Drosophila (fly)

Screenshot of a 2015 Science paper from Payre and colleagues

Francois Payre's plenary talk at ADRC 2017 features results from DRSC cell-based screen

March 30, 2017

Those of us lucky enough to be at the Annual Drosophila Research Conference this morning saw a great talk by Francois Payre about regulation of Shavenbaby by small ORFs. A genome-wide cell-based screen done at the DRSC by Emilie Benrabah identified the mechanism of regulation. As this exemplifies, cell screens can help identify key pathways and factors that can then be followed up with in vivo studies.

J Zanet, E Benrabah, T Li, A Pélissier-Monier, H Chanut-Delalande, B Ronsin, HJ Bellen, F Payre, and S Plaza. 2015. “Pri sORF peptides induce selective proteasome-mediated protein processing.” Science, 349, 6254, Pp. 1356-8.Abstract

A wide variety of RNAs encode small open-reading-frame (smORF/sORF) peptides, but their functions are largely unknown. Here, we show that Drosophila polished-rice (pri) sORF peptides trigger proteasome-mediated protein processing, converting the Shavenbaby (Svb) transcription repressor into a shorter activator. A genome-wide RNA interference screen identifies an E2-E3 ubiquitin-conjugating complex, UbcD6-Ubr3, which targets Svb to the proteasome in a pri-dependent manner. Upon interaction with Ubr3, Pri peptides promote the binding of Ubr3 to Svb. Ubr3 can then ubiquitinate the Svb N terminus, which is degraded by the proteasome. The C-terminal domains protect Svb from complete degradation and ensure appropriate processing. Our data show that Pri peptides control selectivity of Ubr3 binding, which suggests that the family of sORF peptides may contain an extended repertoire of protein regulators.

Huajin Wang, Michel Becuwe, Benjamin E Housden, Chandramohan Chitraju, Ashley J Porras, Morven M Graham, Xinran N Liu, Abdou Rachid Thiam, David B Savage, Anil K Agarwal, Abhimanyu Garg, Maria-Jesus Olarte, Qingqing Lin, Florian Fröhlich, Hans Kristian Hannibal-Bach, Srigokul Upadhyayula, Norbert Perrimon, Tomas Kirchhausen, Christer S Ejsing, Tobias C Walther, and Robert V Farese. 2016. “Seipin is required for converting nascent to mature lipid droplets.” Elife, 5.Abstract

How proteins control the biogenesis of cellular lipid droplets (LDs) is poorly understood. Using Drosophila and human cells, we show here that seipin, an ER protein implicated in LD biology, mediates a discrete step in LD formation-the conversion of small, nascent LDs to larger, mature LDs. Seipin forms discrete and dynamic foci in the ER that interact with nascent LDs to enable their growth. In the absence of seipin, numerous small, nascent LDs accumulate near the ER and most often fail to grow. Those that do grow prematurely acquire lipid synthesis enzymes and undergo expansion, eventually leading to the giant LDs characteristic of seipin deficiency. Our studies identify a discrete step of LD formation, namely the conversion of nascent LDs to mature LDs, and define a molecular role for seipin in this process, most likely by acting at ER-LD contact sites to enable lipid transfer to nascent LDs.

New stocks added to the TRiP in vivo RNAi library

January 6, 2017

The TRiP has updated and curated our list of in vivo RNAi reagents for gene knockdown in fruitflies. To date, we have produced over 13,000 stocks for the benefit of the scientific community.

Visit the in vivo RNAi fly stocks and vectors page to download an excel file with the full list of fly stocks now available for order from the Bloomington Drosophila Stock Center (BDSC) and the...

Read more about New stocks added to the TRiP in vivo RNAi library

CRISPR sgRNA design tool now based on Drosophila genome assembly 6

December 21, 2016

We have updated our CRISPR sgRNA design tool. The results and JBrowse display are now based on Drosophila melanogaster FlyBase genome assembly release 6. We have also added seed scores in addition to efficiency prediction scores and other values available on detailed views of sgRNA designs. Quick tips: start a search with a gene symbol or other identifier, use the...

Read more about CRISPR sgRNA design tool now based on Drosophila genome assembly 6
Chen X and Xu L. 2016. “Genome-Wide RNAi Screening to Dissect the TGF-β Signal Transduction Pathway.” Methods in Molecular Biology. Publisher's VersionAbstract

The transforming growth factor-β (TGF-β) family of cytokines figures prominently in regulation of embryonic development and adult tissue homeostasis from Drosophila to mammals. Genetic defects affecting TGF-β signaling underlie developmental disorders and diseases such as cancer in human. Therefore, delineating the molecular mechanism by which TGF-β regulates cell biology is critical for understanding normal biology and disease mechanisms. Forward genetic screens in model organisms and biochemical approaches in mammalian tissue culture were instrumental in initial characterization of the TGF-β signal transduction pathway. With complete sequence information of the genomes and the advent of RNA interference (RNAi) technology, genome-wide RNAi screening emerged as a powerful functional genomics approach to systematically delineate molecular components of signal transduction pathways. Here, we describe a protocol for image-based whole-genome RNAi screening aimed at identifying molecules required for TGF-β signaling into the nucleus. Using this protocol we examined >90 % of annotated Drosophila open reading frames (ORF) individually and successfully uncovered several novel factors serving critical roles in the TGF-β pathway. Thus cell-based high-throughput functional genomics can uncover new mechanistic insights on signaling pathways beyond what the classical genetics had revealed.

