Drosophila (fly)

Amy M Wiles, Dashnamoorthy Ravi, Selvaraj Bhavani, and Alexander JR Bishop. 2008. “An analysis of normalization methods for Drosophila RNAi genomic screens and development of a robust validation scheme.” J Biomol Screen, 13, 8, Pp. 777-84.Abstract

Genome-wide RNA interference (RNAi) screening allows investigation of the role of individual genes in a process of choice. Most RNAi screens identify a large number of genes with a continuous gradient in the assessed phenotype. Screeners must decide whether to examine genes with the most robust phenotype or the full gradient of genes that cause an effect and how to identify candidate genes. The authors have used RNAi in Drosophila cells to examine viability in a 384-well plate format and compare 2 screens, untreated control and treatment. They compare multiple normalization methods, which take advantage of different features within the data, including quantile normalization, background subtraction, scaling, cellHTS2 (Boutros et al. 2006), and interquartile range measurement. Considering the false-positive potential that arises from RNAi technology, a robust validation method was designed for the purpose of gene selection for future investigations. In a retrospective analysis, the authors describe the use of validation data to evaluate each normalization method. Although no method worked ideally, a combination of 2 methods, background subtraction followed by quantile normalization and cellHTS2, at different thresholds, captures the most dependable and diverse candidate genes. Thresholds are suggested depending on whether a few candidate genes are desired or a more extensive systems-level analysis is sought. The normalization approaches and experimental design to perform validation experiments are likely to apply to those high-throughput screening systems attempting to identify genes for systems-level analysis.

Amy M Wiles, Mark Doderer, Jianhua Ruan, Ting-Ting Gu, Dashnamoorthy Ravi, Barron Blackman, and Alexander JR Bishop. 2010. “Building and analyzing protein interactome networks by cross-species comparisons.” BMC Syst Biol, 4, Pp. 36.Abstract

BACKGROUND: A genomic catalogue of protein-protein interactions is a rich source of information, particularly for exploring the relationships between proteins. Numerous systems-wide and small-scale experiments have been conducted to identify interactions; however, our knowledge of all interactions for any one species is incomplete, and alternative means to expand these network maps is needed. We therefore took a comparative biology approach to predict protein-protein interactions across five species (human, mouse, fly, worm, and yeast) and developed InterologFinder for research biologists to easily navigate this data. We also developed a confidence score for interactions based on available experimental evidence and conservation across species. RESULTS: The connectivity of the resultant networks was determined to have scale-free distribution, small-world properties, and increased local modularity, indicating that the added interactions do not disrupt our current understanding of protein network structures. We show examples of how these improved interactomes can be used to analyze a genome-scale dataset (RNAi screen) and to assign new function to proteins. Predicted interactions within this dataset were tested by co-immunoprecipitation, resulting in a high rate of validation, suggesting the high quality of networks produced. CONCLUSIONS: Protein-protein interactions were predicted in five species, based on orthology. An InteroScore, a score accounting for homology, number of orthologues with evidence of interactions, and number of unique observations of interactions, is given to each known and predicted interaction. Our website http://www.interologfinder.org provides research biologists intuitive access to this data.

Jennifer L Rohn, David Sims, Tao Liu, Marina Fedorova, Frieder Schöck, Joseph Dopie, Maria K Vartiainen, Amy A Kiger, Norbert Perrimon, and Buzz Baum. 2011. “Comparative RNAi screening identifies a conserved core metazoan actinome by phenotype.” J Cell Biol, 194, 5, Pp. 789-805.Abstract

Although a large number of actin-binding proteins and their regulators have been identified through classical approaches, gaps in our knowledge remain. Here, we used genome-wide RNA interference as a systematic method to define metazoan actin regulators based on visual phenotype. Using comparative screens in cultured Drosophila and human cells, we generated phenotypic profiles for annotated actin regulators together with proteins bearing predicted actin-binding domains. These phenotypic clusters for the known metazoan "actinome" were used to identify putative new core actin regulators, together with a number of genes with conserved but poorly studied roles in the regulation of the actin cytoskeleton, several of which we studied in detail. This work suggests that although our search for new components of the core actin machinery is nearing saturation, regulation at the level of nuclear actin export, RNA splicing, ubiquitination, and other upstream processes remains an important but unexplored frontier of actin biology.

