Human

Christine Akimana, Souhaila Al-Khodor, and Yousef Abu Kwaik. 2010. “Host factors required for modulation of phagosome biogenesis and proliferation of Francisella tularensis within the cytosol.” PLoS One, 5, 6, Pp. e11025.Abstract

Francisella tularensis is a highly infectious facultative intracellular bacterium that can be transmitted between mammals by arthropod vectors. Similar to many other intracellular bacteria that replicate within the cytosol, such as Listeria, Shigella, Burkholderia, and Rickettsia, the virulence of F. tularensis depends on its ability to modulate biogenesis of its phagosome and to escape into the host cell cytosol where it proliferates. Recent studies have identified the F. tularensis genes required for modulation of phagosome biogenesis and escape into the host cell cytosol within human and arthropod-derived cells. However, the arthropod and mammalian host factors required for intracellular proliferation of F. tularensis are not known. We have utilized a forward genetic approach employing genome-wide RNAi screen in Drosophila melanogaster-derived cells. Screening a library of approximately 21,300 RNAi, we have identified at least 186 host factors required for intracellular bacterial proliferation. We silenced twelve mammalian homologues by RNAi in HEK293T cells and identified three conserved factors, the PI4 kinase PI4KCA, the ubiquitin hydrolase USP22, and the ubiquitin ligase CDC27, which are also required for replication in human cells. The PI4KCA and USP22 mammalian factors are not required for modulation of phagosome biogenesis or phagosomal escape but are required for proliferation within the cytosol. In contrast, the CDC27 ubiquitin ligase is required for evading lysosomal fusion and for phagosomal escape into the cytosol. Although F. tularensis interacts with the autophagy pathway during late stages of proliferation in mouse macrophages, this does not occur in human cells. Our data suggest that F. tularensis utilizes host ubiquitin turnover in distinct mechanisms during the phagosomal and cytosolic phases and phosphoinositide metabolism is essential for cytosolic proliferation of F. tularensis. Our data will facilitate deciphering molecular ecology, patho-adaptation of F. tularensis to the arthropod vector and its role in bacterial ecology and patho-evolution to infect mammals.

Alfeu Zanotto-Filho, Ravi Dashnamoorthy, Eva Loranc, Luis HT de Souza, José CF Moreira, Uthra Suresh, Yidong Chen, and Alexander JR Bishop. 2016. “Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.” PLoS One, 11, 4, Pp. e0153970.Abstract

Alkylating agents are a key component of cancer chemotherapy. Several cellular mechanisms are known to be important for its survival, particularly DNA repair and xenobiotic detoxification, yet genomic screens indicate that additional cellular components may be involved. Elucidating these components has value in either identifying key processes that can be modulated to improve chemotherapeutic efficacy or may be altered in some cancers to confer chemoresistance. We therefore set out to reevaluate our prior Drosophila RNAi screening data by comparison to gene expression arrays in order to determine if we could identify any novel processes in alkylation damage survival. We noted a consistent conservation of alkylation survival pathways across platforms and species when the analysis was conducted on a pathway/process level rather than at an individual gene level. Better results were obtained when combining gene lists from two datasets (RNAi screen plus microarray) prior to analysis. In addition to previously identified DNA damage responses (p53 signaling and Nucleotide Excision Repair), DNA-mRNA-protein metabolism (transcription/translation) and proteasome machinery, we also noted a highly conserved cross-species requirement for NRF2, glutathione (GSH)-mediated drug detoxification and Endoplasmic Reticulum stress (ER stress)/Unfolded Protein Responses (UPR) in cells exposed to alkylation. The requirement for GSH, NRF2 and UPR in alkylation survival was validated by metabolomics, protein studies and functional cell assays. From this we conclude that RNAi/gene expression fusion is a valid strategy to rapidly identify key processes that may be extendable to other contexts beyond damage survival.

