Drosophila (fly)

Jun Xu, Ah-Ram Kim, Ross W Cheloha, Fabian A Fischer, Joshua Shing Shun Li, Yuan Feng, Emily Stoneburner, Richard Binari, Stephanie E Mohr, Jonathan Zirin, Hidde L Ploegh, and Norbert Perrimon. 2022. “Protein visualization and manipulation in through the use of epitope tags recognized by nanobodies.” Elife, 11.Abstract
Expansion of the available repertoire of reagents for visualization and manipulation of proteins will help understand their function. Short epitope tags linked to proteins of interest and recognized by existing binders such as nanobodies facilitate protein studies by obviating the need to isolate new antibodies directed against them. Nanobodies have several advantages over conventional antibodies, as they can be expressed and used as tools for visualization and manipulation of proteins in vivo. Here, we characterize two short (<15 aa) NanoTag epitopes, 127D01 and VHH05, and their corresponding high-affinity nanobodies. We demonstrate their use in Drosophila for in vivo protein detection and re-localization, direct and indirect immunofluorescence, immunoblotting, and immunoprecipitation. We further show that CRISPR-mediated gene targeting provides a straightforward approach to tagging endogenous proteins with the NanoTags. Single copies of the NanoTags, regardless of their location, suffice for detection. This versatile and validated toolbox of tags and nanobodies will serve as a resource for a wide array of applications, including functional studies in Drosophila and beyond.
Hans M. Dalton, Raghuvir Viswanatha, Ricky Brathwaite Jr., Jae Sophia Zuno, Stephanie E Mohr, Norbert Perrimon, and Clement Y. Chow. 12/4/2021. “A genome-wide CRISPR screen identifies the glycosylation enzyme DPM1 as a modifier of DPAGT1 deficiency and ER stress.” BioRxiv. Publisher's VersionAbstract
Partial loss-of-function mutations in glycosylation pathways underlie a set of rare diseases called Congenital Disorders of Glycosylation (CDGs). In particular, DPAGT1 CDG is caused by mutations in the gene encoding the first step in N-glycosylation, DPAGT1, and this disorder currently lacks effective therapies. To identify potential therapeutic targets for DPAGT1-CDG, we performed CRISPR knockout screens in Drosophila cells for genes associated with better survival and glycoprotein levels under DPAGT1 inhibition. We identified hundreds of candidate genes that may be of therapeutic benefit. Intriguingly, inhibition of the mannosyltransferase Dpm1, or its downstream glycosylation pathways, could rescue two in vivo models of DPAGT1 inhibition and ER stress, even though impairment of these pathways alone usually cause CDGs. While both in vivo models ostensibly cause ER stress (through DPAGT1 inhibition or a misfolded protein), we found a novel difference in fructose metabolism that may indicate glycolysis as a modulator of DPAGT1-CDG. Our results provide new therapeutic targets for DPAGT1-CDG, include the unique finding of Dpm1-related pathways rescuing DPAGT1 inhibition, and reveal a novel interaction between fructose metabolism and ER stress.
Jiunn Song, Arda Mizrak, Chia-Wei Lee, Marcelo Cicconet, Zon Weng Lai, Chieh-Han Lu, Stephanie E. Mohr, Jr Robert V. Farese, and Tobias C. Walther. 9/15/2021. “Identification of two pathways mediating protein targeting from ER to lipid droplets [NOTE: a modified final version was published in Nat Cell Biol and is now available]”. Publisher's VersionAbstract
Pathways localizing proteins to their sites of action within a cell are essential for eukaryotic cell organization and function. Although mechanisms of protein targeting to many organelles have been defined, little is known about how proteins, such as key metabolic enzymes, target from the ER to cellular lipid droplets (LDs). Here, we identify two distinct pathways for ER-to-LD (ERTOLD) protein targeting: early ERTOLD, occurring during LD formation, and late ERTOLD, targeting mature LDs after their formation. By using systematic, unbiased approaches, we identified specific membrane-fusion machinery, including regulators, a tether, and SNARE proteins, that are required for late ERTOLD targeting. Components of this fusion machinery localize to LD-ER interfaces and appear to be organized at ER exit sites (ERES) to generate ER-LD membrane bridges. We also identified multiple cargoes for early and late ERTOLD. Collectively, our data provide a new model for how proteins target LDs from the ER.
Graphical image of tissue culture, fly pushing, and computer, and the team of people who work with them

DRSC/TRiP and DRSC-BTRR Office Hours

September 13, 2021

New this fall: Online office hours!