Clemens Bergwitz, Mark J Wee, Sumi Sinha, Joanne Huang, Charles DeRobertis, Lawrence B Mensah, Jonathan Cohen, Adam Friedman, Meghana Kulkarni, Yanhui Hu, Arunachalam Vinayagam, Michael Schnall-Levin, Bonnie Berger, Lizabeth A Perkins, Stephanie E Mohr, and Norbert Perrimon. 2013. “Genetic determinants of phosphate response in Drosophila.” PLoS One, 8, 3, Pp. e56753.Abstract

Phosphate is required for many important cellular processes and having too little phosphate or too much can cause disease and reduce life span in humans. However, the mechanisms underlying homeostatic control of extracellular phosphate levels and cellular effects of phosphate are poorly understood. Here, we establish Drosophila melanogaster as a model system for the study of phosphate effects. We found that Drosophila larval development depends on the availability of phosphate in the medium. Conversely, life span is reduced when adult flies are cultured on high phosphate medium or when hemolymph phosphate is increased in flies with impaired malpighian tubules. In addition, RNAi-mediated inhibition of MAPK-signaling by knockdown of Ras85D, phl/D-Raf or Dsor1/MEK affects larval development, adult life span and hemolymph phosphate, suggesting that some in vivo effects involve activation of this signaling pathway by phosphate. To identify novel genetic determinants of phosphate responses, we used Drosophila hemocyte-like cultured cells (S2R+) to perform a genome-wide RNAi screen using MAPK activation as the readout. We identified a number of candidate genes potentially important for the cellular response to phosphate. Evaluation of 51 genes in live flies revealed some that affect larval development, adult life span and hemolymph phosphate levels.

Inma Gonzalez, Julio Mateos-Langerak, Aubin Thomas, Thierry Cheutin, and Giacomo Cavalli. 2014. “Identification of regulators of the three-dimensional polycomb organization by a microscopy-based genome-wide RNAi screen.” Mol Cell, 54, 3, Pp. 485-99.Abstract

Polycomb group (PcG) proteins dynamically define cellular identities through epigenetic repression of key developmental genes. PcG target gene repression can be stabilized through the interaction in the nucleus at PcG foci. Here, we report the results of a high-resolution microscopy genome-wide RNAi screen that identifies 129 genes that regulate the nuclear organization of Pc foci. Candidate genes include PcG components and chromatin factors, as well as many protein-modifying enzymes, including components of the SUMOylation pathway. In the absence of SUMO, Pc foci coagulate into larger aggregates. Conversely, loss of function of the SUMO peptidase Velo disperses Pc foci. Moreover, SUMO and Velo colocalize with PcG proteins at PREs, and Pc SUMOylation affects its chromatin targeting, suggesting that the dynamic regulation of Pc SUMOylation regulates PcG-mediated silencing by modulating the kinetics of Pc binding to chromatin as well as its ability to form Polycomb foci.

Jennifer A Philips, Eric J Rubin, and Norbert Perrimon. 2005. “Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection.” Science, 309, 5738, Pp. 1251-3.Abstract

Certain pathogens, such as Mycobacterium tuberculosis, survive within the hostile intracellular environment of a macrophage. To identify host factors required for mycobacterial entry and survival within macrophages, we performed a genomewide RNA interference screen in Drosophila macrophage-like cells, using Mycobacterium fortuitum. We identified factors required for general phagocytosis, as well as those needed specifically for mycobacterial infection. One specific factor, Peste (Pes), is a CD36 family member required for uptake of mycobacteria, but not Escherichia coli or Staphylococcus aureus. Moreover, mammalian class B scavenger receptors (SRs) conferred uptake of bacteria into nonphagocytic cells, with SR-BI and SR-BII uniquely mediating uptake of M. fortuitum, which suggests a conserved role for class B SRs in pattern recognition and innate immunity.

