Drosophila (fly)

Matthew Booker, Anastasia A Samsonova, Young Kwon, Ian Flockhart, Stephanie E Mohr, and Norbert Perrimon. 2011. “False negative rates in Drosophila cell-based RNAi screens: a case study.” BMC Genomics, 12, Pp. 50.Abstract

BACKGROUND: High-throughput screening using RNAi is a powerful gene discovery method but is often complicated by false positive and false negative results. Whereas false positive results associated with RNAi reagents has been a matter of extensive study, the issue of false negatives has received less attention. RESULTS: We performed a meta-analysis of several genome-wide, cell-based Drosophila RNAi screens, together with a more focused RNAi screen, and conclude that the rate of false negative results is at least 8%. Further, we demonstrate how knowledge of the cell transcriptome can be used to resolve ambiguous results and how the number of false negative results can be reduced by using multiple, independently-tested RNAi reagents per gene. CONCLUSIONS: RNAi reagents that target the same gene do not always yield consistent results due to false positives and weak or ineffective reagents. False positive results can be partially minimized by filtering with transcriptome data. RNAi libraries with multiple reagents per gene also reduce false positive and false negative outcomes when inconsistent results are disambiguated carefully.

Max V Staller, Dong Yan, Sakara Randklev, Meghan D Bragdon, Zeba B Wunderlich, Rong Tao, Lizabeth A Perkins, Angela H Depace, and Norbert Perrimon. 2013. “Depleting gene activities in early Drosophila embryos with the "maternal-Gal4-shRNA" system.” Genetics, 193, 1, Pp. 51-61.Abstract

In a developing Drosophila melanogaster embryo, mRNAs have a maternal origin, a zygotic origin, or both. During the maternal-zygotic transition, maternal products are degraded and gene expression comes under the control of the zygotic genome. To interrogate the function of mRNAs that are both maternally and zygotically expressed, it is common to examine the embryonic phenotypes derived from female germline mosaics. Recently, the development of RNAi vectors based on short hairpin RNAs (shRNAs) effective during oogenesis has provided an alternative to producing germline clones. Here, we evaluate the efficacies of: (1) maternally loaded shRNAs to knockdown zygotic transcripts and (2) maternally loaded Gal4 protein to drive zygotic shRNA expression. We show that, while Gal4-driven shRNAs in the female germline very effectively generate phenotypes for genes expressed maternally, maternally loaded shRNAs are not very effective at generating phenotypes for early zygotic genes. However, maternally loaded Gal4 protein is very efficient at generating phenotypes for zygotic genes expressed during mid-embryogenesis. We apply this powerful and simple method to unravel the embryonic functions of a number of pleiotropic genes.

Arunachalam Vinayagam, Jonathan Zirin, Charles Roesel, Yanhui Hu, Bahar Yilmazel, Anastasia A Samsonova, Ralph A Neumüller, Stephanie E Mohr, and Norbert Perrimon. 2014. “Integrating protein-protein interaction networks with phenotypes reveals signs of interactions.” Nat Methods, 11, 1, Pp. 94-9.Abstract

A major objective of systems biology is to organize molecular interactions as networks and to characterize information flow within networks. We describe a computational framework to integrate protein-protein interaction (PPI) networks and genetic screens to predict the 'signs' of interactions (i.e., activation-inhibition relationships). We constructed a Drosophila melanogaster signed PPI network consisting of 6,125 signed PPIs connecting 3,352 proteins that can be used to identify positive and negative regulators of signaling pathways and protein complexes. We identified an unexpected role for the metabolic enzymes enolase and aldo-keto reductase as positive and negative regulators of proteolysis, respectively. Characterization of the activation-inhibition relationships between physically interacting proteins within signaling pathways will affect our understanding of many biological functions, including signal transduction and mechanisms of disease.

