligning two networks from different species. NetworkBLAST
was downloaded (http://www.cs.tau.ac.il/~bnet/networkblast.htm) and
implemented locally. We used stringent parameters to align human, Dro-
sophila, and yeast networks. The complex density was set to 0.95, and
false negatives to 0.2, 0.2, and 0.1 for human, Drosophila, and yeast
networks, respectively. The outputs were analyzed and integrated with
Perl scripts.

Literature co-citation
For each protein in the complex resource, we retrieved the corresponding
literature from the National Center for Biotechnology Information (NCBI)
gene resource (http://www.ncbi.nlm.nih.gov/). We only selected articles
associated with 2 to 50 genes to eliminate high-throughput data that
may be associated with false discovery. For all possible pairs of proteins
in a protein complex, we extracted the pairs that are co-cited in the same
publication(s). To assess the significance of co-citation, we computed the
P value for each complex by comparing these results with the results ob-
tained using a set of 1000 randomly generated protein complexes of the
same size. For co-citation annotation of each complex, we ranked the
articles based on the fraction of the pairs co-cited and selected the top
10 articles for display at COMPLEAT.

Coexpression
Coexpression data for human and Drosophila were downloaded from
COXPRESdb (46). COXPRESdb provides weighted Pearson’s correlation
coefficients for gene pairs based on 4401 and 1102 microarray experi-
ments corresponding to human and Drosophila, respectively. For all pos-
sible pairs of proteins in a protein complex, we extracted the coexpression
values (weighted Pearson’s correlation coefficients) and computed the
www
average coexpression value. To assess the significance of the average co-
expression value, we computed the P value for each complex by compar-
ing the results with those obtained using a set of 1000 randomly generated
protein complexes of the same size.

Colocalization
The localization annotation for yeast proteins was obtained from the UniProt
database (http://www.uniprot.org/) and the Yeast GFP Fusion Localization
Database (http://yeastgfp.yeastgenome.org/) (23). Subcellular localization
annotations were consolidated and simplified. For example, “nucleolus” was
included in the broader category “nucleus,” and “ER to Golgi” was mapped
to “ER” and “Golgi.” Next, the proteins were annotated based on their lo-
calization to one or more of the following subcellular locations: peroxisome,
nucleus, mitochondrion, lysosome, Golgi, ER, endosome, and cytoplasm.
For all possible pairs of proteins in a protein complex, we extracted the pairs
that colocalize to the same subcellular location. To assess the significance of
colocalization, we computed the P value for each complex by comparing
the results with the results obtained using a set of 1000 randomly gener-
ated protein complexes of the same size.

Complex scoring
Values from the input data were mapped to complex members and sorted
highest to lowest. The complex score was computed as the IQM as follows:

CIQM ¼ 1

ðQ3 − Q1Þ þ 1
∑

i ¼ Q1

Q3

xi

Q1 ¼ n

4
þ 1 Q1 ∈ Z

Q3 ¼ 3n

4
Q3 ∈ Z

where n is the number of proteins in the complex, xi is the score of ith
protein in the complex, and Q1 and Q3 are the integers of the first and
third quartiles, respectively.

Implementation of COMPLEAT
The COMPLEAT user interface was implemented as a collection of Java
servlets, JavaScript, and Adobe Flash components. COMPLEAT inte-
grates existing tools, including Cytoscape Web for complex visualization
(http://cytoscapeweb.cytoscape.org/), iCanPlot for plotting scores (http://www.
icanplot.org/), and WebFX for parameter adjustment sliders (http://webfx.
eae.net/). The application is hosted on the Orchestra cluster supported by
the Research IT Group (RITG) at Harvard Medical School. The complexes
and associated annotations and relationships are maintained as flat files. The
Java Servlets and Java Server Pages run within an instance of Tomcat6.0.18
on the Orchestra cluster. The Entrez gene identifiers, symbols, locus tags,
and alias names for human, Drosophila, and yeast genes were retrieved from
NCBI (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/). For Drosophila genes, their
FlyBase gene identifiers, CG numbers, symbols, and synonyms were also
retrieved from FlyBase (ftp://ftp.flybase.net/releases/current/). Protein identi-
fiers were retrieved from UniProt (ftp://ftp.uniprot.org/pub/databases/uniprot/
current_release/knowledgebase/idmapping/). A program developed in-house
automatically transfers and processes these files on a monthly basis.

