Drosophila (fly)

Richelle Sopko, Marianna Foos, Arunachalam Vinayagam, Bo Zhai, Richard Binari, Yanhui Hu, Sakara Randklev, Lizabeth A Perkins, Steven P Gygi, and Norbert Perrimon. 2014. “Combining genetic perturbations and proteomics to examine kinase-phosphatase networks in Drosophila embryos.” Dev Cell, 31, 1, Pp. 114-27.Abstract

Connecting phosphorylation events to kinases and phosphatases is key to understanding the molecular organization and signaling dynamics of networks. We have generated a validated set of transgenic RNA-interference reagents for knockdown and characterization of all protein kinases and phosphatases present during early Drosophila melanogaster development. These genetic tools enable collection of sufficient quantities of embryos depleted of single gene products for proteomics. As a demonstration of an application of the collection, we have used multiplexed isobaric labeling for quantitative proteomics to derive global phosphorylation signatures associated with kinase-depleted embryos to systematically link phosphosites with relevant kinases. We demonstrate how this strategy uncovers kinase consensus motifs and prioritizes phosphoproteins for kinase target validation. We validate this approach by providing auxiliary evidence for Wee kinase-directed regulation of the chromatin regulator Stonewall. Further, we show how correlative phosphorylation at the site level can indicate function, as exemplified by Sterile20-like kinase-dependent regulation of Stat92E.

Sara Cherry, Tammy Doukas, Susan Armknecht, Sean Whelan, Hui Wang, Peter Sarnow, and Norbert Perrimon. 2005. “Genome-wide RNAi screen reveals a specific sensitivity of IRES-containing RNA viruses to host translation inhibition.” Genes Dev, 19, 4, Pp. 445-52.Abstract

The widespread class of RNA viruses that utilize internal ribosome entry sites (IRESs) for translation include poliovirus and Hepatitis C virus. To identify host factors required for IRES-dependent translation and viral replication, we performed a genome-wide RNAi screen in Drosophila cells infected with Drosophila C virus (DCV). We identified 66 ribosomal proteins that, when depleted, specifically inhibit DCV growth, but not a non-IRES-containing RNA virus. Moreover, treatment of flies with a translation inhibitor is protective in vivo. Finally, this increased sensitivity to ribosome levels also holds true for poliovirus infection of human cells, demonstrating the generality of these findings.

Norbert Perrimon and Bernard Mathey-Prevot. 2007. “Applications of high-throughput RNA interference screens to problems in cell and developmental biology.” Genetics, 175, 1, Pp. 7-16.Abstract

RNA interference (RNAi) in tissue culture cells has emerged as an excellent methodology for identifying gene functions systematically and in an unbiased manner. Here, we describe how RNAi high-throughput screening (HTS) in Drosophila cells are currently being performed and emphasize the strengths and weaknesses of the approach. Further, to demonstrate the versatility of the technology, we provide examples of the various applications of the method to problems in signal transduction and cell and developmental biology. Finally, we discuss emerging technological advances that will extend RNAi-based screening methods.

Sriram Sathyanarayanan, Xiangzhong Zheng, Shailesh Kumar, Chun-Hong Chen, Dechun Chen, Bruce Hay, and Amita Sehgal. 2008. “Identification of novel genes involved in light-dependent CRY degradation through a genome-wide RNAi screen.” Genes Dev, 22, 11, Pp. 1522-33.Abstract

Circadian clocks regulate many different physiological processes and synchronize these to environmental light:dark cycles. In Drosophila, light is transmitted to the clock by a circadian blue light photoreceptor CRYPTOCHROME (CRY). In response to light, CRY promotes the degradation of the circadian clock protein TIMELESS (TIM) and then is itself degraded. To identify novel genes involved in circadian entrainment, we performed an unbiased genome-wide screen in Drosophila cells using a sensitive and quantitative assay that measures light-induced degradation of CRY. We systematically knocked down the expression of approximately 21,000 genes and identified those that regulate CRY stability. These genes include ubiquitin ligases, signal transduction molecules, and redox molecules. Many of the genes identified in the screen are specific for CRY degradation and do not affect degradation of the TIM protein in response to light, suggesting that, for the most part, these two pathways are distinct. We further validated the effect of three candidate genes on CRY stability in vivo by assaying flies mutant for each of these genes. This work identifies a novel regulatory network involved in light-dependent CRY degradation and demonstrates the power of a genome-wide RNAi approach for understanding circadian biology.