Mijung Kwon, Susana A Godinho, Namrata S Chandhok, Neil J Ganem, Ammar Azioune, Manuel Thery, and David Pellman. 2008. “Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes.” Genes Dev, 22, 16, Pp. 2189-203.Abstract

Multiple centrosomes in tumor cells create the potential for multipolar divisions that can lead to aneuploidy and cell death. Nevertheless, many cancer cells successfully divide because of mechanisms that suppress multipolar mitoses. A genome-wide RNAi screen in Drosophila S2 cells and a secondary analysis in cancer cells defined mechanisms that suppress multipolar mitoses. In addition to proteins that organize microtubules at the spindle poles, we identified novel roles for the spindle assembly checkpoint, cortical actin cytoskeleton, and cell adhesion. Using live cell imaging and fibronectin micropatterns, we found that interphase cell shape and adhesion pattern can determine the success of the subsequent mitosis in cells with extra centrosomes. These findings may identify cancer-selective therapeutic targets: HSET, a normally nonessential kinesin motor, was essential for the viability of certain extra centrosome-containing cancer cells. Thus, morphological features of cancer cells can be linked to unique genetic requirements for survival.

Yanhui Hu, Charles Roesel, Ian Flockhart, Lizabeth Perkins, Norbert Perrimon, and Stephanie E Mohr. 2013. “UP-TORR: online tool for accurate and Up-to-Date annotation of RNAi Reagents.” Genetics, 195, 1, Pp. 37-45.Abstract

RNA interference (RNAi) is a widely adopted tool for loss-of-function studies but RNAi results only have biological relevance if the reagents are appropriately mapped to genes. Several groups have designed and generated RNAi reagent libraries for studies in cells or in vivo for Drosophila and other species. At first glance, matching RNAi reagents to genes appears to be a simple problem, as each reagent is typically designed to target a single gene. In practice, however, the reagent-gene relationship is complex. Although the sequences of oligonucleotides used to generate most types of RNAi reagents are static, the reference genome and gene annotations are regularly updated. Thus, at the time a researcher chooses an RNAi reagent or analyzes RNAi data, the most current interpretation of the RNAi reagent-gene relationship, as well as related information regarding specificity (e.g., predicted off-target effects), can be different from the original interpretation. Here, we describe a set of strategies and an accompanying online tool, UP-TORR (for Updated Targets of RNAi Reagents; www.flyrnai.org/up-torr), useful for accurate and up-to-date annotation of cell-based and in vivo RNAi reagents. Importantly, UP-TORR automatically synchronizes with gene annotations daily, retrieving the most current information available, and for Drosophila, also synchronizes with the major reagent collections. Thus, UP-TORR allows users to choose the most appropriate RNAi reagents at the onset of a study, as well as to perform the most appropriate analyses of results of RNAi-based studies.

Sara Cherry, Amit Kunte, Hui Wang, Carolyn Coyne, Robert B Rawson, and Norbert Perrimon. 2006. “COPI activity coupled with fatty acid biosynthesis is required for viral replication.” PLoS Pathog, 2, 10, Pp. e102.Abstract

During infection by diverse viral families, RNA replication occurs on the surface of virally induced cytoplasmic membranes of cellular origin. How this process is regulated, and which cellular factors are required, has been unclear. Moreover, the host-pathogen interactions that facilitate the formation of this new compartment might represent critical determinants of viral pathogenesis, and their elucidation may lead to novel insights into the coordination of vesicular trafficking events during infection. Here we show that in Drosophila cells, Drosophila C virus remodels the Golgi apparatus and forms a novel vesicular compartment, on the surface of which viral RNA replication takes place. Using genome-wide RNA interference screening, we found that this step in the viral lifecycle requires at least two host encoded pathways: the coat protein complex I (COPI) coatamer and fatty acid biosynthesis. Our results integrate, clarify, and extend numerous observations concerning the cell biology of viral replication, allowing us to conclude that the coupling of new cellular membrane formation with the budding of these vesicles from the Golgi apparatus allows for the regulated generation of this new virogenic organelle, which is essential for viral replication. Additionally, because these pathways are also limiting in flies and in human cells infected with the related RNA virus poliovirus, they may represent novel targets for antiviral therapies.