Complex enrichment analysis of pERK RNAi data sets
We selected four RNAi data sets aimed at identifying components of the
ERK pathway (5, 6). Briefly, the first set of RNAi screens were performed
in an S2R+ cell line expressing Drosophila EGFR (DER) from the metal-
lothionein promoter (S2R+mtDER). The screens were performed in the
absence of stimulus and at 10 min after treatment with Spitz-containing
.SCIENCESIGNALING.org 26 February 2013 Vol 6 Issue 264 rs5 8
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conditioned medium (EGF in mammals), which activates the Rolled ki-
nase and increases the abundance of phosphorylated Rolled (known as
ERK or MAPK in mammals). The second set of RNAi screens were per-
formed in S2R+ cell lines in the absence of stimulus and at 10 min after
treatment with bovine insulin (Sigma; 25 mg/ml). The amounts of pERK
and endogenous ERK were measured to determine the z scores for each
RNAi experiment (5, 6), which we used as input for the complex enrich-
ment analysis. The complex enrichment analysis was performed indepen-
dently for all four data sets. To study the dynamics of complex regulation
by EGF, we compared the complex scores at baseline (S2R+mtDER cell)
with that after 10-min treatment with EGF stimulus (S2R+mtDER cell).
Similarly, to study insulin dynamics, we compared baseline (S2R+ cells)
with 10-min insulin treatment (S2R+ cells).

We applied greedy algorithm to select nonredundant representative
complexes as shown in Fig. 3, B and D, and used both P value and score
cutoff to define a protein complex as “enriched” in a particular data set.
For baseline data sets (S2R+mtDER and S2R+), we used a P value cutoff
of 0.01 and an IQM cutoff of <−1 or >1. In case of stimulus data sets
(both EGF and insulin), we used a P value cutoff of 0.01 and an IQM
cutoff of −1.5 or 1.5. To define a protein complex as “not enriched” in
a data set, we used a P value cutoff of >0.25 and low IQM values (values
between −0.5 and 0.5). The complexes enriched in both the baseline and
stimulus data sets are grouped as “common” complexes. The complexes
enriched in both data sets but which have opposing IQM values are grouped
as “opposing effects” (for example, negative score in baseline and positive
score in stimulus condition, or vice versa). If the complexes are enriched
in the baseline but not the stimulus data set, the complexes are grouped as
“baseline-specific.” Similarly, complexes enriched in the stimulus but not
the baseline data set are grouped as “stimulus-specific.”

Clustering protein complexes to select
nonredundant complexes
We used a greedy algorithm to cluster significant complexes and select
nonredundant representatives. The complexes were sorted based on size
(largest to smallest), and the largest complex was selected as representative
of the cluster. A complex was assigned to an existing cluster if it was a
subset or shared at least 80% similarity to the representative cluster. If a
complex did not match an existing cluster, it became the representative
complex for a new cluster. This process was iterated until all complexes
were placed in appropriate clusters.

Coimmunoprecipitation and Western blotting
An expression construct for FLAG and HA double-tagged Dalao protein
was cotransfected with either a myc-tagged S6KII construct or myc-GFP
as a control in S2R+ cells. Twenty-four hours after transfection, cells were
treated with copper sulfate to induce expression of the tagged proteins.
Twenty-four hours later, cells were either untreated or stimulated with in-
sulin for 10 and 30 min. Total cell lysates were prepared and immuno-
precipitated with anti-FLAG M2 affinity gel (Sigma-Aldrich). Cell lysates
and immunoprecipitated samples were separated by SDS–polyacrylamide
gel electrophoresis and transferred onto a polyvinylidene difluoride mem-
brane. The association between S6KII and Dalao was demonstrated by
probing the membrane with antibody against the myc tag (Cell Signaling
Technologies). Protein input blots were probed with the myc-tag antibody
and an antibody against the HA tag (Roche Diagnostics, clone 3F10).

