Human

Photo of 384-well assay plates

Drosophila cell screen with DRSC reagent library contributes to identification of new therapeutic target for renal cancer

October 7, 2019

We here at the DRSC/TRiP are thrilled to see this study from Hilary Nicholson et al. published in Science Signaling.

The study provides a great example of how screens in Drosophila cultured cells can be used as part of a cross-species platform aimed at discovery of new targets for disease treatment. The work represents a collaboration between the laboratory of 2019 Nobel Prize winner W. Kaelin and DRSC PI N. Perrimon.

...

Read more about Drosophila cell screen with DRSC reagent library contributes to identification of new therapeutic target for renal cancer
Hilary E Nicholson, Zeshan Tariq, Benjamin E Housden, Rebecca B Jennings, Laura A Stransky, Norbert Perrimon, Sabina Signoretti, and William G Kaelin. 2019. “HIF-independent synthetic lethality between CDK4/6 inhibition and VHL loss across species.” Sci Signal, 12, 601.Abstract
Inactivation of the tumor suppressor gene is the signature initiating event in clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, and causes the accumulation of hypoxia-inducible factor 2α (HIF-2α). HIF-2α inhibitors are effective in some ccRCC cases, but both de novo and acquired resistance have been observed in the laboratory and in the clinic. Here, we identified synthetic lethality between decreased activity of cyclin-dependent kinases 4 and 6 (CDK4/6) and inactivation in two species (human and ) and across diverse human ccRCC cell lines in culture and xenografts. Although HIF-2α transcriptionally induced the CDK4/6 partner cyclin D1, HIF-2α was not required for the increased CDK4/6 requirement of ccRCC cells. Accordingly, the antiproliferative effects of CDK4/6 inhibition were synergistic with HIF-2α inhibition in HIF-2α-dependent ccRCC cells and not antagonistic with HIF-2α inhibition in HIF-2α-independent cells. These findings support testing CDK4/6 inhibitors as treatments for ccRCC, alone and in combination with HIF-2α inhibitors.
Stephanie E. Mohr and Norbert Perrimon. 9/27/2019. “Drosophila melanogaster: a simple system for understanding complexity.” Dis Model Mech, 12, 10. Publisher's VersionAbstract

Understanding human gene function is fundamental to understanding and treating diseases. Research using the model organism Drosophila melanogaster benefits from a wealth of molecular genetic resources and information useful for efficient in vivo experimentation. Moreover, Drosophila offers a balance as a relatively simple organism that nonetheless exhibits complex multicellular activities. Recent examples demonstrate the power and continued promise of Drosophila research to further our understanding of conserved gene functions.

Andrey A Parkhitko, Patrick Jouandin, Stephanie E Mohr, and Norbert Perrimon. 2019. “Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species.” Aging Cell, Pp. e13034.Abstract
Methionine restriction (MetR) extends lifespan across different species and exerts beneficial effects on metabolic health and inflammatory responses. In contrast, certain cancer cells exhibit methionine auxotrophy that can be exploited for therapeutic treatment, as decreasing dietary methionine selectively suppresses tumor growth. Thus, MetR represents an intervention that can extend lifespan with a complementary effect of delaying tumor growth. Beyond its function in protein synthesis, methionine feeds into complex metabolic pathways including the methionine cycle, the transsulfuration pathway, and polyamine biosynthesis. Manipulation of each of these branches extends lifespan; however, the interplay between MetR and these branches during regulation of lifespan is not well understood. In addition, a potential mechanism linking the activity of methionine metabolism and lifespan is regulation of production of the methyl donor S-adenosylmethionine, which, after transferring its methyl group, is converted to S-adenosylhomocysteine. Methylation regulates a wide range of processes, including those thought to be responsible for lifespan extension by MetR. Although the exact mechanisms of lifespan extension by MetR or methionine metabolism reprogramming are unknown, it may act via reducing the rate of translation, modifying gene expression, inducing a hormetic response, modulating autophagy, or inducing mitochondrial function, antioxidant defense, or other metabolic processes. Here, we review the mechanisms of lifespan extension by MetR and different branches of methionine metabolism in different species and the potential for exploiting the regulation of methyltransferases to delay aging.
Yanhui Hu, Richelle Sopko, Verena Chung, Marianna Foos, Romain A Studer, Sean D Landry, Daniel Liu, Leonard Rabinow, Florian Gnad, Pedro Beltrao, and Norbert Perrimon. 2019. “iProteinDB: An Integrative Database of Post-translational Modifications.” G3 (Bethesda), 9, 1, Pp. 1-11.Abstract
Post-translational modification (PTM) serves as a regulatory mechanism for protein function, influencing their stability, interactions, activity and localization, and is critical in many signaling pathways. The best characterized PTM is phosphorylation, whereby a phosphate is added to an acceptor residue, most commonly serine, threonine and tyrosine in metazoans. As proteins are often phosphorylated at multiple sites, identifying those sites that are important for function is a challenging problem. Considering that any given phosphorylation site might be non-functional, prioritizing evolutionarily conserved phosphosites provides a general strategy to identify the putative functional sites. To facilitate the identification of conserved phosphosites, we generated a large-scale phosphoproteomics dataset from embryos collected from six closely-related species. We built iProteinDB (https://www.flyrnai.org/tools/iproteindb/), a resource integrating these data with other high-throughput PTM datasets, including vertebrates, and manually curated information for At iProteinDB, scientists can view the PTM landscape for any protein and identify predicted functional phosphosites based on a comparative analysis of data from closely-related species. Further, iProteinDB enables comparison of PTM data from to that of orthologous proteins from other model organisms, including human, mouse, rat, , , and .
Screenshot of online tools