Joost Schulte, Katharine J Sepp, Chaohong Wu, Pengyu Hong, and Troy J Littleton. 2011. “High-content chemical and RNAi screens for suppressors of neurotoxicity in a Huntington's disease model.” PLoS One, 6, 8, Pp. e23841.Abstract

To identify Huntington's Disease therapeutics, we conducted high-content small molecule and RNAi suppressor screens using a Drosophila primary neural culture Huntingtin model. Drosophila primary neurons offer a sensitive readout for neurotoxicty, as their neurites develop dysmorphic features in the presence of mutant polyglutamine-expanded Huntingtin compared to nonpathogenic Huntingtin. By tracking the subcellular distribution of mRFP-tagged pathogenic Huntingtin and assaying neurite branch morphology via live-imaging, we identified suppressors that could reduce Huntingtin aggregation and/or prevent the formation of dystrophic neurites. The custom algorithms we used to quantify neurite morphologies in complex cultures provide a useful tool for future high-content screening approaches focused on neurodegenerative disease models. Compounds previously found to be effective aggregation inhibitors in mammalian systems were also effective in Drosophila primary cultures, suggesting translational capacity between these models. However, we did not observe a direct correlation between the ability of a compound or gene knockdown to suppress aggregate formation and its ability to rescue dysmorphic neurites. Only a subset of aggregation inhibitors could revert dysmorphic cellular profiles. We identified lkb1, an upstream kinase in the mTOR/Insulin pathway, and four novel drugs, Camptothecin, OH-Camptothecin, 18β-Glycyrrhetinic acid, and Carbenoxolone, that were strong suppressors of mutant Huntingtin-induced neurotoxicity. Huntingtin neurotoxicity suppressors identified through our screen also restored viability in an in vivo Drosophila Huntington's Disease model, making them attractive candidates for further therapeutic evaluation.

Jennifer A Philips, Eric J Rubin, and Norbert Perrimon. 2005. “Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection.” Science, 309, 5738, Pp. 1251-3.Abstract

Certain pathogens, such as Mycobacterium tuberculosis, survive within the hostile intracellular environment of a macrophage. To identify host factors required for mycobacterial entry and survival within macrophages, we performed a genomewide RNA interference screen in Drosophila macrophage-like cells, using Mycobacterium fortuitum. We identified factors required for general phagocytosis, as well as those needed specifically for mycobacterial infection. One specific factor, Peste (Pes), is a CD36 family member required for uptake of mycobacteria, but not Escherichia coli or Staphylococcus aureus. Moreover, mammalian class B scavenger receptors (SRs) conferred uptake of bacteria into nonphagocytic cells, with SR-BI and SR-BII uniquely mediating uptake of M. fortuitum, which suggests a conserved role for class B SRs in pattern recognition and innate immunity.

Lorna S Kategaya, Binita Changkakoty, Travis Biechele, William H Conrad, Ajamete Kaykas, Ramanuj DasGupta, and Randall T Moon. 2009. “Bili inhibits Wnt/beta-catenin signaling by regulating the recruitment of axin to LRP6.” PLoS One, 4, 7, Pp. e6129.Abstract

BACKGROUND: Insights into how the Frizzled/LRP6 receptor complex receives, transduces and terminates Wnt signals will enhance our understanding of the control of the Wnt/ss-catenin pathway. METHODOLOGY/PRINCIPAL FINDINGS: In pursuit of such insights, we performed a genome-wide RNAi screen in Drosophila cells expressing an activated form of LRP6 and a beta-catenin-responsive reporter. This screen resulted in the identification of Bili, a Band4.1-domain containing protein, as a negative regulator of Wnt/beta-catenin signaling. We found that the expression of Bili in Drosophila embryos and larval imaginal discs significantly overlaps with the expression of Wingless (Wg), the Drosophila Wnt ortholog, which is consistent with a potential function for Bili in the Wg pathway. We then tested the functions of Bili in both invertebrate and vertebrate animal model systems. Loss-of-function studies in Drosophila and zebrafish embryos, as well as human cultured cells, demonstrate that Bili is an evolutionarily conserved antagonist of Wnt/beta-catenin signaling. Mechanistically, we found that Bili exerts its antagonistic effects by inhibiting the recruitment of AXIN to LRP6 required during pathway activation. CONCLUSIONS: These studies identify Bili as an evolutionarily conserved negative regulator of the Wnt/beta-catenin pathway.

