Drosophila (fly)

Kristian Björk Grimberg, Anne Beskow, Daniel Lundin, Monica M Davis, and Patrick Young. 2011. “Basic leucine zipper protein Cnc-C is a substrate and transcriptional regulator of the Drosophila 26S proteasome.” Mol Cell Biol, 31, 4, Pp. 897-909.Abstract

While the 26S proteasome is a key proteolytic complex, little is known about how proteasome levels are maintained in higher eukaryotic cells. Here we describe an RNA interference (RNAi) screen of Drosophila melanogaster that was used to identify transcription factors that may play a role in maintaining levels of the 26S proteasome. We used an RNAi library against 993 Drosophila transcription factor genes to identify genes whose suppression in Schneider 2 cells stabilized a ubiquitin-green fluorescent protein reporter protein. This screen identified Cnc (cap 'n' collar [CNC]; basic region leucine zipper) as a candidate transcriptional regulator of proteasome component expression. In fact, 20S proteasome activity was reduced in cells depleted of cnc. Immunoblot assays against proteasome components revealed a general decline in both 19S regulatory complex and 20S proteasome subunits after RNAi depletion of this transcription factor. Transcript-specific silencing revealed that the longest of the seven transcripts for the cnc gene, cnc-C, was needed for proteasome and p97 ATPase production. Quantitative reverse transcription-PCR confirmed the role of Cnc-C in activation of transcription of genes encoding proteasome components. Expression of a V5-His-tagged form of Cnc-C revealed that the transcription factor is itself a proteasome substrate that is stabilized when the proteasome is inhibited. We propose that this single cnc gene in Drosophila resembles the ancestral gene family of mammalian nuclear factor erythroid-derived 2-related transcription factors, which are essential in regulating oxidative stress and proteolysis.

Erica Larschan, Marcela ML Soruco, Ok-Kyung Lee, Shouyong Peng, Eric Bishop, Jessica Chery, Karen Goebel, Jessica Feng, Peter J Park, and Mitzi I Kuroda. 2012. “Identification of chromatin-associated regulators of MSL complex targeting in Drosophila dosage compensation.” PLoS Genet, 8, 7, Pp. e1002830.Abstract

Sex chromosome dosage compensation in Drosophila provides a model for understanding how chromatin organization can modulate coordinate gene regulation. Male Drosophila increase the transcript levels of genes on the single male X approximately two-fold to equal the gene expression in females, which have two X-chromosomes. Dosage compensation is mediated by the Male-Specific Lethal (MSL) histone acetyltransferase complex. Five core components of the MSL complex were identified by genetic screens for genes that are specifically required for male viability and are dispensable for females. However, because dosage compensation must interface with the general transcriptional machinery, it is likely that identifying additional regulators that are not strictly male-specific will be key to understanding the process at a mechanistic level. Such regulators would not have been recovered from previous male-specific lethal screening strategies. Therefore, we have performed a cell culture-based, genome-wide RNAi screen to search for factors required for MSL targeting or function. Here we focus on the discovery of proteins that function to promote MSL complex recruitment to "chromatin entry sites," which are proposed to be the initial sites of MSL targeting. We find that components of the NSL (Non-specific lethal) complex, and a previously unstudied zinc-finger protein, facilitate MSL targeting and display a striking enrichment at MSL entry sites. Identification of these factors provides new insight into how MSL complex establishes the specialized hyperactive chromatin required for dosage compensation in Drosophila.