Benjamin E Housden, Alexander J Valvezan, Colleen Kelley, Richelle Sopko, Yanhui Hu, Charles Roesel, Shuailiang Lin, Michael Buckner, Rong Tao, Bahar Yilmazel, Stephanie E Mohr, Brendan D Manning, and Norbert Perrimon. 2015. “Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi.” Sci Signal, 8, 393, Pp. rs9.Abstract

The tuberous sclerosis complex (TSC) family of tumor suppressors, TSC1 and TSC2, function together in an evolutionarily conserved protein complex that is a point of convergence for major cell signaling pathways that regulate mTOR complex 1 (mTORC1). Mutation or aberrant inhibition of the TSC complex is common in various human tumor syndromes and cancers. The discovery of novel therapeutic strategies to selectively target cells with functional loss of this complex is therefore of clinical relevance to patients with nonmalignant TSC and those with sporadic cancers. We developed a CRISPR-based method to generate homogeneous mutant Drosophila cell lines. By combining TSC1 or TSC2 mutant cell lines with RNAi screens against all kinases and phosphatases, we identified synthetic interactions with TSC1 and TSC2. Individual knockdown of three candidate genes (mRNA-cap, Pitslre, and CycT; orthologs of RNGTT, CDK11, and CCNT1 in humans) reduced the population growth rate of Drosophila cells lacking either TSC1 or TSC2 but not that of wild-type cells. Moreover, individual knockdown of these three genes had similar growth-inhibiting effects in mammalian TSC2-deficient cell lines, including human tumor-derived cells, illustrating the power of this cross-species screening strategy to identify potential drug targets.

Yousang Gwack, Sonia Sharma, Julie Nardone, Bogdan Tanasa, Alina Iuga, Sonal Srikanth, Heidi Okamura, Diana Bolton, Stefan Feske, Patrick G Hogan, and Anjana Rao. 2006. “A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT.” Nature, 441, 7093, Pp. 646-50.Abstract

Precise regulation of the NFAT (nuclear factor of activated T cells) family of transcription factors (NFAT1-4) is essential for vertebrate development and function. In resting cells, NFAT proteins are heavily phosphorylated and reside in the cytoplasm; in cells exposed to stimuli that raise intracellular free Ca2+ levels, they are dephosphorylated by the calmodulin-dependent phosphatase calcineurin and translocate to the nucleus. NFAT dephosphorylation by calcineurin is countered by distinct NFAT kinases, among them casein kinase 1 (CK1) and glycogen synthase kinase 3 (GSK3). Here we have used a genome-wide RNA interference (RNAi) screen in Drosophila to identify additional regulators of the signalling pathway leading from Ca2+-calcineurin to NFAT. This screen was successful because the pathways regulating NFAT subcellular localization (Ca2+ influx, Ca2+-calmodulin-calcineurin signalling and NFAT kinases) are conserved across species, even though Ca2+-regulated NFAT proteins are not themselves represented in invertebrates. Using the screen, we have identified DYRKs (dual-specificity tyrosine-phosphorylation regulated kinases) as novel regulators of NFAT. DYRK1A and DYRK2 counter calcineurin-mediated dephosphorylation of NFAT1 by directly phosphorylating the conserved serine-proline repeat 3 (SP-3) motif of the NFAT regulatory domain, thus priming further phosphorylation of the SP-2 and serine-rich region 1 (SRR-1) motifs by GSK3 and CK1, respectively. Thus, genetic screening in Drosophila can be successfully applied to cross evolutionary boundaries and identify new regulators of a transcription factor that is expressed only in vertebrates.

Caroline H Yi, Dodzie K Sogah, Michael Boyce, Alexei Degterev, Dana E Christofferson, and Junying Yuan. 2007. “A genome-wide RNAi screen reveals multiple regulators of caspase activation.” J Cell Biol, 179, 4, Pp. 619-26.Abstract

Apoptosis is an evolutionally conserved cellular suicide mechanism that can be activated in response to a variety of stressful stimuli. Increasing evidence suggests that apoptotic regulation relies on specialized cell death signaling pathways and also integrates diverse signals from additional regulatory circuits, including those of cellular homeostasis. We present a genome-wide RNA interference screen to systematically identify regulators of apoptosis induced by DNA damage in Drosophila melanogaster cells. We identify 47 double- stranded RNA that target a functionally diverse set of genes, including several with a known function in promoting cell death. Further characterization uncovers 10 genes that influence caspase activation upon the removal of Drosophila inhibitor of apoptosis 1. This set includes the Drosophila initiator caspase Dronc and, surprisingly, several metabolic regulators, a candidate tumor suppressor, Charlatan, and an N-acetyltransferase, ARD1. Importantly, several of these genes show functional conservation in regulating apoptosis in mammalian cells. Our data suggest a previously unappreciated fundamental connection between various cellular processes and caspase-dependent cell death.