Navigating our online tools -- orthologs, literature mining, qPCR primers, and so much more!

February 14, 2019

We have been taking a critical look at how we organize our online tools on the Online Tools Overview page. And more generally, we have been thinking about new ways to spread the word about the many resources in our suite of online tools. One way that we at the DRSC like to think about these tools is how they fit into the start-to-finish order of events in a screen or other experimental project. Various tools help define lists of genes to be studied, help identify reagents for the study,...

Read more about Navigating our online tools -- orthologs, literature mining, qPCR primers, and so much more!
Figure 2 from Housden et al 2017 PNAS

Variable Dose Analysis: a new DRSC-supported cell screen approach that leverages existing reagents to perform robust screens

December 1, 2017

We are excited to report the publication of a paper from Benjamin Housden and colleagues describing development and use of the Variable Dose Analysis (VDA) approach. Ben developed a way to use existing TRiP shRNA plasmids originally developed for fly stock production in a new, effective approach to high-throughput cell screening.

The VDA approach is particularly useful for combinatorial approaches that are acutely sensitive to assay robustness. The screen Ben and colleagues report focused on synthetic effects in Drosophila tumor model cells.  The...

Read more about Variable Dose Analysis: a new DRSC-supported cell screen approach that leverages existing reagents to perform robust screens
Ben Ewen-Campen, Stephanie E Mohr, Yanhui Hu, and Norbert Perrimon. 10/9/2017. “Accessing the Phenotype Gap: Enabling Systematic Investigation of Paralog Functional Complexity with CRISPR.” Dev Cell, 43, 1, Pp. 6-9.Abstract
Single-gene knockout experiments can fail to reveal function in the context of redundancy, which is frequently observed among duplicated genes (paralogs) with overlapping functions. We discuss the complexity associated with studying paralogs and outline how recent advances in CRISPR will help address the "phenotype gap" and impact biomedical research.
Julia Wang, Rami Al-Ouran, Yanhui Hu, Seon-Young Kim, Ying-Wooi Wan, Michael F Wangler, Shinya Yamamoto, Hsiao-Tuan Chao, Aram Comjean, Stephanie E Mohr, Stephanie E Mohr, Norbert Perrimon, Zhandong Liu, and Hugo J Bellen. 6/1/2017. “MARRVEL: Integration of Human and Model Organism Genetic Resources to Facilitate Functional Annotation of the Human Genome.” Am J Hum Genet, 100, 6, Pp. 843-853.Abstract
One major challenge encountered with interpreting human genetic variants is the limited understanding of the functional impact of genetic alterations on biological processes. Furthermore, there remains an unmet demand for an efficient survey of the wealth of information on human homologs in model organisms across numerous databases. To efficiently assess the large volume of publically available information, it is important to provide a concise summary of the most relevant information in a rapid user-friendly format. To this end, we created MARRVEL (model organism aggregated resources for rare variant exploration). MARRVEL is a publicly available website that integrates information from six human genetic databases and seven model organism databases. For any given variant or gene, MARRVEL displays information from OMIM, ExAC, ClinVar, Geno2MP, DGV, and DECIPHER. Importantly, it curates model organism-specific databases to concurrently display a concise summary regarding the human gene homologs in budding and fission yeast, worm, fly, fish, mouse, and rat on a single webpage. Experiment-based information on tissue expression, protein subcellular localization, biological process, and molecular function for the human gene and homologs in the seven model organisms are arranged into a concise output. Hence, rather than visiting multiple separate databases for variant and gene analysis, users can obtain important information by searching once through MARRVEL. Altogether, MARRVEL dramatically improves efficiency and accessibility to data collection and facilitates analysis of human genes and variants by cross-disciplinary integration of 18 million records available in public databases to facilitate clinical diagnosis and basic research.
