High-throughput data analysis

Hans M. Dalton, Raghuvir Viswanatha, Ricky Brathwaite Jr., Jae Sophia Zuno, Stephanie E Mohr, Norbert Perrimon, and Clement Y. Chow. 12/4/2021. “A genome-wide CRISPR screen identifies the glycosylation enzyme DPM1 as a modifier of DPAGT1 deficiency and ER stress.” BioRxiv. Publisher's VersionAbstract
Partial loss-of-function mutations in glycosylation pathways underlie a set of rare diseases called Congenital Disorders of Glycosylation (CDGs). In particular, DPAGT1 CDG is caused by mutations in the gene encoding the first step in N-glycosylation, DPAGT1, and this disorder currently lacks effective therapies. To identify potential therapeutic targets for DPAGT1-CDG, we performed CRISPR knockout screens in Drosophila cells for genes associated with better survival and glycoprotein levels under DPAGT1 inhibition. We identified hundreds of candidate genes that may be of therapeutic benefit. Intriguingly, inhibition of the mannosyltransferase Dpm1, or its downstream glycosylation pathways, could rescue two in vivo models of DPAGT1 inhibition and ER stress, even though impairment of these pathways alone usually cause CDGs. While both in vivo models ostensibly cause ER stress (through DPAGT1 inhibition or a misfolded protein), we found a novel difference in fructose metabolism that may indicate glycolysis as a modulator of DPAGT1-CDG. Our results provide new therapeutic targets for DPAGT1-CDG, include the unique finding of Dpm1-related pathways rescuing DPAGT1 inhibition, and reveal a novel interaction between fructose metabolism and ER stress.
Yanhui Hu, Aram Comjean, Jonathan Rodiger, Yifang Liu, Yue Gao, Verena Chung, Jonathan Zirin, Norbert Perrimon, and Stephanie E Mohr. 2020. “FlyRNAi.org-the database of the Drosophila RNAi screening center and transgenic RNAi project: 2021 update.” Nucleic Acids Res.Abstract
The FlyRNAi database at the Drosophila RNAi Screening Center and Transgenic RNAi Project (DRSC/TRiP) provides a suite of online resources that facilitate functional genomics studies with a special emphasis on Drosophila melanogaster. Currently, the database provides: gene-centric resources that facilitate ortholog mapping and mining of information about orthologs in common genetic model species; reagent-centric resources that help researchers identify RNAi and CRISPR sgRNA reagents or designs; and data-centric resources that facilitate visualization and mining of transcriptomics data, protein modification data, protein interactions, and more. Here, we discuss updated and new features that help biological and biomedical researchers efficiently identify, visualize, analyze, and integrate information and data for Drosophila and other species. Together, these resources facilitate multiple steps in functional genomics workflows, from building gene and reagent lists to management, analysis, and integration of data.
2020 Sep 21

DRSC-BTRR at the GSA Molecular Parasitology Meeting XXXI

Mon Sep 21 (All day) to Thu Sep 24 (All day)

Location: 

online
The Drosophila Research & Screening Center-Biomedical Technology Research Resource (DRSC-BTRR) will be represented at the GSA's Molecular Parasitology Meeting XXXI (a virtual event). Look for a presentation by Viswanatha et al. on our work establishing CRISPR knockout screening in mosquito cell lines. Read more about DRSC-BTRR at the GSA Molecular Parasitology Meeting XXXI
2018 Apr 13

DRSC & TRiP Workshop at ADRC

1:45pm to 3:45pm

Location: 

Philadelphia, PA, USA
The DRSC & TRiP will be hosting a workshop at the Annual Drosophila Research Conference in Philadelphia, PA. The workshop is scheduled for Friday, April 13th from 1:45 to 3:45 PM. Come hear from DRSC & TRiP leaders Norbert Perrimon, Jonathan Zirin (organizer), Claire Yanhui Hu, and Stephanie Mohr. At the workshop, you will learn about new opportunities for community nomination and experiments using CRISPR knockout and activation, as well as learn what's new and popular among our online software and database tools. There will be something for everyone -- we will provide information... Read more about DRSC & TRiP Workshop at ADRC
Figure 2 from Housden et al 2017 PNAS

Variable Dose Analysis: a new DRSC-supported cell screen approach that leverages existing reagents to perform robust screens

December 1, 2017

We are excited to report the publication of a paper from Benjamin Housden and colleagues describing development and use of the Variable Dose Analysis (VDA) approach. Ben developed a way to use existing TRiP shRNA plasmids originally developed for fly stock production in a new, effective approach to high-throughput cell screening.

