High-throughput data analysis

Meghana M Kulkarni, Matthew Booker, Serena J Silver, Adam Friedman, Pengyu Hong, Norbert Perrimon, and Bernard Mathey-Prevot. 2006. “Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays.” Nat Methods, 3, 10, Pp. 833-8.Abstract

To evaluate the specificity of long dsRNAs used in high-throughput RNA interference (RNAi) screens performed at the Drosophila RNAi Screening Center (DRSC), we performed a global analysis of their activity in 30 genome-wide screens completed at our facility. Notably, our analysis predicts that dsRNAs containing > or = 19-nucleotide perfect matches identified in silico to unintended targets may contribute to a significant false positive error rate arising from off-target effects. We confirmed experimentally that such sequences in dsRNAs lead to false positives and to efficient knockdown of a cross-hybridizing transcript, raising a cautionary note about interpreting results based on the use of a single dsRNA per gene. Although a full appreciation of all causes of false positive errors remains to be determined, we suggest simple guidelines to help ensure high-quality information from RNAi high-throughput screens.

Eric F Joyce, Benjamin R Williams, Tiao Xie, and C-Ting Wu. 2012. “Identification of genes that promote or antagonize somatic homolog pairing using a high-throughput FISH-based screen.” PLoS Genet, 8, 5, Pp. e1002667.Abstract

The pairing of homologous chromosomes is a fundamental feature of the meiotic cell. In addition, a number of species exhibit homolog pairing in nonmeiotic, somatic cells as well, with evidence for its impact on both gene regulation and double-strand break (DSB) repair. An extreme example of somatic pairing can be observed in Drosophila melanogaster, where homologous chromosomes remain aligned throughout most of development. However, our understanding of the mechanism of somatic homolog pairing remains unclear, as only a few genes have been implicated in this process. In this study, we introduce a novel high-throughput fluorescent in situ hybridization (FISH) technology that enabled us to conduct a genome-wide RNAi screen for factors involved in the robust somatic pairing observed in Drosophila. We identified both candidate "pairing promoting genes" and candidate "anti-pairing genes," providing evidence that pairing is a dynamic process that can be both enhanced and antagonized. Many of the genes found to be important for promoting pairing are highly enriched for functions associated with mitotic cell division, suggesting a genetic framework for a long-standing link between chromosome dynamics during mitosis and nuclear organization during interphase. In contrast, several of the candidate anti-pairing genes have known interphase functions associated with S-phase progression, DNA replication, and chromatin compaction, including several components of the condensin II complex. In combination with a variety of secondary assays, these results provide insights into the mechanism and dynamics of somatic pairing.

Gyeong-Hun Baeg, Rui Zhou, and Norbert Perrimon. 2005. “Genome-wide RNAi analysis of JAK/STAT signaling components in Drosophila.” Genes Dev, 19, 16, Pp. 1861-70.Abstract

The cytokine-activated Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway plays an important role in the control of a wide variety of biological processes. When misregulated, JAK/STAT signaling is associated with various human diseases, such as immune disorders and tumorigenesis. To gain insights into the mechanisms by which JAK/STAT signaling participates in these diverse biological responses, we carried out a genome-wide RNA interference (RNAi) screen in cultured Drosophila cells. We identified 121 genes whose double-stranded RNA (dsRNA)-mediated knockdowns affected STAT92E activity. Of the 29 positive regulators, 13 are required for the tyrosine phosphorylation of STAT92E. Furthermore, we found that the Drosophila homologs of RanBP3 and RanBP10 are negative regulators of JAK/STAT signaling through their control of nucleocytoplasmic transport of STAT92E. In addition, we identified a key negative regulator of Drosophila JAK/STAT signaling, protein tyrosine phosphatase PTP61F, and showed that it is a transcriptional target of JAK/STAT signaling, thus revealing a novel negative feedback loop. Our study has uncovered many uncharacterized genes required for different steps of the JAK/STAT signaling pathway.

Sriram Sathyanarayanan, Xiangzhong Zheng, Shailesh Kumar, Chun-Hong Chen, Dechun Chen, Bruce Hay, and Amita Sehgal. 2008. “Identification of novel genes involved in light-dependent CRY degradation through a genome-wide RNAi screen.” Genes Dev, 22, 11, Pp. 1522-33.Abstract

Circadian clocks regulate many different physiological processes and synchronize these to environmental light:dark cycles. In Drosophila, light is transmitted to the clock by a circadian blue light photoreceptor CRYPTOCHROME (CRY). In response to light, CRY promotes the degradation of the circadian clock protein TIMELESS (TIM) and then is itself degraded. To identify novel genes involved in circadian entrainment, we performed an unbiased genome-wide screen in Drosophila cells using a sensitive and quantitative assay that measures light-induced degradation of CRY. We systematically knocked down the expression of approximately 21,000 genes and identified those that regulate CRY stability. These genes include ubiquitin ligases, signal transduction molecules, and redox molecules. Many of the genes identified in the screen are specific for CRY degradation and do not affect degradation of the TIM protein in response to light, suggesting that, for the most part, these two pathways are distinct. We further validated the effect of three candidate genes on CRY stability in vivo by assaying flies mutant for each of these genes. This work identifies a novel regulatory network involved in light-dependent CRY degradation and demonstrates the power of a genome-wide RNAi approach for understanding circadian biology.

Andrés Dekanty, Nuria M Romero, Agustina P Bertolin, María G Thomas, Claudia C Leishman, Joel I Perez-Perri, Graciela L Boccaccio, and Pablo Wappner. 2010. “Drosophila genome-wide RNAi screen identifies multiple regulators of HIF-dependent transcription in hypoxia.” PLoS Genet, 6, 6, Pp. e1000994.Abstract

Hypoxia-inducible factors (HIFs) are a family of evolutionary conserved alpha-beta heterodimeric transcription factors that induce a wide range of genes in response to low oxygen tension. Molecular mechanisms that mediate oxygen-dependent HIF regulation operate at the level of the alpha subunit, controlling protein stability, subcellular localization, and transcriptional coactivator recruitment. We have conducted an unbiased genome-wide RNA interference (RNAi) screen in Drosophila cells aimed to the identification of genes required for HIF activity. After 3 rounds of selection, 30 genes emerged as critical HIF regulators in hypoxia, most of which had not been previously associated with HIF biology. The list of genes includes components of chromatin remodeling complexes, transcription elongation factors, and translational regulators. One remarkable hit was the argonaute 1 (ago1) gene, a central element of the microRNA (miRNA) translational silencing machinery. Further studies confirmed the physiological role of the miRNA machinery in HIF-dependent transcription. This study reveals the occurrence of novel mechanisms of HIF regulation, which might contribute to developing novel strategies for therapeutic intervention of HIF-related pathologies, including heart attack, cancer, and stroke.

Pages