Franz Wendler, Alison K Gillingham, Rita Sinka, Cláudia Rosa-Ferreira, David E Gordon, Xavier Franch-Marro, Andrew A Peden, Jean-Paul Vincent, and Sean Munro. 2010. “A genome-wide RNA interference screen identifies two novel components of the metazoan secretory pathway.” EMBO J, 29, 2, Pp. 304-14.Abstract

Genetic screens in the yeast Saccharomyces cerevisiae have identified many proteins involved in the secretory pathway, most of which have orthologues in higher eukaryotes. To investigate whether there are additional proteins that are required for secretion in metazoans but are absent from yeast, we used genome-wide RNA interference (RNAi) to look for genes required for secretion of recombinant luciferase from Drosophila S2 cells. This identified two novel components of the secretory pathway that are conserved from humans to plants. Gryzun is distantly related to, but distinct from, the Trs130 subunit of the TRAPP complex but is absent from S. cerevisiae. RNAi of human Gryzun (C4orf41) blocks Golgi exit. Kish is a small membrane protein with a previously uncharacterised orthologue in yeast. The screen also identified Drosophila orthologues of almost 60% of the yeast genes essential for secretion. Given this coverage, the small number of novel components suggests that contrary to previous indications the number of essential core components of the secretory pathway is not much greater in metazoans than in yeasts.

Norbert Perrimon, Jonathan Zirin, and Jianwu Bai. 2011. “Primary cell cultures from Drosophila gastrula embryos.” J Vis Exp, 48.Abstract

Here we describe a method for preparing and culturing primary cells dissociated from Drosophila gastrula embryos. In brief, a large amount of staged embryos from young and healthy flies are collected, sterilized, and then physically dissociated into a single cell suspension using a glass homogenizer. After being plated on culture plates or chamber slides at an appropriate density in culture medium, these cells can further differentiate into several morphologically-distinct cell types, which can be identified by their specific cell markers. Furthermore, we present conditions for treating these cells with double stranded (ds) RNAs to elicit gene knockdown. Efficient RNAi in Drosophila primary cells is accomplished by simply bathing the cells in dsRNA-containing culture medium. The ability to carry out effective RNAi perturbation, together with other molecular, biochemical, cell imaging analyses, will allow a variety of questions to be answered in Drosophila primary cells, especially those related to differentiated muscle and neuronal cells.

Marcelo Perez-Pepe, Victoria Slomiansky, Mariela Loschi, Luciana Luchelli, Maximiliano Neme, María Gabriela Thomas, and Graciela Lidia Boccaccio. 2012. “BUHO: a MATLAB script for the study of stress granules and processing bodies by high-throughput image analysis.” PLoS One, 7, 12, Pp. e51495.Abstract

The spontaneous and reversible formation of foci and filaments that contain proteins involved in different metabolic processes is common in both the nucleus and the cytoplasm. Stress granules (SGs) and processing bodies (PBs) belong to a novel family of cellular structures collectively known as mRNA silencing foci that harbour repressed mRNAs and their associated proteins. SGs and PBs are highly dynamic and they form upon stress and dissolve thus releasing the repressed mRNAs according to changes in cell physiology. In addition, aggregates containing abnormal proteins are frequent in neurodegenerative disorders. In spite of the growing relevance of these supramolecular aggregates to diverse cellular functions a reliable automated tool for their systematic analysis is lacking. Here we report a MATLAB Script termed BUHO for the high-throughput image analysis of cellular foci. We used BUHO to assess the number, size and distribution of distinct objects with minimal deviation from manually obtained parameters. BUHO successfully addressed the induction of both SGs and PBs in mammalian and insect cells exposed to different stress stimuli. We also used BUHO to assess the dynamics of specific mRNA-silencing foci termed Smaug 1 foci (S-foci) in primary neurons upon synaptic stimulation. Finally, we used BUHO to analyze the role of candidate genes on SG formation in an RNAi-based experiment. We found that FAK56D, GCN2 and PP1 govern SG formation. The role of PP1 is conserved in mammalian cells as judged by the effect of the PP1 inhibitor salubrinal, and involves dephosphorylation of the translation factor eIF2α. All these experiments were analyzed manually and by BUHO and the results differed in less than 5% of the average value. The automated analysis by this user-friendly method will allow high-throughput image processing in short times by providing a robust, flexible and reliable alternative to the laborious and sometimes unfeasible visual scrutiny.