Do you have questions about modifying Drosophila cell lines with CRISPR or performing large-scale cell screens? Questions about in vivo RNAi with TRiP fly stocks or CRISPR knockout or activation with our sgRNA fly stocks? Questions about our new protocols and resources for CRISPR mosquito cell lines? Pop into our Zoom office hours to say hello and get our expert input! Registration is required (see below).

DRSC/TRiP & DRSC-BTRR Office Hours Schedule:

Mon. Sept. 27, 2021, 12...

Read more about DRSC/TRiP and DRSC-BTRR Office Hours
Xiangzhao Yue, Yongkang Liang, Zhishuang Wei, Jun Lv, Yongjin Cai, Xiaobin Fan, Wenqing Zhang, and Jie Chen. 2021. “Genome-wide in vitro and in vivo RNAi screens reveal Fer3 to be an important regulator of kkv transcription in Drosophila.” Insect Sci.Abstract
Krotzkopf verkehrt (kkv) is a key enzyme that catalyzes the synthesis of chitin, an important component of the Drosophila epidermis, trachea, and other tissues. Here, we report the use of comprehensive RNA interference (RNAi) analyses to search for kkv transcriptional regulators. A cell-based RNAi screen identified 537 candidate kkv regulators on a genome-wide scale. Subsequent use of transgenic Drosophila lines expressing RNAi constructs enabled in vivo validation, and we identified six genes as potential kkv transcriptional regulators. Weakening of the kkvDsRed signal, an in vivo reporter indicating kkv promoter activity, was observed when the expression of Akirin, NFAT, 48 related 3 (Fer3), or Autophagy-related 101(Atg101) was knocked down in Drosophila at the 3rd-instar larval stage; whereas we observed disoriented taenidial folds on larval tracheae when Lines (lin) or Autophagy-related 3(Atg3) was knocked down in the tracheae. Fer3, in particular, has been shown to be an important factor in the activation of kkv transcription via specific binding with the kkv promoter. The genes involved in the chitin synthesis pathway were widely affected by the downregulation of Fer3. Furthermore, Atg101, Atg3, Akirin, Lin, NFAT, Pnr and Abd-A showed the potential complex mechanism of kkv transcription are regulated by an interaction network with bithorax complex components. Our study revealed the hitherto unappreciated diversity of modulators impinging on kkv transcription and opens new avenues in the study of kkv regulation and chitin biosynthesis. This article is protected by copyright. All rights reserved.
Yanhui Hu, Sudhir Gopal Tattikota, Yifang Liu, Aram Comjean, Yue Gao, Corey Forman, Grace Kim, Jonathan Rodiger, Irene Papatheodorou, Gilberto Dos Santos, Stephanie E Mohr, and Norbert Perrimon. 2021. “DRscDB: A single-cell RNA-seq resource for data mining and data comparison across species.” Comput Struct Biotechnol J, 19, Pp. 2018-2026.Abstract
With the advent of single-cell RNA sequencing (scRNA-seq) technologies, there has been a spike in studies involving scRNA-seq of several tissues across diverse species including Drosophila. Although a few databases exist for users to query genes of interest within the scRNA-seq studies, search tools that enable users to find orthologous genes and their cell type-specific expression patterns across species are limited. Here, we built a new search database, DRscDB (https://www.flyrnai.org/tools/single_cell/web/), to address this need. DRscDB serves as a comprehensive repository for published scRNA-seq datasets for Drosophila and relevant datasets from human and other model organisms. DRscDB is based on manual curation of Drosophila scRNA-seq studies of various tissue types and their corresponding analogous tissues in vertebrates including zebrafish, mouse, and human. Of note, our search database provides most of the literature-derived marker genes, thus preserving the original analysis of the published scRNA-seq datasets. Finally, DRscDB serves as a web-based user interface that allows users to mine gene expression data from scRNA-seq studies and perform cell cluster enrichment analyses pertaining to various scRNA-seq studies, both within and across species.
Stephanie E Mohr, Sudhir Gopal Tattikota, Jun Xu, Jonathan Zirin, Yanhui Hu, and Norbert Perrimon. 2021. “Methods and tools for spatial mapping of single-cell RNAseq clusters in Drosophila.” Genetics, 217, 4.Abstract