Jun Wang, Xiaobo Zhou, Pamela L Bradley, Shih-Fu Chang, Norbert Perrimon, and Stephen TC Wong. 2008. “Cellular phenotype recognition for high-content RNA interference genome-wide screening.” J Biomol Screen, 13, 1, Pp. 29-39.Abstract

Genome-wide, cell-based screens using high-content screening (HCS) techniques and automated fluorescence microscopy generate thousands of high-content images that contain an enormous wealth of cell biological information. Such screens are key to the analysis of basic cell biological principles, such as control of cell cycle and cell morphology. However, these screens will ultimately only shed light on human disease mechanisms and potential cures if the analysis can keep up with the generation of data. A fundamental step toward automated analysis of high-content screening is to construct a robust platform for automatic cellular phenotype identification. The authors present a framework, consisting of microscopic image segmentation and analysis components, for automatic recognition of cellular phenotypes in the context of the Rho family of small GTPases. To implicate genes involved in Rac signaling, RNA interference (RNAi) was used to perturb gene functions, and the corresponding cellular phenotypes were analyzed for changes. The data used in the experiments are high-content, 3-channel, fluorescence microscopy images of Drosophila Kc167 cultured cells stained with markers that allow visualization of DNA, polymerized actin filaments, and the constitutively activated Rho protein Rac(V12). The performance of this approach was tested using a cellular database that contained more than 1000 samples of 3 predefined cellular phenotypes, and the generalization error was estimated using a cross-validation technique. Moreover, the authors applied this approach to analyze the whole high-content fluorescence images of Drosophila cells for further HCS-based gene function analysis.

Kristian Björk Grimberg, Anne Beskow, Daniel Lundin, Monica M Davis, and Patrick Young. 2011. “Basic leucine zipper protein Cnc-C is a substrate and transcriptional regulator of the Drosophila 26S proteasome.” Mol Cell Biol, 31, 4, Pp. 897-909.Abstract

While the 26S proteasome is a key proteolytic complex, little is known about how proteasome levels are maintained in higher eukaryotic cells. Here we describe an RNA interference (RNAi) screen of Drosophila melanogaster that was used to identify transcription factors that may play a role in maintaining levels of the 26S proteasome. We used an RNAi library against 993 Drosophila transcription factor genes to identify genes whose suppression in Schneider 2 cells stabilized a ubiquitin-green fluorescent protein reporter protein. This screen identified Cnc (cap 'n' collar [CNC]; basic region leucine zipper) as a candidate transcriptional regulator of proteasome component expression. In fact, 20S proteasome activity was reduced in cells depleted of cnc. Immunoblot assays against proteasome components revealed a general decline in both 19S regulatory complex and 20S proteasome subunits after RNAi depletion of this transcription factor. Transcript-specific silencing revealed that the longest of the seven transcripts for the cnc gene, cnc-C, was needed for proteasome and p97 ATPase production. Quantitative reverse transcription-PCR confirmed the role of Cnc-C in activation of transcription of genes encoding proteasome components. Expression of a V5-His-tagged form of Cnc-C revealed that the transcription factor is itself a proteasome substrate that is stabilized when the proteasome is inhibited. We propose that this single cnc gene in Drosophila resembles the ancestral gene family of mammalian nuclear factor erythroid-derived 2-related transcription factors, which are essential in regulating oxidative stress and proteolysis.

Erica Larschan, Marcela ML Soruco, Ok-Kyung Lee, Shouyong Peng, Eric Bishop, Jessica Chery, Karen Goebel, Jessica Feng, Peter J Park, and Mitzi I Kuroda. 2012. “Identification of chromatin-associated regulators of MSL complex targeting in Drosophila dosage compensation.” PLoS Genet, 8, 7, Pp. e1002830.Abstract