Dong Yan, Ralph A Neumüller, Michael Buckner, Kathleen Ayers, Hua Li, Yanhui Hu, Donghui Yang-Zhou, Lei Pan, Xiaoxi Wang, Colleen Kelley, Arunachalam Vinayagam, Richard Binari, Sakara Randklev, Lizabeth A Perkins, Ting Xie, Lynn Cooley, and Norbert Perrimon. 2014. “A regulatory network of Drosophila germline stem cell self-renewal.” Dev Cell, 28, 4, Pp. 459-73.Abstract

Stem cells possess the capacity to generate two cells of distinct fate upon division: one cell retaining stem cell identity and the other cell destined to differentiate. These cell fates are established by cell-type-specific genetic networks. To comprehensively identify components of these networks, we performed a large-scale RNAi screen in Drosophila female germline stem cells (GSCs) covering ∼25% of the genome. The screen identified 366 genes that affect GSC maintenance, differentiation, or other processes involved in oogenesis. Comparison of GSC regulators with neural stem cell self-renewal factors identifies common and cell-type-specific self-renewal genes. Importantly, we identify the histone methyltransferase Set1 as a GSC-specific self-renewal factor. Loss of Set1 in neural stem cells does not affect cell fate decisions, suggesting a differential requirement of H3K4me3 in different stem cell lineages. Altogether, our study provides a resource that will help to further dissect the networks underlying stem cell self-renewal.

Iiro Taneli Helenius, Ryan J Haake, Yong-Jae Kwon, Jennifer A Hu, Thomas Krupinski, Marina S Casalino-Matsuda, Peter HS Sporn, Jacob I Sznajder, and Greg J Beitel. 2016. “Identification of Drosophila Zfh2 as a Mediator of Hypercapnic Immune Regulation by a Genome-Wide RNA Interference Screen.” J Immunol, 196, 2, Pp. 655-67.Abstract

Hypercapnia, elevated partial pressure of CO2 in blood and tissue, develops in many patients with chronic severe obstructive pulmonary disease and other advanced lung disorders. Patients with advanced disease frequently develop bacterial lung infections, and hypercapnia is a risk factor for mortality in such individuals. We previously demonstrated that hypercapnia suppresses induction of NF-κB-regulated innate immune response genes required for host defense in human, mouse, and Drosophila cells, and it increases mortality from bacterial infections in both mice and Drosophila. However, the molecular mediators of hypercapnic immune suppression are undefined. In this study, we report a genome-wide RNA interference screen in Drosophila S2* cells stimulated with bacterial peptidoglycan. The screen identified 16 genes with human orthologs whose knockdown reduced hypercapnic suppression of the gene encoding the antimicrobial peptide Diptericin (Dipt), but did not increase Dipt mRNA levels in air. In vivo tests of one of the strongest screen hits, zinc finger homeodomain 2 (Zfh2; mammalian orthologs ZFHX3/ATBF1 and ZFHX4), demonstrate that reducing zfh2 function using a mutation or RNA interference improves survival of flies exposed to elevated CO2 and infected with Staphylococcus aureus. Tissue-specific knockdown of zfh2 in the fat body, the major immune and metabolic organ of the fly, mitigates hypercapnia-induced reductions in Dipt and other antimicrobial peptides and improves resistance of CO2-exposed flies to infection. Zfh2 mutations also partially rescue hypercapnia-induced delays in egg hatching, suggesting that Zfh2's role in mediating responses to hypercapnia extends beyond the immune system. Taken together, to our knowledge, these results identify Zfh2 as the first in vivo mediator of hypercapnic immune suppression.

Stefan Feske, Yousang Gwack, Murali Prakriya, Sonal Srikanth, Sven-Holger Puppel, Bogdan Tanasa, Patrick G Hogan, Richard S Lewis, Mark Daly, and Anjana Rao. 2006. “A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function.” Nature, 441, 7090, Pp. 179-85.Abstract

Antigen stimulation of immune cells triggers Ca2+ entry through Ca2+ release-activated Ca2+ (CRAC) channels, promoting the immune response to pathogens by activating the transcription factor NFAT. We have previously shown that cells from patients with one form of hereditary severe combined immune deficiency (SCID) syndrome are defective in store-operated Ca2+ entry and CRAC channel function. Here we identify the genetic defect in these patients, using a combination of two unbiased genome-wide approaches: a modified linkage analysis with single-nucleotide polymorphism arrays, and a Drosophila RNA interference screen designed to identify regulators of store-operated Ca2+ entry and NFAT nuclear import. Both approaches converged on a novel protein that we call Orai1, which contains four putative transmembrane segments. The SCID patients are homozygous for a single missense mutation in ORAI1, and expression of wild-type Orai1 in SCID T cells restores store-operated Ca2+ influx and the CRAC current (I(CRAC)). We propose that Orai1 is an essential component or regulator of the CRAC channel complex.