Single-cell RNA sequencing (scRNAseq) experiments provide a powerful means to identify clusters of cells that share common gene expression signatures. A major challenge in scRNAseq studies is to map the clusters to specific anatomical regions along the body and within tissues. Existing data, such as information obtained from large-scale in situ RNA hybridization studies, cell type specific transcriptomics, gene expression reporters, antibody stainings, and fluorescent tagged proteins, can help to map clusters to anatomy. However, in many cases, additional validation is needed to precisely map the spatial location of cells in clusters. Several approaches are available for spatial resolution in Drosophila, including mining of existing datasets, and use of existing or new tools for direct or indirect detection of RNA, or direct detection of proteins. Here, we review available resources and emerging technologies that will facilitate spatial mapping of scRNAseq clusters at high resolution in Drosophila. Importantly, we discuss the need, available approaches, and reagents for multiplexing gene expression detection in situ, as in most cases scRNAseq clusters are defined by the unique coexpression of sets of genes.
Raghuvir Viswanatha, Enzo Mameli, Jonathan Rodiger, Pierre Merckaert, Fabiana Feitosa-Suntheimer, Tonya M. Colpitts, Stephanie E. Mohr, Yanhui Hu, and Norbert Perrimon. 3/30/2021. “Bioinformatic and cell-based tools for pooled CRISPR knockout screening in mosquitos [NOTE: A modified final version was published in Nat Comm and is now available.].” bioRxiv. Publisher's VersionAbstract
Mosquito-borne diseases present a worldwide public health burden. Genome-scale screening tools that could inform our understanding of mosquitos and their control are lacking. Here, we adapt a recombination-mediated cassette exchange system for delivery of CRISPR sgRNA libraries into cell lines from several mosquito species and perform pooled CRISPR screens in an Anopheles cell line. To implement this method, we engineered modified mosquito cell lines, validated promoters and developed bioinformatics tools for multiple mosquito species.Competing Interest StatementThe authors have declared no competing interest.
Ilia A Droujinine, Amanda S Meyer, Dan Wang, Namrata D Udeshi, Yanhui Hu, David Rocco, Jill A McMahon, Rui Yang, JinJin Guo, Luye Mu, Dominique K Carey, Tanya Svinkina, Rebecca Zeng, Tess Branon, Areya Tabatabai, Justin A Bosch, John M Asara, Alice Y Ting, Steven A Carr, Andrew P McMahon, and Norbert Perrimon. 2021. “Proteomics of protein trafficking by in vivo tissue-specific labeling.” Nat Commun, 12, 1, Pp. 2382.Abstract
Conventional approaches to identify secreted factors that regulate homeostasis are limited in their abilities to identify the tissues/cells of origin and destination. We established a platform to identify secreted protein trafficking between organs using an engineered biotin ligase (BirA*G3) that biotinylates, promiscuously, proteins in a subcellular compartment of one tissue. Subsequently, biotinylated proteins are affinity-enriched and identified from distal organs using quantitative mass spectrometry. Applying this approach in Drosophila, we identify 51 muscle-secreted proteins from heads and 269 fat body-secreted proteins from legs/muscles, including CG2145 (human ortholog ENDOU) that binds directly to muscles and promotes activity. In addition, in mice, we identify 291 serum proteins secreted from conditional BirA*G3 embryo stem cell-derived teratomas, including low-abundance proteins with hormonal properties. Our findings indicate that the communication network of secreted proteins is vast. This approach has broad potential across different model systems to identify cell-specific secretomes and mediators of interorgan communication in health or disease.
Jun Xu, Ah-Ram Kim, Ross W. Cheloha, Fabian A. Fischer, Joshua Shing Shun Li, Yuan Feng, Emily Stoneburner, Richard Binari, Stephanie E. Mohr, Jonathan Zirin, Hidde Ploegh, and Norbert Perrimon. 9/29/2021. “Protein visualization and manipulation in Drosophila through the use of epitope tags recognized by nanobodies.” bioRxiv.Abstract
Expansion of the available repertoire of reagents for visualization and manipulation of proteins will help understand their function. Short epitope tags installed on proteins of interest and recognized by existing binders such as nanobodies facilitate protein studies by obviating the need to isolate new antibodies directed against them. Nanobodies have several advantages over conventional antibodies, as they can be expressed and used as tools for visualization and manipulation of proteins in vivo. Here, we combine the advantages of short epitopes (NanoTags) and nanobodies specific for them by characterizing two short (<15 aa) tags, 127D01 and VHH05, which are high-affinity targets of nanobodies. We demonstrate that these NanoTags and the nanobodies that recognize them can be used in Drosophila for in vivo protein detection and re-localization, direct and indirect immunofluorescence, immunoblotting, and immunoprecipitation. We further show that CRISPR-mediated gene targeting provides a straightforward approach to tagging endogenous proteins with the NanoTags. Single copies of the NanoTags, regardless of their location, suffice for detection. This versatile and validated toolbox of tags and nanobodies will serve as a resource for a wide array of applications, including functional studies in Drosophila and beyond.Competing Interest StatementThe authors have declared no competing interest.