Sex chromosome dosage compensation in Drosophila provides a model for understanding how chromatin organization can modulate coordinate gene regulation. Male Drosophila increase the transcript levels of genes on the single male X approximately two-fold to equal the gene expression in females, which have two X-chromosomes. Dosage compensation is mediated by the Male-Specific Lethal (MSL) histone acetyltransferase complex. Five core components of the MSL complex were identified by genetic screens for genes that are specifically required for male viability and are dispensable for females. However, because dosage compensation must interface with the general transcriptional machinery, it is likely that identifying additional regulators that are not strictly male-specific will be key to understanding the process at a mechanistic level. Such regulators would not have been recovered from previous male-specific lethal screening strategies. Therefore, we have performed a cell culture-based, genome-wide RNAi screen to search for factors required for MSL targeting or function. Here we focus on the discovery of proteins that function to promote MSL complex recruitment to "chromatin entry sites," which are proposed to be the initial sites of MSL targeting. We find that components of the NSL (Non-specific lethal) complex, and a previously unstudied zinc-finger protein, facilitate MSL targeting and display a striking enrichment at MSL entry sites. Identification of these factors provides new insight into how MSL complex establishes the specialized hyperactive chromatin required for dosage compensation in Drosophila.

Joshua M Shulman, Selina Imboywa, Nikolaos Giagtzoglou, Martin P Powers, Yanhui Hu, Danelle Devenport, Portia Chipendo, Lori B Chibnik, Allison Diamond, Norbert Perrimon, Nicholas H Brown, Philip L De Jager, and Mel B Feany. 2014. “Functional screening in Drosophila identifies Alzheimer's disease susceptibility genes and implicates Tau-mediated mechanisms.” Hum Mol Genet, 23, 4, Pp. 870-7.Abstract

Using a Drosophila model of Alzheimer's disease (AD), we systematically evaluated 67 candidate genes based on AD-associated genomic loci (P < 10(-4)) from published human genome-wide association studies (GWAS). Genetic manipulation of 87 homologous fly genes was tested for modulation of neurotoxicity caused by human Tau, which forms neurofibrillary tangle pathology in AD. RNA interference (RNAi) targeting 9 genes enhanced Tau neurotoxicity, and in most cases reciprocal activation of gene expression suppressed Tau toxicity. Our screen implicates cindr, the fly ortholog of the human CD2AP AD susceptibility gene, as a modulator of Tau-mediated disease mechanisms. Importantly, we also identify the fly orthologs of FERMT2 and CELF1 as Tau modifiers, and these loci have been independently validated as AD susceptibility loci in the latest GWAS meta-analysis. Both CD2AP and FERMT2 have been previously implicated with roles in cell adhesion, and our screen additionally identifies a fly homolog of the human integrin adhesion receptors, ITGAM and ITGA9, as a modifier of Tau neurotoxicity. Our results highlight cell adhesion pathways as important in Tau toxicity and AD susceptibility and demonstrate the power of model organism genetic screens for the functional follow-up of human GWAS.

Stephanie E Mohr, Yanhui Hu, Kirstin Rudd, Michael Buckner, Quentin Gilly, Blake Foster, Katarzyna Sierzputowska, Aram Comjean, Bing Ye, and Norbert Perrimon. 2015. “Reagent and Data Resources for Investigation of RNA Binding Protein Functions in Drosophila melanogaster Cultured Cells.” G3 (Bethesda), 5, 9, Pp. 1919-24.Abstract

RNA binding proteins (RBPs) are involved in many cellular functions. To facilitate functional characterization of RBPs, we generated an RNA interference (RNAi) library for Drosophila cell-based screens comprising reagents targeting known or putative RBPs. To test the quality of the library and provide a baseline analysis of the effects of the RNAi reagents on viability, we screened the library using a total ATP assay and high-throughput imaging in Drosophila S2R+ cultured cells. The results are consistent with production of a high-quality library that will be useful for functional genomics studies using other assays. Altogether, we provide resources in the form of an initial curated list of Drosophila RBPs; an RNAi screening library we expect to be used with additional assays that address more specific biological questions; and total ATP and image data useful for comparison of those additional assay results with fundamental information such as effects of a given reagent in the library on cell viability. Importantly, we make the baseline data, including more than 200,000 images, easily accessible online.

