Drosophila (fly)

Joshua D Stender, Gabriel Pascual, Wen Liu, Minna U Kaikkonen, Kevin Do, Nathanael J Spann, Michael Boutros, Norbert Perrimon, Michael G Rosenfeld, and Christopher K Glass. 2012. “Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20.” Mol Cell, 48, 1, Pp. 28-38.Abstract

Regulation of genes that initiate and amplify inflammatory programs of gene expression is achieved by signal-dependent exchange of coregulator complexes that function to read, write, and erase specific histone modifications linked to transcriptional activation or repression. Here, we provide evidence for the role of trimethylated histone H4 lysine 20 (H4K20me3) as a repression checkpoint that restricts expression of toll-like receptor 4 (TLR4) target genes in macrophages. H4K20me3 is deposited at the promoters of a subset of these genes by the SMYD5 histone methyltransferase through its association with NCoR corepressor complexes. Signal-dependent erasure of H4K20me3 is required for effective gene activation and is achieved by NF-κB-dependent delivery of the histone demethylase PHF2. Liver X receptors antagonize TLR4-dependent gene activation by maintaining NCoR/SMYD5-mediated repression. These findings reveal a histone H4K20 trimethylation/demethylation strategy that integrates positive and negative signaling inputs that control immunity and homeostasis.

Young Kwon, Arunachalam Vinayagam, Xiaoyun Sun, Noah Dephoure, Steven P Gygi, Pengyu Hong, and Norbert Perrimon. 2013. “The Hippo signaling pathway interactome.” Science, 342, 6159, Pp. 737-40.Abstract

The Hippo pathway controls metazoan organ growth by regulating cell proliferation and apoptosis. Many components have been identified, but our knowledge of the composition and structure of this pathway is still incomplete. Using existing pathway components as baits, we generated by mass spectrometry a high-confidence Drosophila Hippo protein-protein interaction network (Hippo-PPIN) consisting of 153 proteins and 204 interactions. Depletion of 67% of the proteins by RNA interference regulated the transcriptional coactivator Yorkie (Yki) either positively or negatively. We selected for further characterization a new member of the alpha-arrestin family, Leash, and show that it promotes degradation of Yki through the lysosomal pathway. Given the importance of the Hippo pathway in tumor development, the Hippo-PPIN will contribute to our understanding of this network in both normal growth and cancer.

Shuailiang Lin, Ben Ewen-Campen, Xiaochun Ni, Benjamin E Housden, and Norbert Perrimon. 2015. “In Vivo Transcriptional Activation Using CRISPR/Cas9 in Drosophila.” Genetics, 201, 2, Pp. 433-42.Abstract

A number of approaches for Cas9-mediated transcriptional activation have recently been developed, allowing target genes to be overexpressed from their endogenous genomic loci. However, these approaches have thus far been limited to cell culture, and this technique has not been demonstrated in vivo in any animal. The technique involving the fewest separate components, and therefore the most amenable to in vivo applications, is the dCas9-VPR system, where a nuclease-dead Cas9 is fused to a highly active chimeric activator domain. In this study, we characterize the dCas9-VPR system in Drosophila cells and in vivo. We show that this system can be used in cell culture to upregulate a range of target genes, singly and in multiplex, and that a single guide RNA upstream of the transcription start site can activate high levels of target transcription. We observe marked heterogeneity in guide RNA efficacy for any given gene, and we confirm that transcription is inhibited by guide RNAs binding downstream of the transcription start site. To demonstrate one application of this technique in cells, we used dCas9-VPR to identify target genes for Twist and Snail, two highly conserved transcription factors that cooperate during Drosophila mesoderm development. In addition, we simultaneously activated both Twist and Snail to identify synergistic responses to this physiologically relevant combination. Finally, we show that dCas9-VPR can activate target genes and cause dominant phenotypes in vivo, providing the first demonstration of dCas9 activation in a multicellular animal. Transcriptional activation using dCas9-VPR thus offers a simple and broadly applicable technique for a variety of overexpression studies.

Michael Boutros, Amy A Kiger, Susan Armknecht, Kim Kerr, Marc Hild, Britta Koch, Stefan A Haas, Renato Paro, Norbert Perrimon, and Norbert Perrimon. 2004. “Genome-wide RNAi analysis of growth and viability in Drosophila cells.” Science, 303, 5659, Pp. 832-5.Abstract

A crucial aim upon completion of whole genome sequences is the functional analysis of all predicted genes. We have applied a high-throughput RNA-interference (RNAi) screen of 19,470 double-stranded (ds) RNAs in cultured cells to characterize the function of nearly all (91%) predicted Drosophila genes in cell growth and viability. We found 438 dsRNAs that identified essential genes, among which 80% lacked mutant alleles. A quantitative assay of cell number was applied to identify genes of known and uncharacterized functions. In particular, we demonstrate a role for the homolog of a mammalian acute myeloid leukemia gene (AML1) in cell survival. Such a systematic screen for cell phenotypes, such as cell viability, can thus be effective in characterizing functionally related genes on a genome-wide scale.