Felix Muerdter, Paloma M Guzzardo, Jesse Gillis, Yicheng Luo, Yang Yu, Caifu Chen, Richard Fekete, and Gregory J Hannon. 2013. “A genome-wide RNAi screen draws a genetic framework for transposon control and primary piRNA biogenesis in Drosophila.” Mol Cell, 50, 5, Pp. 736-48.Abstract

A large fraction of our genome consists of mobile genetic elements. Governing transposons in germ cells is critically important, and failure to do so compromises genome integrity, leading to sterility. In animals, the piRNA pathway is the key to transposon constraint, yet the precise molecular details of how piRNAs are formed and how the pathway represses mobile elements remain poorly understood. In an effort to identify general requirements for transposon control and components of the piRNA pathway, we carried out a genome-wide RNAi screen in Drosophila ovarian somatic sheet cells. We identified and validated 87 genes necessary for transposon silencing. Among these were several piRNA biogenesis factors. We also found CG3893 (asterix) to be essential for transposon silencing, most likely by contributing to the effector step of transcriptional repression. Asterix loss leads to decreases in H3K9me3 marks on certain transposons but has no effect on piRNA levels.

Stephanie E Mohr, Jennifer A Smith, Caroline E Shamu, Ralph A Neumüller, and Norbert Perrimon. 2014. “RNAi screening comes of age: improved techniques and complementary approaches.” Nat Rev Mol Cell Biol, 15, 9, Pp. 591-600.Abstract

Gene silencing through sequence-specific targeting of mRNAs by RNAi has enabled genome-wide functional screens in cultured cells and in vivo in model organisms. These screens have resulted in the identification of new cellular pathways and potential drug targets. Considerable progress has been made to improve the quality of RNAi screen data through the development of new experimental and bioinformatics approaches. The recent availability of genome-editing strategies, such as the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system, when combined with RNAi, could lead to further improvements in screen data quality and follow-up experiments, thus promoting our understanding of gene function and gene regulatory networks.

Kent Nybakken, Steven A Vokes, Ting-Yi Lin, Andrew P McMahon, and Norbert Perrimon. 2005. “A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway.” Nat Genet, 37, 12, Pp. 1323-32.Abstract

Members of the Hedgehog (Hh) family of signaling proteins are powerful regulators of developmental processes in many organisms and have been implicated in many human disease states. Here we report the results of a genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. The screen identified hundreds of potential new regulators of Hh signaling, including many large protein complexes with pleiotropic effects, such as the coat protein complex I (COPI) complex, the ribosome and the proteasome. We identified the multimeric protein phosphatase 2A (PP2A) and two new kinases, the D. melanogaster orthologs of the vertebrate PITSLRE and cyclin-dependent kinase-9 (CDK9) kinases, as Hh regulators. We also identified a large group of constitutive and alternative splicing factors, two nucleoporins involved in mRNA export and several RNA-regulatory proteins as potent regulators of Hh signal transduction, indicating that splicing regulation and mRNA transport have a previously unrecognized role in Hh signaling. Finally, we showed that several of these genes have conserved roles in mammalian Hh signaling.

Nadire Ramadan, Ian Flockhart, Matthew Booker, Norbert Perrimon, and Bernard Mathey-Prevot. 2007. “Design and implementation of high-throughput RNAi screens in cultured Drosophila cells.” Nat Protoc, 2, 9, Pp. 2245-64.Abstract

This protocol describes the various steps and considerations involved in planning and carrying out RNA interference (RNAi) genome-wide screens in cultured Drosophila cells. We focus largely on the procedures that have been modified as a result of our experience over the past 3 years and of our better understanding of the underlying technology. Specifically, our protocol offers a set of suggestions and considerations for screen optimization and a step-by-step description of the procedures successfully used at the Drosophila RNAi Screening Center for screen implementation, data collection and analysis to identify potential hits. In addition, this protocol briefly covers postscreen analysis approaches that are often needed to finalize the hit list. Depending on the scope of the screen and subsequent analysis and validation involved, the full protocol can take anywhere from 3 months to 2 years to complete.

