Ortholog identification

from Figure 1 in Ewen-Campen et al. in Dev Cell

Call for Gene Nominations—Transgenic Fly Stocks for Double Knockout of Paralog Pairs

May 18, 2020

Paralogs can be defined as related genes within a genome that are thought to arise from gene duplication events. Because paralogous proteins share amino acid identity, they can have redundant functions. But the picture is not necessarily so straightforward. Indeed, there are examples in which paralogous genes have distinct functions in some tissues, and overlapping functions in others.

The DRSC/TRiP is engaged in a project in collaboration with the Perrimon and Bellen labs to generate resources useful for the study of paralogous genes in Drosophila.


Read more about Call for Gene Nominations—Transgenic Fly Stocks for Double Knockout of Paralog Pairs
Screenshot of the FlyScape tool

Wilinski and colleagues release "FlyScape" for metabolic network visualization

November 7, 2019

The DRSC congratulates Wilinski et al. at the University of Michigan for their release and publication of FlyScape, a tool for metabolic network visualization.

Rapid metabolic shifts occur during the transition between hunger and satiety in Drosophila melanogaster

Daniel Wilinski, Jasmine Winzeler, William Duren, Jenna L. Persons, Kristina J. Holme, Johan Mosquera, Morteza Khabiri, Jason M. Kinchen, Peter L. Freddolino, Alla Karnovsky & Monica Dus 


Read more about Wilinski and colleagues release "FlyScape" for metabolic network visualization
Hilary E Nicholson, Zeshan Tariq, Benjamin E Housden, Rebecca B Jennings, Laura A Stransky, Norbert Perrimon, Sabina Signoretti, and William G Kaelin. 2019. “HIF-independent synthetic lethality between CDK4/6 inhibition and VHL loss across species.” Sci Signal, 12, 601.Abstract
Inactivation of the tumor suppressor gene is the signature initiating event in clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, and causes the accumulation of hypoxia-inducible factor 2α (HIF-2α). HIF-2α inhibitors are effective in some ccRCC cases, but both de novo and acquired resistance have been observed in the laboratory and in the clinic. Here, we identified synthetic lethality between decreased activity of cyclin-dependent kinases 4 and 6 (CDK4/6) and inactivation in two species (human and ) and across diverse human ccRCC cell lines in culture and xenografts. Although HIF-2α transcriptionally induced the CDK4/6 partner cyclin D1, HIF-2α was not required for the increased CDK4/6 requirement of ccRCC cells. Accordingly, the antiproliferative effects of CDK4/6 inhibition were synergistic with HIF-2α inhibition in HIF-2α-dependent ccRCC cells and not antagonistic with HIF-2α inhibition in HIF-2α-independent cells. These findings support testing CDK4/6 inhibitors as treatments for ccRCC, alone and in combination with HIF-2α inhibitors.
Screenshot of online tools

Navigating our online tools -- orthologs, literature mining, qPCR primers, and so much more!

February 14, 2019

We have been taking a critical look at how we organize our online tools on the Online Tools Overview page. And more generally, we have been thinking about new ways to spread the word about the many resources in our suite of online tools. One way that we at the DRSC like to think about these tools is how they fit into the start-to-finish order of events in a screen or other experimental project. Various tools help define lists of genes to be studied, help identify reagents for the study,...

Read more about Navigating our online tools -- orthologs, literature mining, qPCR primers, and so much more!

Missed us at ADRC 2018? View our workshop slides!

April 19, 2018
Thank you to all those who attended our workshop at last week's Annual Drosophila Research Conference in Philadelphia, PA, USA. It was great to talk fly stocks, cell screens, and bioinformatics with the community. We are here to help and look forward to continued feedback on the resources we are building to empower your research. PDFs of our workshop presentations are attached to this news item. The slides will help you learn more about our in vivo resources for CRISPR, new pooled cell-based CRISPR screen technology, and bioinformatics resources at our facility.  Feel free to contact... Read more about Missed us at ADRC 2018? View our workshop slides!
2018 Apr 13

DRSC & TRiP Workshop at ADRC

1:45pm to 3:45pm


Philadelphia, PA, USA
The DRSC & TRiP will be hosting a workshop at the Annual Drosophila Research Conference in Philadelphia, PA. The workshop is scheduled for Friday, April 13th from 1:45 to 3:45 PM. Come hear from DRSC & TRiP leaders Norbert Perrimon, Jonathan Zirin (organizer), Claire Yanhui Hu, and Stephanie Mohr. At the workshop, you will learn about new opportunities for community nomination and experiments using CRISPR knockout and activation, as well as learn what's new and popular among our online software and database tools. There will be something for everyone -- we will provide information... Read more about DRSC & TRiP Workshop at ADRC
Julia Wang, Rami Al-Ouran, Yanhui Hu, Seon-Young Kim, Ying-Wooi Wan, Michael F Wangler, Shinya Yamamoto, Hsiao-Tuan Chao, Aram Comjean, Stephanie E Mohr, Undiagnosed Diseases Network, Norbert Perrimon, Zhandong Liu, and Hugo J Bellen. 6/1/2017. “MARRVEL: Integration of Human and Model Organism Genetic Resources to Facilitate Functional Annotation of the Human Genome.” Am J Hum Genet, 100, 6, Pp. 843-853.Abstract
One major challenge encountered with interpreting human genetic variants is the limited understanding of the functional impact of genetic alterations on biological processes. Furthermore, there remains an unmet demand for an efficient survey of the wealth of information on human homologs in model organisms across numerous databases. To efficiently assess the large volume of publically available information, it is important to provide a concise summary of the most relevant information in a rapid user-friendly format. To this end, we created MARRVEL (model organism aggregated resources for rare variant exploration). MARRVEL is a publicly available website that integrates information from six human genetic databases and seven model organism databases. For any given variant or gene, MARRVEL displays information from OMIM, ExAC, ClinVar, Geno2MP, DGV, and DECIPHER. Importantly, it curates model organism-specific databases to concurrently display a concise summary regarding the human gene homologs in budding and fission yeast, worm, fly, fish, mouse, and rat on a single webpage. Experiment-based information on tissue expression, protein subcellular localization, biological process, and molecular function for the human gene and homologs in the seven model organisms are arranged into a concise output. Hence, rather than visiting multiple separate databases for variant and gene analysis, users can obtain important information by searching once through MARRVEL. Altogether, MARRVEL dramatically improves efficiency and accessibility to data collection and facilitates analysis of human genes and variants by cross-disciplinary integration of 18 million records available in public databases to facilitate clinical diagnosis and basic research.
Yanhui Hu, Aram Comjean, Stephanie E Mohr, The FlyBase Consortium, and Norbert Perrimon. 8/7/2017. “Gene2Function: An Integrated Online Resource for Gene Function Discovery.” G3 (Bethesda).Abstract
One of the most powerful ways to develop hypotheses regarding biological functions of conserved genes in a given species, such as in humans, is to first look at what is known about function in another species. Model organism databases (MODs) and other resources are rich with functional information but difficult to mine. Gene2Function (G2F) addresses a broad need by integrating information about conserved genes in a single online resource.
Amino acid alignment of the fly paralogs kek1 and kek2