Eric J Wagner, Brandon D Burch, Ashley C Godfrey, Harmony R Salzler, Robert J Duronio, and William F Marzluff. 2007. “A genome-wide RNA interference screen reveals that variant histones are necessary for replication-dependent histone pre-mRNA processing.” Mol Cell, 28, 4, Pp. 692-9.Abstract

Metazoan replication-dependent histone mRNAs are not polyadenylated and instead end in a conserved stem loop that is the cis element responsible for coordinate posttranscriptional regulation of these mRNAs. Using biochemical approaches, only a limited number of factors required for cleavage of histone pre-mRNA have been identified. We therefore performed a genome-wide RNA interference screen in Drosophila cells using a GFP reporter that is expressed only when histone pre-mRNA processing is disrupted. Four of the 24 genes identified encode proteins also necessary for cleavage/polyadenylation, indicating mechanistic conservation in formation of different mRNA 3' ends. We also unexpectedly identified the histone variants H2Av and H3.3A/B. In H2Av mutant cells, U7 snRNP remains active but fails to accumulate at the histone locus, suggesting there is a regulatory pathway that coordinates the production of variant and canonical histones that acts via localization of essential histone pre-mRNA processing factors.

David Sims, Peter Duchek, and Buzz Baum. 2009. “PDGF/VEGF signaling controls cell size in Drosophila.” Genome Biol, 10, 2, Pp. R20.Abstract

BACKGROUND: In multicellular animals, cell size is controlled by a limited set of conserved intracellular signaling pathways, which when deregulated contribute to tumorigenesis by enabling cells to grow outside their usual niche. To delineate the pathways controlling this process, we screened a genome-scale, image-based Drosophila RNA interference dataset for double-stranded RNAs that reduce the average size of adherent S2R+ cells. RESULTS: Automated analysis of images from this RNA interference screen identified the receptor tyrosine kinase Pvr, Ras pathway components and several novel genes as regulators of cell size. Significantly, Pvr/Ras signaling also affected the size of other Drosophila cell lines and of larval hemocytes. A detailed genetic analysis of this growth signaling pathway revealed a role for redundant secreted ligands, Pvf2 and Pvf3, in the establishment of an autocrine growth signaling loop. Downstream of Ras1, growth signaling was found to depend on parallel mitogen-activated protein kinase (MAPK) and phospho-inositide-3-kinase (PI3K) signaling modules, as well as the Tor pathway. CONCLUSIONS: This automated genome-wide screen identifies autocrine Pvf/Pvr signaling, upstream of Ras, MAPK and PI3K, as rate-limiting for the growth of immortalized fly cells in culture. Since, Pvf2/3 and Pvr show mutually exclusive in vivo patterns of gene expression, these data suggest that co-expression of this receptor-ligand pair plays a key role in driving cell autonomous growth during the establishment of Drosophila cell lines, as has been suggested to occur during tumor development.

Theresa S Moser, Russell G Jones, Craig B Thompson, Carolyn B Coyne, and Sara Cherry. 2010. “A kinome RNAi screen identified AMPK as promoting poxvirus entry through the control of actin dynamics.” PLoS Pathog, 6, 6, Pp. e1000954.Abstract

Poxviruses include medically important human pathogens, yet little is known about the specific cellular factors essential for their replication. To identify genes essential for poxvirus infection, we used high-throughput RNA interference to screen the Drosophila kinome for factors required for vaccinia infection. We identified seven genes including the three subunits of AMPK as promoting vaccinia infection. AMPK not only facilitated infection in insect cells, but also in mammalian cells. Moreover, we found that AMPK is required for macropinocytosis, a major endocytic entry pathway for vaccinia. Furthermore, we show that AMPK contributes to other virus-independent actin-dependent processes including lamellipodia formation and wound healing, independent of the known AMPK activators LKB1 and CaMKK. Therefore, AMPK plays a highly conserved role in poxvirus infection and actin dynamics independent of its role as an energy regulator.