Ian Flockhart, Matthew Booker, Amy Kiger, Michael Boutros, Susan Armknecht, Nadire Ramadan, Kris Richardson, Andrew Xu, Norbert Perrimon, and Bernard Mathey-Prevot. 2006. “FlyRNAi: the Drosophila RNAi screening center database.” Nucleic Acids Res, 34, Database issue, Pp. D489-94.Abstract

RNA interference (RNAi) has become a powerful tool for genetic screening in Drosophila. At the Drosophila RNAi Screening Center (DRSC), we are using a library of over 21,000 double-stranded RNAs targeting known and predicted genes in Drosophila. This library is available for the use of visiting scientists wishing to perform full-genome RNAi screens. The data generated from these screens are collected in the DRSC database (http://flyRNAi.org/cgi-bin/RNAi_screens.pl) in a flexible format for the convenience of the scientist and for archiving data. The long-term goal of this database is to provide annotations for as many of the uncharacterized genes in Drosophila as possible. Data from published screens are available to the public through a highly configurable interface that allows detailed examination of the data and provides access to a number of other databases and bioinformatics tools.

Ramanuj DasGupta, Kent Nybakken, Matthew Booker, Bernard Mathey-Prevot, Foster Gonsalves, Binita Changkakoty, and Norbert Perrimon. 2007. “A case study of the reproducibility of transcriptional reporter cell-based RNAi screens in Drosophila.” Genome Biol, 8, 9, Pp. R203.Abstract

Off-target effects have been demonstrated to be a major source of false-positives in RNA interference (RNAi) high-throughput screens. In this study, we re-assess the previously published transcriptional reporter-based whole-genome RNAi screens for the Wingless and Hedgehog signaling pathways using second generation double-stranded RNA libraries. Furthermore, we investigate other factors that may influence the outcome of such screens, including cell-type specificity, robustness of reporters, and assay normalization, which determine the efficacy of RNAi-knockdown of target genes.

Rui Zhou, Ikuko Hotta, Ahmet M Denli, Pengyu Hong, Norbert Perrimon, and Gregory J Hannon. 2008. “Comparative analysis of argonaute-dependent small RNA pathways in Drosophila.” Mol Cell, 32, 4, Pp. 592-9.Abstract

The specificity of RNAi pathways is determined by several classes of small RNAs, which include siRNAs, piRNAs, endo-siRNAs, and microRNAs (miRNAs). These small RNAs are invariably incorporated into large Argonaute (Ago)-containing effector complexes known as RNA-induced silencing complexes (RISCs), which they guide to silencing targets. Both genetic and biochemical strategies have yielded conserved molecular components of small RNA biogenesis and effector machineries. However, given the complexity of these pathways, there are likely to be additional components and regulators that remain to be uncovered. We have undertaken a comparative and comprehensive RNAi screen to identify genes that impact three major Ago-dependent small RNA pathways that operate in Drosophila S2 cells. We identify subsets of candidates that act positively or negatively in siRNA, endo-siRNA, and miRNA pathways. Our studies indicate that many components are shared among all three Argonaute-dependent silencing pathways, though each is also impacted by discrete sets of genes.

Norbert Perrimon, Jian-Quan Ni, and Lizabeth Perkins. 2010. “In vivo RNAi: today and tomorrow.” Cold Spring Harb Perspect Biol, 2, 8, Pp. a003640.Abstract

RNA interference (RNAi) provides a powerful reverse genetics approach to analyze gene functions both in tissue culture and in vivo. Because of its widespread applicability and effectiveness it has become an essential part of the tool box kits of model organisms such as Caenorhabditis elegans, Drosophila, and the mouse. In addition, the use of RNAi in animals in which genetic tools are either poorly developed or nonexistent enables a myriad of fundamental questions to be asked. Here, we review the methods and applications of in vivo RNAi to characterize gene functions in model organisms and discuss their impact to the study of developmental as well as evolutionary questions. Further, we discuss the applications of RNAi technologies to crop improvement, pest control and RNAi therapeutics, thus providing an appreciation of the potential for phenomenal applications of RNAi to agriculture and medicine.