Clément Carré, Caroline Jacquier, Anne-Laure Bougé, Fabrice de Chaumont, Corinne Besnard-Guerin, Hélène Thomassin, Josette Pidoux, Bruno Da Silva, Eleftheria Chalatsi, Sarah Zahra, Jean-Christophe Olivo-Marin, Hélène Munier-Lehmann, and Christophe Antoniewski. 2013. “AutomiG, a biosensor to detect alterations in miRNA biogenesis and in small RNA silencing guided by perfect target complementarity.” PLoS One, 8, 9, Pp. e74296.Abstract

Defects in miRNA biogenesis or activity are associated to development abnormalities and diseases. In Drosophila, miRNAs are predominantly loaded in Argonaute-1, which they guide for silencing of target RNAs. The miRNA pathway overlaps the RNAi pathway in this organism, as miRNAs may also associate with Argonaute-2, the mediator of RNAi. We set up a gene construct in which a single inducible promoter directs the expression of the GFP protein as well as two miRNAs perfectly matching the GFP sequences. We show that self-silencing of the resulting automiG gene requires Drosha, Pasha, Dicer-1, Dicer-2 and Argonaute-2 loaded with the anti-GFP miRNAs. In contrast, self-silencing of the automiG gene does not involve Argonaute-1. Thus, automiG reports in vivo for both miRNA biogenesis and Ago-2 mediated silencing, providing a powerful biosensor to identify situations where miRNA or siRNA pathways are impaired. As a proof of concept, we used automiG as a biosensor to screen a chemical library and identified 29 molecules that strongly inhibit miRNA silencing, out of which 5 also inhibit RNAi triggered by long double-stranded RNA. Finally, the automiG sensor is also self-silenced by the anti-GFP miRNAs in HeLa cells and might be easily used to identify factors involved in miRNA biogenesis and silencing guided by perfect target complementarity in mammals.

Yousang Gwack, Sonal Srikanth, Stefan Feske, Fernando Cruz-Guilloty, Masatsugu Oh-hora, Daniel S Neems, Patrick G Hogan, and Anjana Rao. 2007. “Biochemical and functional characterization of Orai proteins.” J Biol Chem, 282, 22, Pp. 16232-43.Abstract

Stimulation of immune cells triggers Ca2+ entry through store-operated Ca2+ release-activated Ca2+ channels, promoting nuclear translocation of the transcription factor NFAT. Through genome-wide RNA interference screens in Drosophila, we and others identified olf186-F (Drosophila Orai, dOrai) and dStim as critical components of store-operated Ca2+ entry and showed that dOrai and its human homologue Orai1 are pore subunits of the Ca2+ release-activated Ca2+ channel. Here we report that Orai1 is predominantly responsible for store-operated Ca2+ influx in human embryonic kidney 293 cells and human T cells and fibroblasts, although its paralogue Orai3 can partly compensate in the absence of functional Orai1. All three mammalian Orai are widely expressed at the mRNA level, and all three are incorporated into the plasma membrane. In human embryonic kidney 293 cells, Orai1 is glycosylated at an asparagine residue in the predicted second extracellular loop, but mutation of the residue does not compromise function. STIM1 and Orai1 colocalize after store depletion, but Orai1 does not associate detectably with STIM1 in glycerol gradient centrifugation or coimmunoprecipitation experiments. Glutamine substitutions in two conserved glutamate residues, located within predicted transmembrane helices of Drosophila Orai and human Orai1, greatly diminish store-operated Ca2+ influx, and primary T cells ectopically expressing mutant E106Q and E190Q Orai1 proteins show reduced proliferation and cytokine secretion. Together, these data establish Orai1 as a predominant mediator of store-operated calcium entry, proliferation, and cytokine production in T cells.