Artyom A Alekseyenko, Joshua WK Ho, Shouyong Peng, Marnie Gelbart, Michael Y Tolstorukov, Annette Plachetka, Peter V Kharchenko, Youngsook L Jung, Andrey A Gorchakov, Erica Larschan, Tingting Gu, Aki Minoda, Nicole C Riddle, Yuri B Schwartz, Sarah CR Elgin, Gary H Karpen, Vincenzo Pirrotta, Mitzi I Kuroda, and Peter J Park. 2012. “Sequence-specific targeting of dosage compensation in Drosophila favors an active chromatin context.” PLoS Genet, 8, 4, Pp. e1002646.Abstract

The Drosophila MSL complex mediates dosage compensation by increasing transcription of the single X chromosome in males approximately two-fold. This is accomplished through recognition of the X chromosome and subsequent acetylation of histone H4K16 on X-linked genes. Initial binding to the X is thought to occur at "entry sites" that contain a consensus sequence motif ("MSL recognition element" or MRE). However, this motif is only ∼2 fold enriched on X, and only a fraction of the motifs on X are initially targeted. Here we ask whether chromatin context could distinguish between utilized and non-utilized copies of the motif, by comparing their relative enrichment for histone modifications and chromosomal proteins mapped in the modENCODE project. Through a comparative analysis of the chromatin features in male S2 cells (which contain MSL complex) and female Kc cells (which lack the complex), we find that the presence of active chromatin modifications, together with an elevated local GC content in the surrounding sequences, has strong predictive value for functional MSL entry sites, independent of MSL binding. We tested these sites for function in Kc cells by RNAi knockdown of Sxl, resulting in induction of MSL complex. We show that ectopic MSL expression in Kc cells leads to H4K16 acetylation around these sites and a relative increase in X chromosome transcription. Collectively, our results support a model in which a pre-existing active chromatin environment, coincident with H3K36me3, contributes to MSL entry site selection. The consequences of MSL targeting of the male X chromosome include increase in nucleosome lability, enrichment for H4K16 acetylation and JIL-1 kinase, and depletion of linker histone H1 on active X-linked genes. Our analysis can serve as a model for identifying chromatin and local sequence features that may contribute to selection of functional protein binding sites in the genome.

Yanhui Hu, Richelle Sopko, Marianna Foos, Colleen Kelley, Ian Flockhart, Noemie Ammeux, Xiaowei Wang, Lizabeth Perkins, Norbert Perrimon, and Stephanie E Mohr. 2013. “FlyPrimerBank: an online database for Drosophila melanogaster gene expression analysis and knockdown evaluation of RNAi reagents.” G3 (Bethesda), 3, 9, Pp. 1607-16.Abstract

The evaluation of specific endogenous transcript levels is important for understanding transcriptional regulation. More specifically, it is useful for independent confirmation of results obtained by the use of microarray analysis or RNA-seq and for evaluating RNA interference (RNAi)-mediated gene knockdown. Designing specific and effective primers for high-quality, moderate-throughput evaluation of transcript levels, i.e., quantitative, real-time PCR (qPCR), is nontrivial. To meet community needs, predefined qPCR primer pairs for mammalian genes have been designed and sequences made available, e.g., via PrimerBank. In this work, we adapted and refined the algorithms used for the mammalian PrimerBank to design 45,417 primer pairs for 13,860 Drosophila melanogaster genes, with three or more primer pairs per gene. We experimentally validated primer pairs for ~300 randomly selected genes expressed in early Drosophila embryos, using SYBR Green-based qPCR and sequence analysis of products derived from conventional PCR. All relevant information, including primer sequences, isoform specificity, spatial transcript targeting, and any available validation results and/or user feedback, is available from an online database (www.flyrnai.org/flyprimerbank). At FlyPrimerBank, researchers can retrieve primer information for fly genes either one gene at a time or in batch mode. Importantly, we included the overlap of each predicted amplified sequence with RNAi reagents from several public resources, making it possible for researchers to choose primers suitable for knockdown evaluation of RNAi reagents (i.e., to avoid amplification of the RNAi reagent itself). We demonstrate the utility of this resource for validation of RNAi reagents in vivo.

Pages