CRISPR gRNA design

2018 Apr 13

DRSC & TRiP Workshop at ADRC

1:45pm to 3:45pm

Location: 

Philadelphia, PA, USA
The DRSC & TRiP will be hosting a workshop at the Annual Drosophila Research Conference in Philadelphia, PA. The workshop is scheduled for Friday, April 13th from 1:45 to 3:45 PM. Come hear from DRSC & TRiP leaders Norbert Perrimon, Jonathan Zirin (organizer), Claire Yanhui Hu, and Stephanie Mohr. At the workshop, you will learn about new opportunities for community nomination and experiments using CRISPR knockout and activation, as well as learn what's new and popular among our online software and database tools. There will be something for everyone -- we will provide information... Read more about DRSC & TRiP Workshop at ADRC
Yanhui Hu, Aram Comjean, Charles Roesel, Arunachalam Vinayagam, Ian Flockhart, Jonathan Zirin, Lizabeth Perkins, Norbert Perrimon, and Stephanie E Mohr. 10/11/2016. “FlyRNAi.org—the database of the Drosophila RNAi screening center and transgenic RNAi project: 2017 update.” Nucleic Acids Research. Publisher's VersionAbstract

The FlyRNAi database of the Drosophila RNAi Screening Center (DRSC) and Transgenic RNAi Project (TRiP) at Harvard Medical School and associated DRSC/TRiP Functional Genomics Resources website (http://fgr.hms.harvard.edu) serve as a reagent production tracking system, screen data repository, and portal to the community. Through this portal, we make available protocols, online tools, and other resources useful to researchers at all stages of high-throughput functional genomics screening, from assay design and reagent identification to data analysis and interpretation. In this update, we describe recent changes and additions to our website, database and suite of online tools. Recent changes reflect a shift in our focus from a single technology (RNAi) and model species (Drosophila) to the application of additional technologies (e.g. CRISPR) and support of integrated, cross-species approaches to uncovering gene function using functional genomics and other approaches.

Benjamin E Housden, Matthias Muhar, Matthew Gemberling, Charles A Gersbach, Didier YR Stainier, Geraldine Seydoux, Stephanie E Mohr, Johannes Zuber, and Norbert Perrimon. 10/31/2016. “Loss-of-function genetic tools for animal models: cross-species and cross-platform differences.” Nat Rev Genet. Publisher's VersionAbstract

Our understanding of the genetic mechanisms that underlie biological processes has relied extensively on loss-of-function (LOF) analyses. LOF methods target DNA, RNA or protein to reduce or to ablate gene function. By analysing the phenotypes that are caused by these perturbations the wild-type function of genes can be elucidated. Although all LOF methods reduce gene activity, the choice of approach (for example, mutagenesis, CRISPR-based gene editing, RNA interference, morpholinos or pharmacological inhibition) can have a major effect on phenotypic outcomes. Interpretation of the LOF phenotype must take into account the biological process that is targeted by each method. The practicality and efficiency of LOF methods also vary considerably between model systems. We describe parameters for choosing the optimal combination of method and system, and for interpreting phenotypes within the constraints of each method.

Benjamin E Housden, Shuailiang Lin, and Norbert Perrimon. 2014. “Cas9-based genome editing in Drosophila.” Methods Enzymol, 546, Pp. 415-39.Abstract

Our ability to modify the Drosophila genome has recently been revolutionized by the development of the CRISPR system. The simplicity and high efficiency of this system allows its widespread use for many different applications, greatly increasing the range of genome modification experiments that can be performed. Here, we first discuss some general design principles for genome engineering experiments in Drosophila and then present detailed protocols for the production of CRISPR reagents and screening strategies to detect successful genome modification events in both tissue culture cells and animals.

Stephanie E Mohr, Yanhui Hu, Benjamin Ewen-Campen, Benjamin E Housden, Raghuvir Viswanatha, and Norbert Perrimon. 2016. “CRISPR guide RNA design for research applications.” FEBS J.Abstract

The rapid rise of CRISPR as a technology for genome engineering and related research applications has created a need for algorithms and associated online tools that facilitate design of on-target and effective guide RNAs (gRNAs). Here, we review the state-of-the-art in CRISPR gRNA design for research applications of the CRISPR-Cas9 system, including knockout, activation and inhibition. Notably, achieving good gRNA design is not solely dependent on innovations in CRISPR technology. Good design and design tools also rely on availability of high-quality genome sequence and gene annotations, as well as on availability of accumulated data regarding off-targets and effectiveness metrics. This article is protected by copyright. All rights reserved.

Xingjie Ren, Jin Sun, Benjamin E Housden, Yanhui Hu, Charles Roesel, Shuailiang Lin, Lu-Ping Liu, Zhihao Yang, Decai Mao, Lingzhu Sun, Qujie Wu, Jun-Yuan Ji, Jianzhong Xi, Stephanie E Mohr, Jiang Xu, Norbert Perrimon, and Jian-Quan Ni. 2013. “Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9.” Proc Natl Acad Sci U S A, 110, 47, Pp. 19012-7.Abstract

The ability to engineer genomes in a specific, systematic, and cost-effective way is critical for functional genomic studies. Recent advances using the CRISPR-associated single-guide RNA system (Cas9/sgRNA) illustrate the potential of this simple system for genome engineering in a number of organisms. Here we report an effective and inexpensive method for genome DNA editing in Drosophila melanogaster whereby plasmid DNAs encoding short sgRNAs under the control of the U6b promoter are injected into transgenic flies in which Cas9 is specifically expressed in the germ line via the nanos promoter. We evaluate the off-targets associated with the method and establish a Web-based resource, along with a searchable, genome-wide database of predicted sgRNAs appropriate for genome engineering in flies. Finally, we discuss the advantages of our method in comparison with other recently published approaches.