Leigh Cuttell, Andrew Vaughan, Elizabeth Silva, Claire J Escaron, Mark Lavine, Emeline Van Goethem, Jean-Pierre Eid, Magali Quirin, and Nathalie C Franc. 2008. “Undertaker, a Drosophila Junctophilin, links Draper-mediated phagocytosis and calcium homeostasis.” Cell, 135, 3, Pp. 524-34.Abstract

Phagocytosis is important during development and in the immune response for the removal of apoptotic cells and pathogens, yet its molecular mechanisms are poorly understood. In Caenorhabditis elegans, the CED2/5/10/12 pathway regulates actin during phagocytosis of apoptotic cells, whereas the role of the CED1/6/7 pathway in phagocytosis is unclear. We report that Undertaker (UTA), a Drosophila Junctophilin protein, is required for Draper (CED-1 homolog)-mediated phagocytosis. Junctophilins couple Ca2+ channels at the plasma membrane to those of the endoplasmic reticulum (ER), the Ryanodine receptors. We place Draper, its adaptor drCed-6, UTA, the Ryanodine receptor Rya-r44F, the ER Ca2+ sensor dSTIM, and the Ca2+-release-activated Ca2+ channel dOrai in the same pathway that promotes calcium homeostasis and phagocytosis. Thus, our results implicate a Junctophilin in phagocytosis and link Draper-mediated phagocytosis to Ca2+ homeostasis, highlighting a previously uncharacterized role for the CED1/6/7 pathway.

Chaohong Wu, Joost Schulte, Katharine J Sepp, Troy J Littleton, and Pengyu Hong. 2010. “Automatic robust neurite detection and morphological analysis of neuronal cell cultures in high-content screening.” Neuroinformatics, 8, 2, Pp. 83-100.Abstract

Cell-based high content screening (HCS) is becoming an important and increasingly favored approach in therapeutic drug discovery and functional genomics. In HCS, changes in cellular morphology and biomarker distributions provide an information-rich profile of cellular responses to experimental treatments such as small molecules or gene knockdown probes. One obstacle that currently exists with such cell-based assays is the availability of image processing algorithms that are capable of reliably and automatically analyzing large HCS image sets. HCS images of primary neuronal cell cultures are particularly challenging to analyze due to complex cellular morphology. Here we present a robust method for quantifying and statistically analyzing the morphology of neuronal cells in HCS images. The major advantages of our method over existing software lie in its capability to correct non-uniform illumination using the contrast-limited adaptive histogram equalization method; segment neuromeres using Gabor-wavelet texture analysis; and detect faint neurites by a novel phase-based neurite extraction algorithm that is invariant to changes in illumination and contrast and can accurately localize neurites. Our method was successfully applied to analyze a large HCS image set generated in a morphology screen for polyglutamine-mediated neuronal toxicity using primary neuronal cell cultures derived from embryos of a Drosophila Huntington's Disease (HD) model.

Stephanie E Mohr and Norbert Perrimon. 2012. “RNAi screening: new approaches, understandings, and organisms.” Wiley Interdiscip Rev RNA, 3, 2, Pp. 145-58.Abstract

RNA interference (RNAi) leads to sequence-specific knockdown of gene function. The approach can be used in large-scale screens to interrogate function in various model organisms and an increasing number of other species. Genome-scale RNAi screens are routinely performed in cultured or primary cells or in vivo in organisms such as C. elegans. High-throughput RNAi screening is benefitting from the development of sophisticated new instrumentation and software tools for collecting and analyzing data, including high-content image data. The results of large-scale RNAi screens have already proved useful, leading to new understandings of gene function relevant to topics such as infection, cancer, obesity, and aging. Nevertheless, important caveats apply and should be taken into consideration when developing or interpreting RNAi screens. Some level of false discovery is inherent to high-throughput approaches and specific to RNAi screens, false discovery due to off-target effects (OTEs) of RNAi reagents remains a problem. The need to improve our ability to use RNAi to elucidate gene function at large scale and in additional systems continues to be addressed through improved RNAi library design, development of innovative computational and analysis tools and other approaches.