AA Kiger, B Baum, S Jones, MR Jones, A Coulson, C Echeverri, and N Perrimon. 2003. “A functional genomic analysis of cell morphology using RNA interference.” J Biol, 2, 4, Pp. 27.Abstract

BACKGROUND: The diversity of metazoan cell shapes is influenced by the dynamic cytoskeletal network. With the advent of RNA-interference (RNAi) technology, it is now possible to screen systematically for genes controlling specific cell-biological processes, including those required to generate distinct morphologies. RESULTS: We adapted existing RNAi technology in Drosophila cell culture for use in high-throughput screens to enable a comprehensive genetic dissection of cell morphogenesis. To identify genes responsible for the characteristic shape of two morphologically distinct cell lines, we performed RNAi screens in each line with a set of double-stranded RNAs (dsRNAs) targeting 994 predicted cell shape regulators. Using automated fluorescence microscopy to visualize actin filaments, microtubules and DNA, we detected morphological phenotypes for 160 genes, one-third of which have not been previously characterized in vivo. Genes with similar phenotypes corresponded to known components of pathways controlling cytoskeletal organization and cell shape, leading us to propose similar functions for previously uncharacterized genes. Furthermore, we were able to uncover genes acting within a specific pathway using a co-RNAi screen to identify dsRNA suppressors of a cell shape change induced by Pten dsRNA. CONCLUSIONS: Using RNAi, we identified genes that influence cytoskeletal organization and morphology in two distinct cell types. Some genes exhibited similar RNAi phenotypes in both cell types, while others appeared to have cell-type-specific functions, in part reflecting the different mechanisms used to generate a round or a flat cell morphology.

Shenyuan L Zhang, Andriy V Yeromin, Xiang H-F Zhang, Ying Yu, Olga Safrina, Aubin Penna, Jack Roos, Kenneth A Stauderman, and Michael D Cahalan. 2006. “Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity.” Proc Natl Acad Sci U S A, 103, 24, Pp. 9357-62.Abstract

Recent studies by our group and others demonstrated a required and conserved role of Stim in store-operated Ca(2+) influx and Ca(2+) release-activated Ca(2+) (CRAC) channel activity. By using an unbiased genome-wide RNA interference screen in Drosophila S2 cells, we now identify 75 hits that strongly inhibited Ca(2+) influx upon store emptying by thapsigargin. Among these hits are 11 predicted transmembrane proteins, including Stim, and one, olf186-F, that upon RNA interference-mediated knockdown exhibited a profound reduction of thapsigargin-evoked Ca(2+) entry and CRAC current, and upon overexpression a 3-fold augmentation of CRAC current. CRAC currents were further increased to 8-fold higher than control and developed more rapidly when olf186-F was cotransfected with Stim. olf186-F is a member of a highly conserved family of four-transmembrane spanning proteins with homologs from Caenorhabditis elegans to human. The endoplasmic reticulum (ER) Ca(2+) pump sarco-/ER calcium ATPase (SERCA) and the single transmembrane-soluble N-ethylmaleimide-sensitive (NSF) attachment receptor (SNARE) protein Syntaxin5 also were required for CRAC channel activity, consistent with a signaling pathway in which Stim senses Ca(2+) depletion within the ER, translocates to the plasma membrane, and interacts with olf186-F to trigger CRAC channel activity.

Nadire Ramadan, Ian Flockhart, Matthew Booker, Norbert Perrimon, and Bernard Mathey-Prevot. 2007. “Design and implementation of high-throughput RNAi screens in cultured Drosophila cells.” Nat Protoc, 2, 9, Pp. 2245-64.Abstract

This protocol describes the various steps and considerations involved in planning and carrying out RNA interference (RNAi) genome-wide screens in cultured Drosophila cells. We focus largely on the procedures that have been modified as a result of our experience over the past 3 years and of our better understanding of the underlying technology. Specifically, our protocol offers a set of suggestions and considerations for screen optimization and a step-by-step description of the procedures successfully used at the Drosophila RNAi Screening Center for screen implementation, data collection and analysis to identify potential hits. In addition, this protocol briefly covers postscreen analysis approaches that are often needed to finalize the hit list. Depending on the scope of the screen and subsequent analysis and validation involved, the full protocol can take anywhere from 3 months to 2 years to complete.

Pages