Mathias Beller, Carole Sztalryd, Noel Southall, Ming Bell, Herbert Jäckle, Douglas S Auld, and Brian Oliver. 2008. “COPI complex is a regulator of lipid homeostasis.” PLoS Biol, 6, 11, Pp. e292.Abstract

Lipid droplets are ubiquitous triglyceride and sterol ester storage organelles required for energy storage homeostasis and biosynthesis. Although little is known about lipid droplet formation and regulation, it is clear that members of the PAT (perilipin, adipocyte differentiation related protein, tail interacting protein of 47 kDa) protein family coat the droplet surface and mediate interactions with lipases that remobilize the stored lipids. We identified key Drosophila candidate genes for lipid droplet regulation by RNA interference (RNAi) screening with an image segmentation-based optical read-out system, and show that these regulatory functions are conserved in the mouse. Those include the vesicle-mediated Coat Protein Complex I (COPI) transport complex, which is required for limiting lipid storage. We found that COPI components regulate the PAT protein composition at the lipid droplet surface, and promote the association of adipocyte triglyceride lipase (ATGL) with the lipid droplet surface to mediate lipolysis. Two compounds known to inhibit COPI function, Exo1 and Brefeldin A, phenocopy COPI knockdowns. Furthermore, RNAi inhibition of ATGL and simultaneous drug treatment indicate that COPI and ATGL function in the same pathway. These data indicate that the COPI complex is an evolutionarily conserved regulator of lipid homeostasis, and highlight an interaction between vesicle transport systems and lipid droplets.

Lutz Kockel, Kimberly S Kerr, Michael Melnick, Katja Brückner, Matthias Hebrok, and Norbert Perrimon. 2010. “Dynamic switch of negative feedback regulation in Drosophila Akt-TOR signaling.” PLoS Genet, 6, 6, Pp. e1000990.Abstract

Akt represents a nodal point between the Insulin receptor and TOR signaling, and its activation by phosphorylation controls cell proliferation, cell size, and metabolism. The activity of Akt must be carefully balanced, as increased Akt signaling is frequently associated with cancer and as insufficient Akt signaling is linked to metabolic disease and diabetes mellitus. Using a genome-wide RNAi screen in Drosophila cells in culture, and in vivo analyses in the third instar wing imaginal disc, we studied the regulatory circuitries that define dAkt activation. We provide evidence that negative feedback regulation of dAkt occurs during normal Drosophila development in vivo. Whereas in cell culture dAkt is regulated by S6 Kinase (S6K)-dependent negative feedback, this feedback inhibition only plays a minor role in vivo. In contrast, dAkt activation under wild-type conditions is defined by feedback inhibition that depends on TOR Complex 1 (TORC1), but is S6K-independent. This feedback inhibition is switched from TORC1 to S6K only in the context of enhanced TORC1 activity, as triggered by mutations in tsc2. These results illustrate how the Akt-TOR pathway dynamically adapts the routing of negative feedback in response to the activity load of its signaling circuit in vivo.

Reid Aikin, Alexandra Cervantes, Gisela D'Angelo, Laurent Ruel, Sandra Lacas-Gervais, Sébastien Schaub, and Pascal Thérond. 2012. “A genome-wide RNAi screen identifies regulators of cholesterol-modified hedgehog secretion in Drosophila.” PLoS One, 7, 3, Pp. e33665.Abstract

Hedgehog (Hh) proteins are secreted molecules that function as organizers in animal development. In addition to being palmitoylated, Hh is the only metazoan protein known to possess a covalently-linked cholesterol moiety. The absence of either modification severely disrupts the organization of numerous tissues during development. It is currently not known how lipid-modified Hh is secreted and released from producing cells. We have performed a genome-wide RNAi screen in Drosophila melanogaster cells to identify regulators of Hh secretion. We found that cholesterol-modified Hh secretion is strongly dependent on coat protein complex I (COPI) but not COPII vesicles, suggesting that cholesterol modification alters the movement of Hh through the early secretory pathway. We provide evidence that both proteolysis and cholesterol modification are necessary for the efficient trafficking of Hh through the ER and Golgi. Finally, we identified several putative regulators of protein secretion and demonstrate a role for some of these genes in Hh and Wingless (Wg) morphogen secretion in vivo. These data open new perspectives for studying how morphogen secretion is regulated, as well as provide insight into regulation of lipid-modified protein secretion.