Stephanie C Stotz and David E Clapham. 2012. “Anion-sensitive fluorophore identifies the Drosophila swell-activated chloride channel in a genome-wide RNA interference screen.” PLoS One, 7, 10, Pp. e46865.Abstract

When cells swell in hypo-osmotic solutions, chloride-selective ion channels (Cl(swell)) activate to reduce intracellular osmolality and prevent catastrophic cell rupture. Despite intensive efforts to assign a molecular identity to the mammalian Cl(swell) channel, it remains unknown. In an unbiased genome-wide RNA interference (RNAi) screen of Drosophila cells stably expressing an anion-sensitive fluorescent indicator, we identify Bestrophin 1 (dBest1) as the Drosophila Cl(swell) channel. Of the 23 screen hits with mammalian homologs and predicted transmembrane domains, only RNAi specifically targeting dBest1 eliminated the Cl(swell) current (I(Clswell)). We further demonstrate the essential contribution of dBest1 to Drosophila I(Clswell) with the introduction of a human Bestrophin disease-associated mutation (W94C). Overexpression of the W94C construct in Drosophila cells significantly reduced the endogenous I(Clswell). We confirm that exogenous expression of dBest1 alone in human embryonic kidney (HEK293) cells creates a clearly identifiable Drosophila-like I(Clswell). In contrast, activation of mouse Bestrophin 2 (mBest2), the closest mammalian ortholog of dBest1, is swell-insensitive. The first 64 residues of dBest1 conferred swell activation to mBest2. The chimera, however, maintains mBest2-like pore properties, strongly indicating that the Bestrophin protein forms the Cl(swell) channel itself rather than functioning as an essential auxiliary subunit. dBest1 is an anion channel clearly responsive to swell; this activation depends upon its N-terminus.

Xingjie Ren, Jin Sun, Benjamin E Housden, Yanhui Hu, Charles Roesel, Shuailiang Lin, Lu-Ping Liu, Zhihao Yang, Decai Mao, Lingzhu Sun, Qujie Wu, Jun-Yuan Ji, Jianzhong Xi, Stephanie E Mohr, Jiang Xu, Norbert Perrimon, and Jian-Quan Ni. 2013. “Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9.” Proc Natl Acad Sci U S A, 110, 47, Pp. 19012-7.Abstract

The ability to engineer genomes in a specific, systematic, and cost-effective way is critical for functional genomic studies. Recent advances using the CRISPR-associated single-guide RNA system (Cas9/sgRNA) illustrate the potential of this simple system for genome engineering in a number of organisms. Here we report an effective and inexpensive method for genome DNA editing in Drosophila melanogaster whereby plasmid DNAs encoding short sgRNAs under the control of the U6b promoter are injected into transgenic flies in which Cas9 is specifically expressed in the germ line via the nanos promoter. We evaluate the off-targets associated with the method and establish a Web-based resource, along with a searchable, genome-wide database of predicted sgRNAs appropriate for genome engineering in flies. Finally, we discuss the advantages of our method in comparison with other recently published approaches.

Lizabeth A Perkins, Laura Holderbaum, Rong Tao, Yanhui Hu, Richelle Sopko, Kim McCall, Donghui Yang-Zhou, Ian Flockhart, Richard Binari, Hye-Seok Shim, Audrey Miller, Amy Housden, Marianna Foos, Sakara Randkelv, Colleen Kelley, Pema Namgyal, Christians Villalta, Lu-Ping Liu, Xia Jiang, Qiao Huan-Huan, Xia Wang, Asao Fujiyama, Atsushi Toyoda, Kathleen Ayers, Allison Blum, Benjamin Czech, Ralph Neumuller, Dong Yan, Amanda Cavallaro, Karen Hibbard, Don Hall, Lynn Cooley, Gregory J Hannon, Ruth Lehmann, Annette Parks, Stephanie E Mohr, Ryu Ueda, Shu Kondo, Jian-Quan Ni, and Norbert Perrimon. 2015. “The Transgenic RNAi Project at Harvard Medical School: Resources and Validation.” Genetics, 201, 3, Pp. 843-52.Abstract