Quantitative RT-PCR
Drosophila S2R+ cells were transfected with either empty vector or an ex-
pression construct for FLAG and HA double-tagged Dalao protein. Twenty-
four hours after transfection, cells were treated with copper sulfate to induce
www
expression of the tagged protein. Twenty-four hours later, cells were un-
treated or stimulated with insulin for 1, 3, or 6 hours. Total RNA was
prepared from cells with Trizol (Invitrogen), followed by the RNeasy kit
(Qiagen). The iScript cDNA Synthesis kit (Bio-Rad) was used for
complementary DNA (cDNA) synthesis, and quantitative RT-PCR was per-
formed with the iQ SYBR Green Supermix (Bio-Rad). Rp49 was used as
normalization reference. Relative quantitation of mRNA expression was
calculated using the comparative CT method. The primers used were rp49,
5′-ATCGGTTACGGATCGAACAA-3′ (forward) and 5′-GACAATCTCCT-
TGCGCTTCT-3′ (reverse), and cyclin D, 5′-GCCGAATGGATGATGGAA-3′
(forward) and 5′-CCATGTAATTTAATGCCAGTAATACG-3′ (reverse).

Fly stocks
Dmef2-Gal4 drives transgene expression in all body wall muscles. For
transgene expression with the Gal4-UAS system (47), flies were reared at
25°C. Hairpin lines were obtained from the TRiP facility at Harvard Med-
ical School [UAS-brm dsRNA (HMS00050) and UAS-moira (HMS01267)]
or from the Vienna Stock Center [UAS-dalao (KK1044361)].

Histology, laser-scanning confocal microscopy,
and image analysis
Wandering third instar larvae were dissected in ice-cold Ca2+-free saline
buffer [128 mM NaCl, 2 mM KCl, 4 mM MgCl2, 1 mM EGTA, 35 mM
sucrose, 5 mM Hepes (pH 7.2)] in a dissection chamber (48). Body wall
muscles were fixed for 20 to 30 min in Ca2+-free saline buffer containing
4% paraformaldehyde and 0.1% Triton X-100. After being washed, body
wall muscles were incubated for 10 hours with DAPI (1 mg/ml) and Alexa
633–conjugated phalloidin (1:100) to visualize nuclei and F-actin, respec-
tively. To examine biogenesis of nucleoli, an antibody against fibrillarin
[EnCore Biotechnology (49)] was applied (1:100), followed by incubation
with Alexa 555–conjugated secondary antibodies (Molecular Probes). Mus-
cles VL3 and VL4 of abdominal segments 2 to 5 were imaged with a Leica
TCS SP2 confocal laser-scanning microscope.

SUPPLEMENTARY MATERIALS
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Fig. S1. Schematic representation of protein complex scoring.
Fig. S2. Snapshots of the COMPLEAT Web interface.
Fig. S3. Complex enrichment results of baseline and EGF stimulus.
Fig. S4. Baseline compared with EGF stimulus common complexes.
Fig. S5. Baseline compared with EGF stimulus dynamic complexes: opposing effects.
Fig. S6. Baseline compared with EGF stimulus: baseline-specific dynamic complexes.
Fig. S7. Baseline compared with EGF stimulus: stimulus-specific dynamic complexes.
Fig. S8. Complex enrichment results of baseline and insulin stimulus.
Fig. S9. Baseline compared with insulin stimulus: common complexes.
Fig. S10. Baseline compared with insulin stimulus: baseline-specific dynamic complexes.
Fig. S11. Baseline compared with insulin stimulus: stimulus-specific dynamic complexes.
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