A.M. Conard, N. Goodman, Hu, Y, N. Perrimon, R. Singh, C. Lawrence, and E. Larschan. 9/15/2020. “TIMEOR: a web-based tool to uncover temporal regulatory mechanisms from multi-omics data [NOTE: A modified final version was published in NAR and is now available].” BioRxiv. Publisher's VersionAbstract
Uncovering how transcription factors (TFs) regulate their targets at the DNA, RNA and protein levels over time is critical to define gene regulatory networks (GRNs) in normal and diseased states. RNA-seq has become a standard method to measure gene regulation using an established set of analysis steps. However, none of the currently available pipeline methods for interpreting ordered genomic data (in time or space) use time series models to assign cause and effect relationships within GRNs, are adaptive to diverse experimental designs, or enable user interpretation through a web-based platform. Furthermore, methods which integrate ordered RNA-seq data with transcription factor binding data are urgently needed. Here, we present TIMEOR (Trajectory Inference and Mechanism Exploration with Omics data in R), the first web-based and adaptive time series multi-omics pipeline method which infers the relationship between gene regulatory events across time. TIMEOR addresses the critical need for methods to predict causal regulatory mechanism networks between TFs from time series multi-omics data. We used TIMEOR to identify a new link between insulin stimulation and the circadian rhythm cycle. TIMEOR is available at https://github.com/ashleymaeconard/TIMEOR.git.
R. Viswanatha, M. Zaffagni, J. Zirin, N. Perrimon, and S. Kadener. 11/1/2020. “CRISPR-Cas13 mediated Knock Down in Drosophila cultured cells.” BioRxiv.Abstract
Manipulation of gene expression is one of the best approaches for studying gene function in vivo. CRISPR-Cas13 has the potential to be a powerful technique for manipulating RNA expression in diverse animal systems in vivo, including Drosophila melanogaster. Studies using Cas13 in mammalian cell lines for gene knockdown showed increased on-target efficiency and decreased off-targeting relative to RNAi. Moreover, catalytically inactive Cas13 fusions can be used to image RNA molecules, install precise changes to the epitranscriptome, or alter splicing. However, recent studies have suggested that there may be limitations to the deployment of these tools in Drosophila, so further optimization of the system is required. Here, we report a new set of PspCas13b and RfxCas13d expression constructs and use these reagents to successfully knockdown both reporter and endogenous transcripts in Drosophila cells. As toxicity issues have been reported with high level of Cas13, we effectively decreased PspCas13b expression without impairing its function by tuning down translation. Furthermore, we altered the spatial activity of both PspCas13b and RfxCas13d by introducing Nuclear Exportation Sequences (NES) and Nuclear Localization Sequences (NLS) while maintaining activity. Finally, we generated a stable cell line expressing RfxCas13d under the inducible metallothionein promoter, establishing a useful tool for high-throughput genetic screening. Thus, we report new reagents for performing RNA CRISPR-Cas13 experiments in Drosophila, providing additional Cas13 expression constructs that retain activity.
J. A. Bosch, G. Birchak, and N. Perrimon. 2021. “Precise genome engineering in Drosophila using prime editing.” Proc Natl Acad Sci U S A, 118.Abstract
Precise genome editing is a valuable tool to study gene function in model organisms. Prime editing, a precise editing system developed in mammalian cells, does not require double-strand breaks or donor DNA and has low off-target effects. Here, we applied prime editing for the model organism Drosophila melanogaster and developed conditions for optimal editing. By expressing prime editing components in cultured cells or somatic cells of transgenic flies, we precisely introduce premature stop codons in three classical visible marker genes, ebony, white, and forked Furthermore, by restricting editing to germ cells, we demonstrate efficient germ-line transmission of a precise edit in ebony to 36% of progeny. Our results suggest that prime editing is a useful system in Drosophila to study gene function, such as engineering precise point mutations, deletions, or epitope tags.

Pages