Yanhui Hu, Aram Comjean, Stephanie E Mohr, The FlyBase Consortium, and Norbert Perrimon. 8/7/2017. “Gene2Function: An Integrated Online Resource for Gene Function Discovery.” G3 (Bethesda).Abstract
One of the most powerful ways to develop hypotheses regarding biological functions of conserved genes in a given species, such as in humans, is to first look at what is known about function in another species. Model organism databases (MODs) and other resources are rich with functional information but difficult to mine. Gene2Function (G2F) addresses a broad need by integrating information about conserved genes in a single online resource.
Arunachalam Vinayagam, Travis E Gibson, Ho-Joon Lee, Bahar Yilmazel, Charles Roesel, Yanhui Hu, Young Kwon, Amitabh Sharma, Yang-Yu Liu, Norbert Perrimon, and Albert-László Barabási. 5/3/2016. “Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets.” Proc Natl Acad Sci U S A, 113, 18, Pp. 4976-81.Abstract

The protein-protein interaction (PPI) network is crucial for cellular information processing and decision-making. With suitable inputs, PPI networks drive the cells to diverse functional outcomes such as cell proliferation or cell death. Here, we characterize the structural controllability of a large directed human PPI network comprising 6,339 proteins and 34,813 interactions. This network allows us to classify proteins as "indispensable," "neutral," or "dispensable," which correlates to increasing, no effect, or decreasing the number of driver nodes in the network upon removal of that protein. We find that 21% of the proteins in the PPI network are indispensable. Interestingly, these indispensable proteins are the primary targets of disease-causing mutations, human viruses, and drugs, suggesting that altering a network's control property is critical for the transition between healthy and disease states. Furthermore, analyzing copy number alterations data from 1,547 cancer patients reveals that 56 genes that are frequently amplified or deleted in nine different cancers are indispensable. Among the 56 genes, 46 of them have not been previously associated with cancer. This suggests that controllability analysis is very useful in identifying novel disease genes and potential drug targets.

Huajin Wang, Michel Becuwe, Benjamin E Housden, Chandramohan Chitraju, Ashley J Porras, Morven M Graham, Xinran N Liu, Abdou Rachid Thiam, David B Savage, Anil K Agarwal, Abhimanyu Garg, Maria-Jesus Olarte, Qingqing Lin, Florian Fröhlich, Hans Kristian Hannibal-Bach, Srigokul Upadhyayula, Norbert Perrimon, Tomas Kirchhausen, Christer S Ejsing, Tobias C Walther, and Robert V Farese. 2016. “Seipin is required for converting nascent to mature lipid droplets.” Elife, 5.Abstract

How proteins control the biogenesis of cellular lipid droplets (LDs) is poorly understood. Using Drosophila and human cells, we show here that seipin, an ER protein implicated in LD biology, mediates a discrete step in LD formation-the conversion of small, nascent LDs to larger, mature LDs. Seipin forms discrete and dynamic foci in the ER that interact with nascent LDs to enable their growth. In the absence of seipin, numerous small, nascent LDs accumulate near the ER and most often fail to grow. Those that do grow prematurely acquire lipid synthesis enzymes and undergo expansion, eventually leading to the giant LDs characteristic of seipin deficiency. Our studies identify a discrete step of LD formation, namely the conversion of nascent LDs to mature LDs, and define a molecular role for seipin in this process, most likely by acting at ER-LD contact sites to enable lipid transfer to nascent LDs.

Pages