Essential genes

Cartoon of essential gene pooled screen (made using BioRender.io)

Pooled-format CRISPR screens in Drosophila cells

March 22, 2018

The DRSC/TRiP-FGR is pleased to support collaborations on pooled CRISPR screens using the method recently, reported in eLife by Viswanatha et al. (PDF download file below).

From the abstract: "... Here, we developed a site-specific integration strategy for library delivery and performed a genome-wide CRISPR knockout screen in Drosophila S2R+ cells. Under basal growth conditions, 1235 genes were essential for cell fitness...

Read more about Pooled-format CRISPR screens in Drosophila cells
2018 Apr 13

DRSC & TRiP Workshop at ADRC

1:45pm to 3:45pm

Location: 

Philadelphia, PA, USA
The DRSC & TRiP will be hosting a workshop at the Annual Drosophila Research Conference in Philadelphia, PA. The workshop is scheduled for Friday, April 13th from 1:45 to 3:45 PM. Come hear from DRSC & TRiP leaders Norbert Perrimon, Jonathan Zirin (organizer), Claire Yanhui Hu, and Stephanie Mohr. At the workshop, you will learn about new opportunities for community nomination and experiments using CRISPR knockout and activation, as well as learn what's new and popular among our online software and database tools. There will be something for everyone -- we will provide information... Read more about DRSC & TRiP Workshop at ADRC
Ben Ewen-Campen, Stephanie E Mohr, Yanhui Hu, and Norbert Perrimon. 10/9/2017. “Accessing the Phenotype Gap: Enabling Systematic Investigation of Paralog Functional Complexity with CRISPR.” Dev Cell, 43, 1, Pp. 6-9.Abstract
Single-gene knockout experiments can fail to reveal function in the context of redundancy, which is frequently observed among duplicated genes (paralogs) with overlapping functions. We discuss the complexity associated with studying paralogs and outline how recent advances in CRISPR will help address the "phenotype gap" and impact biomedical research.
Michael Boutros, Amy A Kiger, Susan Armknecht, Kim Kerr, Marc Hild, Britta Koch, Stefan A Haas, Renato Paro, Norbert Perrimon, and Norbert Perrimon. 2004. “Genome-wide RNAi analysis of growth and viability in Drosophila cells.” Science, 303, 5659, Pp. 832-5.Abstract

A crucial aim upon completion of whole genome sequences is the functional analysis of all predicted genes. We have applied a high-throughput RNA-interference (RNAi) screen of 19,470 double-stranded (ds) RNAs in cultured cells to characterize the function of nearly all (91%) predicted Drosophila genes in cell growth and viability. We found 438 dsRNAs that identified essential genes, among which 80% lacked mutant alleles. A quantitative assay of cell number was applied to identify genes of known and uncharacterized functions. In particular, we demonstrate a role for the homolog of a mammalian acute myeloid leukemia gene (AML1) in cell survival. Such a systematic screen for cell phenotypes, such as cell viability, can thus be effective in characterizing functionally related genes on a genome-wide scale.