Joshua D Stender, Gabriel Pascual, Wen Liu, Minna U Kaikkonen, Kevin Do, Nathanael J Spann, Michael Boutros, Norbert Perrimon, Michael G Rosenfeld, and Christopher K Glass. 2012. “Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20.” Mol Cell, 48, 1, Pp. 28-38.Abstract

Regulation of genes that initiate and amplify inflammatory programs of gene expression is achieved by signal-dependent exchange of coregulator complexes that function to read, write, and erase specific histone modifications linked to transcriptional activation or repression. Here, we provide evidence for the role of trimethylated histone H4 lysine 20 (H4K20me3) as a repression checkpoint that restricts expression of toll-like receptor 4 (TLR4) target genes in macrophages. H4K20me3 is deposited at the promoters of a subset of these genes by the SMYD5 histone methyltransferase through its association with NCoR corepressor complexes. Signal-dependent erasure of H4K20me3 is required for effective gene activation and is achieved by NF-κB-dependent delivery of the histone demethylase PHF2. Liver X receptors antagonize TLR4-dependent gene activation by maintaining NCoR/SMYD5-mediated repression. These findings reveal a histone H4K20 trimethylation/demethylation strategy that integrates positive and negative signaling inputs that control immunity and homeostasis.

Yousang Gwack, Sonia Sharma, Julie Nardone, Bogdan Tanasa, Alina Iuga, Sonal Srikanth, Heidi Okamura, Diana Bolton, Stefan Feske, Patrick G Hogan, and Anjana Rao. 2006. “A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT.” Nature, 441, 7093, Pp. 646-50.Abstract

Precise regulation of the NFAT (nuclear factor of activated T cells) family of transcription factors (NFAT1-4) is essential for vertebrate development and function. In resting cells, NFAT proteins are heavily phosphorylated and reside in the cytoplasm; in cells exposed to stimuli that raise intracellular free Ca2+ levels, they are dephosphorylated by the calmodulin-dependent phosphatase calcineurin and translocate to the nucleus. NFAT dephosphorylation by calcineurin is countered by distinct NFAT kinases, among them casein kinase 1 (CK1) and glycogen synthase kinase 3 (GSK3). Here we have used a genome-wide RNA interference (RNAi) screen in Drosophila to identify additional regulators of the signalling pathway leading from Ca2+-calcineurin to NFAT. This screen was successful because the pathways regulating NFAT subcellular localization (Ca2+ influx, Ca2+-calmodulin-calcineurin signalling and NFAT kinases) are conserved across species, even though Ca2+-regulated NFAT proteins are not themselves represented in invertebrates. Using the screen, we have identified DYRKs (dual-specificity tyrosine-phosphorylation regulated kinases) as novel regulators of NFAT. DYRK1A and DYRK2 counter calcineurin-mediated dephosphorylation of NFAT1 by directly phosphorylating the conserved serine-proline repeat 3 (SP-3) motif of the NFAT regulatory domain, thus priming further phosphorylation of the SP-2 and serine-rich region 1 (SRR-1) motifs by GSK3 and CK1, respectively. Thus, genetic screening in Drosophila can be successfully applied to cross evolutionary boundaries and identify new regulators of a transcription factor that is expressed only in vertebrates.

Franz Wendler, Alison K Gillingham, Rita Sinka, Cláudia Rosa-Ferreira, David E Gordon, Xavier Franch-Marro, Andrew A Peden, Jean-Paul Vincent, and Sean Munro. 2010. “A genome-wide RNA interference screen identifies two novel components of the metazoan secretory pathway.” EMBO J, 29, 2, Pp. 304-14.Abstract