Adam A Friedman, George Tucker, Rohit Singh, Dong Yan, Arunachalam Vinayagam, Yanhui Hu, Richard Binari, Pengyu Hong, Xiaoyun Sun, Maura Porto, Svetlana Pacifico, Thilakam Murali, Russell L Finley, John M Asara, Bonnie Berger, and Norbert Perrimon. 2011. “Proteomic and functional genomic landscape of receptor tyrosine kinase and ras to extracellular signal-regulated kinase signaling.” Sci Signal, 4, 196, Pp. rs10.Abstract

Characterizing the extent and logic of signaling networks is essential to understanding specificity in such physiological and pathophysiological contexts as cell fate decisions and mechanisms of oncogenesis and resistance to chemotherapy. Cell-based RNA interference (RNAi) screens enable the inference of large numbers of genes that regulate signaling pathways, but these screens cannot provide network structure directly. We describe an integrated network around the canonical receptor tyrosine kinase (RTK)-Ras-extracellular signal-regulated kinase (ERK) signaling pathway, generated by combining parallel genome-wide RNAi screens with protein-protein interaction (PPI) mapping by tandem affinity purification-mass spectrometry. We found that only a small fraction of the total number of PPI or RNAi screen hits was isolated under all conditions tested and that most of these represented the known canonical pathway components, suggesting that much of the core canonical ERK pathway is known. Because most of the newly identified regulators are likely cell type- and RTK-specific, our analysis provides a resource for understanding how output through this clinically relevant pathway is regulated in different contexts. We report in vivo roles for several of the previously unknown regulators, including CG10289 and PpV, the Drosophila orthologs of two components of the serine/threonine-protein phosphatase 6 complex; the Drosophila ortholog of TepIV, a glycophosphatidylinositol-linked protein mutated in human cancers; CG6453, a noncatalytic subunit of glucosidase II; and Rtf1, a histone methyltransferase.

Zheng Yin, Amine Sadok, Heba Sailem, Afshan McCarthy, Xiaofeng Xia, Fuhai Li, Mar Arias Garcia, Louise Evans, Alexis R Barr, Norbert Perrimon, Christopher J Marshall, Stephen TC Wong, and Chris Bakal. 2013. “A screen for morphological complexity identifies regulators of switch-like transitions between discrete cell shapes.” Nat Cell Biol, 15, 7, Pp. 860-71.Abstract

The way in which cells adopt different morphologies is not fully understood. Cell shape could be a continuous variable or restricted to a set of discrete forms. We developed quantitative methods to describe cell shape and show that Drosophila haemocytes in culture are a heterogeneous mixture of five discrete morphologies. In an RNAi screen of genes affecting the morphological complexity of heterogeneous cell populations, we found that most genes regulate the transition between discrete shapes rather than generating new morphologies. In particular, we identified a subset of genes, including the tumour suppressor PTEN, that decrease the heterogeneity of the population, leading to populations enriched in rounded or elongated forms. We show that these genes have a highly conserved function as regulators of cell shape in both mouse and human metastatic melanoma cells.

Dorte Bohla, Martin Herold, Imke Panzer, Melanie K Buxa, Tamer Ali, Jeroen Demmers, Marcus Krüger, Maren Scharfe, Michael Jarek, Marek Bartkuhn, and Rainer Renkawitz. 2014. “A functional insulator screen identifies NURF and dREAM components to be required for enhancer-blocking.” PLoS One, 9, 9, Pp. e107765.Abstract

Chromatin insulators of higher eukaryotes functionally divide the genome into active and inactive domains. Furthermore, insulators regulate enhancer/promoter communication, which is evident from the Drosophila bithorax locus in which a multitude of regulatory elements control segment specific gene activity. Centrosomal protein 190 (CP190) is targeted to insulators by CTCF or other insulator DNA-binding factors. Chromatin analyses revealed that insulators are characterized by open and nucleosome depleted regions. Here, we wanted to identify chromatin modification and remodelling factors required for an enhancer blocking function. We used the well-studied Fab-8 insulator of the bithorax locus to apply a genome-wide RNAi screen for factors that contribute to the enhancer blocking function of CTCF and CP190. Among 78 genes required for optimal Fab-8 mediated enhancer blocking, all four components of the NURF complex as well as several subunits of the dREAM complex were most evident. Mass spectrometric analyses of CTCF or CP190 bound proteins as well as immune precipitation confirmed NURF and dREAM binding. Both co-localise with most CP190 binding sites in the genome and chromatin immune precipitation showed that CP190 recruits NURF and dREAM. Nucleosome occupancy and histone H3 binding analyses revealed that CP190 mediated NURF binding results in nucleosomal depletion at CP190 binding sites. Thus, we conclude that CP190 binding to CTCF or to other DNA binding insulator factors mediates recruitment of NURF and dREAM. Furthermore, the enhancer blocking function of insulators is associated with nucleosomal depletion and requires NURF and dREAM.

Pages