DIOPT 6.0 released -- with eggNOG and paralog searches added

November 29, 2016

DIOPT 6.0 went live this week. Newly added features include results from eggNOG, bringing the total number of alrogithms incorporated in our integrated search tool to 14. In addition, you can now search for paralogs. To do this, choose the same species for input and output. Examples for fly-fly and human-human paralog searches are shown. As always, your feedback is welcome.


Read more about DIOPT 6.0 released -- with eggNOG and paralog searches added
Multi sequence alignments for ALL search best matches

"One vs. All" a new feature in our ortholog search tool

October 3, 2016

Our DIOPT ortholog search tool has been updated to include the option to search for orthologs of a gene in all other species included. So you can search with, for example, a fly gene, and see orthologs in human, mouse, rat, frog, worm, and yeast.

Click on the button "show summary of top scores" to see a heat map view of the top-scoring ortholog matches in other species to your query species. This feature helps you see quickly if a gene has been conserved across many species or is, for example, only found in vertebrates.

As always, our tool supports batch-mode searches (you can...

Read more about "One vs. All" a new feature in our ortholog search tool
Dashnamoorthy Ravi, Amy M Wiles, Selvaraj Bhavani, Jianhua Ruan, Philip Leder, and Alexander JR Bishop. 2009. “A network of conserved damage survival pathways revealed by a genomic RNAi screen.” PLoS Genet, 5, 6, Pp. e1000527.Abstract

Damage initiates a pleiotropic cellular response aimed at cellular survival when appropriate. To identify genes required for damage survival, we used a cell-based RNAi screen against the Drosophila genome and the alkylating agent methyl methanesulphonate (MMS). Similar studies performed in other model organisms report that damage response may involve pleiotropic cellular processes other than the central DNA repair components, yet an intuitive systems level view of the cellular components required for damage survival, their interrelationship, and contextual importance has been lacking. Further, by comparing data from different model organisms, identification of conserved and presumably core survival components should be forthcoming. We identified 307 genes, representing 13 signaling, metabolic, or enzymatic pathways, affecting cellular survival of MMS-induced damage. As expected, the majority of these pathways are involved in DNA repair; however, several pathways with more diverse biological functions were also identified, including the TOR pathway, transcription, translation, proteasome, glutathione synthesis, ATP synthesis, and Notch signaling, and these were equally important in damage survival. Comparison with genomic screen data from Saccharomyces cerevisiae revealed no overlap enrichment of individual genes between the species, but a conservation of the pathways. To demonstrate the functional conservation of pathways, five were tested in Drosophila and mouse cells, with each pathway responding to alkylation damage in both species. Using the protein interactome, a significant level of connectivity was observed between Drosophila MMS survival proteins, suggesting a higher order relationship. This connectivity was dramatically improved by incorporating the components of the 13 identified pathways within the network. Grouping proteins into "pathway nodes" qualitatively improved the interactome organization, revealing a highly organized "MMS survival network." We conclude that identification of pathways can facilitate comparative biology analysis when direct gene/orthologue comparisons fail. A biologically intuitive, highly interconnected MMS survival network was revealed after we incorporated pathway data in our interactome analysis.

Stephanie E Mohr, Yanhui Hu, Kevin Kim, Benjamin E Housden, and Norbert Perrimon. 2014. “Resources for functional genomics studies in Drosophila melanogaster.” Genetics, 197, 1, Pp. 1-18.Abstract

Drosophila melanogaster has become a system of choice for functional genomic studies. Many resources, including online databases and software tools, are now available to support design or identification of relevant fly stocks and reagents or analysis and mining of existing functional genomic, transcriptomic, proteomic, etc. datasets. These include large community collections of fly stocks and plasmid clones, "meta" information sites like FlyBase and FlyMine, and an increasing number of more specialized reagents, databases, and online tools. Here, we introduce key resources useful to plan large-scale functional genomics studies in Drosophila and to analyze, integrate, and mine the results of those studies in ways that facilitate identification of highest-confidence results and generation of new hypotheses. We also discuss ways in which existing resources can be used and might be improved and suggest a few areas of future development that would further support large- and small-scale studies in Drosophila and facilitate use of Drosophila information by the research community more generally.