The VDA approach is particularly useful for combinatorial approaches that are acutely sensitive to assay robustness. The screen Ben and colleagues report focused on synthetic effects in Drosophila tumor model cells.  The...

Read more about Variable Dose Analysis: a new DRSC-supported cell screen approach that leverages existing reagents to perform robust screens
Screenshot of a 2015 Science paper from Payre and colleagues

Francois Payre's plenary talk at ADRC 2017 features results from DRSC cell-based screen

March 30, 2017

Those of us lucky enough to be at the Annual Drosophila Research Conference this morning saw a great talk by Francois Payre about regulation of Shavenbaby by small ORFs. A genome-wide cell-based screen done at the DRSC by Emilie Benrabah identified the mechanism of regulation. As this exemplifies, cell screens can help identify key pathways and factors that can then be followed up with in vivo studies.

J Zanet, E Benrabah, T Li, A Pélissier-Monier, H Chanut-Delalande, B Ronsin, HJ Bellen, F Payre, and S Plaza. 2015. “Pri sORF peptides induce selective proteasome-mediated protein processing.” Science, 349, 6254, Pp. 1356-8.Abstract

A wide variety of RNAs encode small open-reading-frame (smORF/sORF) peptides, but their functions are largely unknown. Here, we show that Drosophila polished-rice (pri) sORF peptides trigger proteasome-mediated protein processing, converting the Shavenbaby (Svb) transcription repressor into a shorter activator. A genome-wide RNA interference screen identifies an E2-E3 ubiquitin-conjugating complex, UbcD6-Ubr3, which targets Svb to the proteasome in a pri-dependent manner. Upon interaction with Ubr3, Pri peptides promote the binding of Ubr3 to Svb. Ubr3 can then ubiquitinate the Svb N terminus, which is degraded by the proteasome. The C-terminal domains protect Svb from complete degradation and ensure appropriate processing. Our data show that Pri peptides control selectivity of Ubr3 binding, which suggests that the family of sORF peptides may contain an extended repertoire of protein regulators.

Arunachalam Vinayagam, Meghana M Kulkarni, Richelle Sopko, Xiaoyun Sun, Yanhui Hu, Ankita Nand, Christians Villalta, Ahmadali Moghimi, Xuemei Yang, Stephanie E Mohr, Pengyu Hong, John M Asara, and Norbert Perrimon. 9/13/2016. “An Integrative Analysis of the InR/PI3K/Akt Network Identifies the Dynamic Response to Insulin Signaling.” Cell Reports, 16, 11, Pp. 3062-3074.Abstract

Insulin regulates an essential conserved signaling pathway affecting growth, proliferation, and meta- bolism. To expand our understanding of the insulin pathway, we combine biochemical, genetic, and computational approaches to build a comprehensive Drosophila InR/PI3K/Akt network. First, we map the dynamic protein-protein interaction network sur- rounding the insulin core pathway using bait-prey interactions connecting 566 proteins. Combining RNAi screening and phospho-specific antibodies, we find that 47% of interacting proteins affect pathway activity, and, using quantitative phospho- proteomics, we demonstrate that $10% of interact- ing proteins are regulated by insulin stimulation at the level of phosphorylation. Next, we integrate these orthogonal datasets to characterize the structure and dynamics of the insulin network at the level of protein complexes and validate our method by iden- tifying regulatory roles for the Protein Phosphatase 2A (PP2A) and Reptin-Pontin chromatin-remodeling complexes as negative and positive regulators of ribosome biogenesis, respectively. Altogether, our study represents a comprehensive resource for the study of the evolutionary conserved insulin network. 

Ian T Flockhart, Matthew Booker, Yanhui Hu, Benjamin McElvany, Quentin Gilly, Bernard Mathey-Prevot, Norbert Perrimon, and Stephanie E Mohr. 2012. “FlyRNAi.org--the database of the Drosophila RNAi screening center: 2012 update.” Nucleic Acids Res, 40, Database issue, Pp. D715-9.Abstract

FlyRNAi (http://www.flyrnai.org), the database and website of the Drosophila RNAi Screening Center (DRSC) at Harvard Medical School, serves a dual role, tracking both production of reagents for RNA interference (RNAi) screening in Drosophila cells and RNAi screen results. The database and website is used as a platform for community availability of protocols, tools, and other resources useful to researchers planning, conducting, analyzing or interpreting the results of Drosophila RNAi screens. Based on our own experience and user feedback, we have made several changes. Specifically, we have restructured the database to accommodate new types of reagents; added information about new RNAi libraries and other reagents; updated the user interface and website; and added new tools of use to the Drosophila community and others. Overall, the result is a more useful, flexible and comprehensive website and database.

Pages