To facilitate large-scale functional studies in Drosophila, the Drosophila Transgenic RNAi Project (TRiP) at Harvard Medical School (HMS) was established along with several goals: developing efficient vectors for RNAi that work in all tissues, generating a genome-scale collection of RNAi stocks with input from the community, distributing the lines as they are generated through existing stock centers, validating as many lines as possible using RT-qPCR and phenotypic analyses, and developing tools and web resources for identifying RNAi lines and retrieving existing information on their quality. With these goals in mind, here we describe in detail the various tools we developed and the status of the collection, which is currently composed of 11,491 lines and covering 71% of Drosophila genes. Data on the characterization of the lines either by RT-qPCR or phenotype is available on a dedicated website, the RNAi Stock Validation and Phenotypes Project (RSVP, http://www.flyrnai.org/RSVP.html), and stocks are available from three stock centers, the Bloomington Drosophila Stock Center (United States), National Institute of Genetics (Japan), and TsingHua Fly Center (China).

Ulrike S Eggert, Amy A Kiger, Constance Richter, Zachary E Perlman, Norbert Perrimon, Timothy J Mitchison, and Christine M Field. 2004. “Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and targets.” PLoS Biol, 2, 12, Pp. e379.Abstract

Cytokinesis involves temporally and spatially coordinated action of the cell cycle and cytoskeletal and membrane systems to achieve separation of daughter cells. To dissect cytokinesis mechanisms it would be useful to have a complete catalog of the proteins involved, and small molecule tools for specifically inhibiting them with tight temporal control. Finding active small molecules by cell-based screening entails the difficult step of identifying their targets. We performed parallel chemical genetic and genome-wide RNA interference screens in Drosophila cells, identifying 50 small molecule inhibitors of cytokinesis and 214 genes important for cytokinesis, including a new protein in the Aurora B pathway (Borr). By comparing small molecule and RNAi phenotypes, we identified a small molecule that inhibits the Aurora B kinase pathway. Our protein list provides a starting point for systematic dissection of cytokinesis, a direction that will be greatly facilitated by also having diverse small molecule inhibitors, which we have identified. Dissection of the Aurora B pathway, where we found a new gene and a specific small molecule inhibitor, should benefit particularly. Our study shows that parallel RNA interference and small molecule screening is a generally useful approach to identifying active small molecules and their target pathways.

Sara Cherry, Amit Kunte, Hui Wang, Carolyn Coyne, Robert B Rawson, and Norbert Perrimon. 2006. “COPI activity coupled with fatty acid biosynthesis is required for viral replication.” PLoS Pathog, 2, 10, Pp. e102.Abstract

During infection by diverse viral families, RNA replication occurs on the surface of virally induced cytoplasmic membranes of cellular origin. How this process is regulated, and which cellular factors are required, has been unclear. Moreover, the host-pathogen interactions that facilitate the formation of this new compartment might represent critical determinants of viral pathogenesis, and their elucidation may lead to novel insights into the coordination of vesicular trafficking events during infection. Here we show that in Drosophila cells, Drosophila C virus remodels the Golgi apparatus and forms a novel vesicular compartment, on the surface of which viral RNA replication takes place. Using genome-wide RNA interference screening, we found that this step in the viral lifecycle requires at least two host encoded pathways: the coat protein complex I (COPI) coatamer and fatty acid biosynthesis. Our results integrate, clarify, and extend numerous observations concerning the cell biology of viral replication, allowing us to conclude that the coupling of new cellular membrane formation with the budding of these vesicles from the Golgi apparatus allows for the regulated generation of this new virogenic organelle, which is essential for viral replication. Additionally, because these pathways are also limiting in flies and in human cells infected with the related RNA virus poliovirus, they may represent novel targets for antiviral therapies.

Pages