Yong Miao, Cathrine Miner, Lei Zhang, Phyllis I Hanson, Adish Dani, and Monika Vig. 2013. “An essential and NSF independent role for α-SNAP in store-operated calcium entry.” Elife, 2, Pp. e00802.Abstract

Store-operated calcium entry (SOCE) by calcium release activated calcium (CRAC) channels constitutes a primary route of calcium entry in most cells. Orai1 forms the pore subunit of CRAC channels and Stim1 is the endoplasmic reticulum (ER) resident Ca(2+) sensor. Upon store-depletion, Stim1 translocates to domains of ER adjacent to the plasma membrane where it interacts with and clusters Orai1 hexamers to form the CRAC channel complex. Molecular steps enabling activation of SOCE via CRAC channel clusters remain incompletely defined. Here we identify an essential role of α-SNAP in mediating functional coupling of Stim1 and Orai1 molecules to activate SOCE. This role for α-SNAP is direct and independent of its known activity in NSF dependent SNARE complex disassembly. Importantly, Stim1-Orai1 clustering still occurs in the absence of α-SNAP but its inability to support SOCE reveals that a previously unsuspected molecular re-arrangement within CRAC channel clusters is necessary for SOCE. DOI:http://dx.doi.org/10.7554/eLife.00802.001.

Jonathan Zirin, Joppe Nieuwenhuis, Anastasia Samsonova, Rong Tao, and Norbert Perrimon. 2015. “Regulators of autophagosome formation in Drosophila muscles.” PLoS Genet, 11, 2, Pp. e1005006.Abstract

Given the diversity of autophagy targets and regulation, it is important to characterize autophagy in various cell types and conditions. We used a primary myocyte cell culture system to assay the role of putative autophagy regulators in the specific context of skeletal muscle. By treating the cultures with rapamycin (Rap) and chloroquine (CQ) we induced an autophagic response, fully suppressible by knockdown of core ATG genes. We screened D. melanogaster orthologs of a previously reported mammalian autophagy protein-protein interaction network, identifying several proteins required for autophagosome formation in muscle cells, including orthologs of the Rab regulators RabGap1 and Rab3Gap1. The screen also highlighted the critical roles of the proteasome and glycogen metabolism in regulating autophagy. Specifically, sustained proteasome inhibition inhibited autophagosome formation both in primary culture and larval skeletal muscle, even though autophagy normally acts to suppress ubiquitin aggregate formation in these tissues. In addition, analyses of glycogen metabolic genes in both primary cultured and larval muscles indicated that glycogen storage enhances the autophagic response to starvation, an important insight given the link between glycogen storage disorders, autophagy, and muscle function.

Ramanuj DasGupta, Ajamete Kaykas, Randall T Moon, and Norbert Perrimon. 2005. “Functional genomic analysis of the Wnt-wingless signaling pathway.” Science, 308, 5723, Pp. 826-33.Abstract

The Wnt-Wingless (Wg) pathway is one of a core set of evolutionarily conserved signaling pathways that regulates many aspects of metazoan development. Aberrant Wnt signaling has been linked to human disease. In the present study, we used a genomewide RNA interference (RNAi) screen in Drosophila cells to screen for regulators of the Wnt pathway. We identified 238 potential regulators, which include known pathway components, genes with functions not previously linked to this pathway, and genes with no previously assigned functions. Reciprocal-Best-Blast analyses reveal that 50% of the genes identified in the screen have human orthologs, of which approximately 18% are associated with human disease. Functional assays of selected genes from the cell-based screen in Drosophila, mammalian cells, and zebrafish embryos demonstrated that these genes have evolutionarily conserved functions in Wnt signaling. High-throughput RNAi screens in cultured cells, followed by functional analyses in model organisms, prove to be a rapid means of identifying regulators of signaling pathways implicated in development and disease.

Yousang Gwack, Sonal Srikanth, Stefan Feske, Fernando Cruz-Guilloty, Masatsugu Oh-hora, Daniel S Neems, Patrick G Hogan, and Anjana Rao. 2007. “Biochemical and functional characterization of Orai proteins.” J Biol Chem, 282, 22, Pp. 16232-43.Abstract