Amino acid alignment of the fly paralogs kek1 and kek2

DIOPT 6.0 released -- with eggNOG and paralog searches added

November 29, 2016

DIOPT 6.0 went live this week. Newly added features include results from eggNOG, bringing the total number of alrogithms incorporated in our integrated search tool to 14. In addition, you can now search for paralogs. To do this, choose the same species for input and output. Examples for fly-fly and human-human paralog searches are shown. As always, your feedback is welcome.

...

Read more about DIOPT 6.0 released -- with eggNOG and paralog searches added
Yanhui Hu, Aram Comjean, Charles Roesel, Arunachalam Vinayagam, Ian Flockhart, Jonathan Zirin, Lizabeth Perkins, Norbert Perrimon, and Stephanie E Mohr. 10/11/2016. “FlyRNAi.org—the database of the Drosophila RNAi screening center and transgenic RNAi project: 2017 update.” Nucleic Acids Research. Publisher's VersionAbstract

The FlyRNAi database of the Drosophila RNAi Screening Center (DRSC) and Transgenic RNAi Project (TRiP) at Harvard Medical School and associated DRSC/TRiP Functional Genomics Resources website (http://fgr.hms.harvard.edu) serve as a reagent production tracking system, screen data repository, and portal to the community. Through this portal, we make available protocols, online tools, and other resources useful to researchers at all stages of high-throughput functional genomics screening, from assay design and reagent identification to data analysis and interpretation. In this update, we describe recent changes and additions to our website, database and suite of online tools. Recent changes reflect a shift in our focus from a single technology (RNAi) and model species (Drosophila) to the application of additional technologies (e.g. CRISPR) and support of integrated, cross-species approaches to uncovering gene function using functional genomics and other approaches.

Benjamin E Housden, Matthias Muhar, Matthew Gemberling, Charles A Gersbach, Didier YR Stainier, Geraldine Seydoux, Stephanie E Mohr, Johannes Zuber, and Norbert Perrimon. 10/31/2016. “Loss-of-function genetic tools for animal models: cross-species and cross-platform differences.” Nat Rev Genet. Publisher's VersionAbstract

Our understanding of the genetic mechanisms that underlie biological processes has relied extensively on loss-of-function (LOF) analyses. LOF methods target DNA, RNA or protein to reduce or to ablate gene function. By analysing the phenotypes that are caused by these perturbations the wild-type function of genes can be elucidated. Although all LOF methods reduce gene activity, the choice of approach (for example, mutagenesis, CRISPR-based gene editing, RNA interference, morpholinos or pharmacological inhibition) can have a major effect on phenotypic outcomes. Interpretation of the LOF phenotype must take into account the biological process that is targeted by each method. The practicality and efficiency of LOF methods also vary considerably between model systems. We describe parameters for choosing the optimal combination of method and system, and for interpreting phenotypes within the constraints of each method.

Screenshot of GLAD results with the hh gene

Gene List Annotation for Drosophila (GLAD) online resource updated

October 19, 2016

We recently udpated our Gene List Annotation for Drosophila (GLAD) online resource.  At GLAD you could already view the members of a gene list, such as genes grouped as members of a pathway, process, or sharing a functional domain. Now, you can also ask if a gene of interest is a member of a given group. Please see examples of the two ways to use GLAD below. As always, we welcome your feedback, including suggestions for changes or additions to the curated lists, or for addition of new...

Read more about Gene List Annotation for Drosophila (GLAD) online resource updated
Multi sequence alignments for ALL search best matches

"One vs. All" a new feature in our ortholog search tool

October 3, 2016

Our DIOPT ortholog search tool has been updated to include the option to search for orthologs of a gene in all other species included. So you can search with, for example, a fly gene, and see orthologs in human, mouse, rat, frog, worm, and yeast.

Click on the button "show summary of top scores" to see a heat map view of the top-scoring ortholog matches in other species to your query species. This feature helps you see quickly if a gene has been conserved across many species or is, for example, only found in vertebrates.

As always, our tool supports batch-mode searches (you can...

Read more about "One vs. All" a new feature in our ortholog search tool

Pages