Genetic screens in the yeast Saccharomyces cerevisiae have identified many proteins involved in the secretory pathway, most of which have orthologues in higher eukaryotes. To investigate whether there are additional proteins that are required for secretion in metazoans but are absent from yeast, we used genome-wide RNA interference (RNAi) to look for genes required for secretion of recombinant luciferase from Drosophila S2 cells. This identified two novel components of the secretory pathway that are conserved from humans to plants. Gryzun is distantly related to, but distinct from, the Trs130 subunit of the TRAPP complex but is absent from S. cerevisiae. RNAi of human Gryzun (C4orf41) blocks Golgi exit. Kish is a small membrane protein with a previously uncharacterised orthologue in yeast. The screen also identified Drosophila orthologues of almost 60% of the yeast genes essential for secretion. Given this coverage, the small number of novel components suggests that contrary to previous indications the number of essential core components of the secretory pathway is not much greater in metazoans than in yeasts.

Bahar Yilmazel, Yanhui Hu, Frederic Sigoillot, Jennifer A Smith, Caroline E Shamu, Norbert Perrimon, and Stephanie E Mohr. 2014. “Online GESS: prediction of miRNA-like off-target effects in large-scale RNAi screen data by seed region analysis.” BMC Bioinformatics, 15, Pp. 192.Abstract

BACKGROUND: RNA interference (RNAi) is an effective and important tool used to study gene function. For large-scale screens, RNAi is used to systematically down-regulate genes of interest and analyze their roles in a biological process. However, RNAi is associated with off-target effects (OTEs), including microRNA (miRNA)-like OTEs. The contribution of reagent-specific OTEs to RNAi screen data sets can be significant. In addition, the post-screen validation process is time and labor intensive. Thus, the availability of robust approaches to identify candidate off-targeted transcripts would be beneficial. RESULTS: Significant efforts have been made to eliminate false positive results attributable to sequence-specific OTEs associated with RNAi. These approaches have included improved algorithms for RNAi reagent design, incorporation of chemical modifications into siRNAs, and the use of various bioinformatics strategies to identify possible OTEs in screen results. Genome-wide Enrichment of Seed Sequence matches (GESS) was developed to identify potential off-targeted transcripts in large-scale screen data by seed-region analysis. Here, we introduce a user-friendly web application that provides researchers a relatively quick and easy way to perform GESS analysis on data from human or mouse cell-based screens using short interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs), as well as for Drosophila screens using shRNAs. Online GESS relies on up-to-date transcript sequence annotations for human and mouse genes extracted from NCBI Reference Sequence (RefSeq) and Drosophila genes from FlyBase. The tool also accommodates analysis with user-provided reference sequence files. CONCLUSION: Online GESS provides a straightforward user interface for genome-wide seed region analysis for human, mouse and Drosophila RNAi screen data. With the tool, users can either use a built-in database or provide a database of transcripts for analysis. This makes it possible to analyze RNAi data from any organism for which the user can provide transcript sequences.

Isabelle Derré, Marc Pypaert, Alice Dautry-Varsat, and Hervé Agaisse. 2007. “RNAi screen in Drosophila cells reveals the involvement of the Tom complex in Chlamydia infection.” PLoS Pathog, 3, 10, Pp. 1446-58.Abstract

Chlamydia spp. are intracellular obligate bacterial pathogens that infect a wide range of host cells. Here, we show that C. caviae enters, replicates, and performs a complete developmental cycle in Drosophila SL2 cells. Using this model system, we have performed a genome-wide RNA interference screen and identified 54 factors that, when depleted, inhibit C. caviae infection. By testing the effect of each candidate's knock down on L. monocytogenes infection, we have identified 31 candidates presumably specific of C. caviae infection. We found factors expected to have an effect on Chlamydia infection, such as heparansulfate glycosaminoglycans and actin and microtubule remodeling factors. We also identified factors that were not previously described as involved in Chlamydia infection. For instance, we identified members of the Tim-Tom complex, a multiprotein complex involved in the recognition and import of nuclear-encoded proteins to the mitochondria, as required for C. caviae infection of Drosophila cells. Finally, we confirmed that depletion of either Tom40 or Tom22 also reduced C. caviae infection in mammalian cells. However, C. trachomatis infection was not affected, suggesting that the mechanism involved is C. caviae specific.

Pages