Stimulation of immune cells triggers Ca2+ entry through store-operated Ca2+ release-activated Ca2+ channels, promoting nuclear translocation of the transcription factor NFAT. Through genome-wide RNA interference screens in Drosophila, we and others identified olf186-F (Drosophila Orai, dOrai) and dStim as critical components of store-operated Ca2+ entry and showed that dOrai and its human homologue Orai1 are pore subunits of the Ca2+ release-activated Ca2+ channel. Here we report that Orai1 is predominantly responsible for store-operated Ca2+ influx in human embryonic kidney 293 cells and human T cells and fibroblasts, although its paralogue Orai3 can partly compensate in the absence of functional Orai1. All three mammalian Orai are widely expressed at the mRNA level, and all three are incorporated into the plasma membrane. In human embryonic kidney 293 cells, Orai1 is glycosylated at an asparagine residue in the predicted second extracellular loop, but mutation of the residue does not compromise function. STIM1 and Orai1 colocalize after store depletion, but Orai1 does not associate detectably with STIM1 in glycerol gradient centrifugation or coimmunoprecipitation experiments. Glutamine substitutions in two conserved glutamate residues, located within predicted transmembrane helices of Drosophila Orai and human Orai1, greatly diminish store-operated Ca2+ influx, and primary T cells ectopically expressing mutant E106Q and E190Q Orai1 proteins show reduced proliferation and cytokine secretion. Together, these data establish Orai1 as a predominant mediator of store-operated calcium entry, proliferation, and cytokine production in T cells.

Katharine J Sepp, Pengyu Hong, Sofia B Lizarraga, Judy S Liu, Luis A Mejia, Christopher A Walsh, and Norbert Perrimon. 2008. “Identification of neural outgrowth genes using genome-wide RNAi.” PLoS Genet, 4, 7, Pp. e1000111.Abstract

While genetic screens have identified many genes essential for neurite outgrowth, they have been limited in their ability to identify neural genes that also have earlier critical roles in the gastrula, or neural genes for which maternally contributed RNA compensates for gene mutations in the zygote. To address this, we developed methods to screen the Drosophila genome using RNA-interference (RNAi) on primary neural cells and present the results of the first full-genome RNAi screen in neurons. We used live-cell imaging and quantitative image analysis to characterize the morphological phenotypes of fluorescently labelled primary neurons and glia in response to RNAi-mediated gene knockdown. From the full genome screen, we focused our analysis on 104 evolutionarily conserved genes that when downregulated by RNAi, have morphological defects such as reduced axon extension, excessive branching, loss of fasciculation, and blebbing. To assist in the phenotypic analysis of the large data sets, we generated image analysis algorithms that could assess the statistical significance of the mutant phenotypes. The algorithms were essential for the analysis of the thousands of images generated by the screening process and will become a valuable tool for future genome-wide screens in primary neurons. Our analysis revealed unexpected, essential roles in neurite outgrowth for genes representing a wide range of functional categories including signalling molecules, enzymes, channels, receptors, and cytoskeletal proteins. We also found that genes known to be involved in protein and vesicle trafficking showed similar RNAi phenotypes. We confirmed phenotypes of the protein trafficking genes Sec61alpha and Ran GTPase using Drosophila embryo and mouse embryonic cerebral cortical neurons, respectively. Collectively, our results showed that RNAi phenotypes in primary neural culture can parallel in vivo phenotypes, and the screening technique can be used to identify many new genes that have important functions in the nervous system.

Sheng Zhang, Richard Binari, Rui Zhou, and Norbert Perrimon. 2010. “A genomewide RNA interference screen for modifiers of aggregates formation by mutant Huntingtin in Drosophila.” Genetics, 184, 4, Pp. 1165-79.Abstract

Protein aggregates are a common pathological feature of most neurodegenerative diseases (NDs). Understanding their formation and regulation will help clarify their controversial roles in disease pathogenesis. To date, there have been few systematic studies of aggregates formation in Drosophila, a model organism that has been applied extensively in modeling NDs and screening for toxicity modifiers. We generated transgenic fly lines that express enhanced-GFP-tagged mutant Huntingtin (Htt) fragments with different lengths of polyglutamine (polyQ) tract and showed that these Htt mutants develop protein aggregates in a polyQ-length- and age-dependent manner in Drosophila. To identify central regulators of protein aggregation, we further generated stable Drosophila cell lines expressing these Htt mutants and also established a cell-based quantitative assay that allows automated measurement of aggregates within cells. We then performed a genomewide RNA interference screen for regulators of mutant Htt aggregation and isolated 126 genes involved in diverse cellular processes. Interestingly, although our screen focused only on mutant Htt aggregation, several of the identified candidates were known previously as toxicity modifiers of NDs. Moreover, modulating the in vivo activity of hsp110 (CG6603) or tra1, two hits from the screen, affects neurodegeneration in a dose-dependent manner in a Drosophila model of Huntington's disease. Thus, other aggregates regulators isolated in our screen may identify additional genes involved in the protein-folding pathway and neurotoxicity.

Pages