CRISPR gRNA design

2023 Feb 24

Virtual CRISPR Workshop 'at' ADRC 2023

(All day)

Location: 

Online
The DRSC is collaborating with other groups to present a virtual workshop on CRISPR technologies for Drosophila cells and in vivo as part of the GSA Annual Drosophila Research Conference 2023.
Jonathan Zirin, Justin Bosch, Raghuvir Viswanatha, Stephanie E Mohr, and Norbert Perrimon. 2022. “State-of-the-art CRISPR for in vivo and cell-based studies in Drosophila.” Trends Genet, 38, 5, Pp. 437-453.Abstract
For more than 100 years, the fruit fly, Drosophila melanogaster, has served as a powerful model organism for biological and biomedical research due to its many genetic and physiological similarities to humans and the availability of sophisticated technologies used to manipulate its genome and genes. The Drosophila research community quickly adopted CRISPR technologies and, in the 8 years since the first clustered regularly interspaced short palindromic repeats (CRISPR) publications in flies, has explored and innovated methods for mutagenesis, precise genome engineering, and beyond. Moreover, the short lifespan and ease of genetics have made Drosophila an ideal testing ground for in vivo applications and refinements of the rapidly evolving set of CRISPR-associated (CRISPR-Cas) tools. Here, we review innovations in delivery of CRISPR reagents, increased efficiency of cutting and homology-directed repair (HDR), and alternatives to standard Cas9-based approaches. While the focus is primarily on in vivo systems, we also describe the role of Drosophila cultured cells as both an indispensable first step in the process of assessing new CRISPR technologies and a platform for genome-wide CRISPR pooled screens.
Raghuvir Viswanatha, Enzo Mameli, Jonathan Rodiger, Pierre Merckaert, Fabiana Feitosa-Suntheimer, Tonya M Colpitts, Stephanie E Mohr, Yanhui Hu, and Norbert Perrimon. 11/24/2021. “Bioinformatic and cell-based tools for pooled CRISPR knockout screening in mosquitos.” Nat Commun, 12, 1, Pp. 6825.Abstract
Mosquito-borne diseases present a worldwide public health burden. Current efforts to understand and counteract them have been aided by the use of cultured mosquito cells. Moreover, application in mammalian cells of forward genetic approaches such as CRISPR screens have identified essential genes and genes required for host-pathogen interactions, and in general, aided in functional annotation of genes. An equivalent approach for genetic screening of mosquito cell lines has been lacking. To develop such an approach, we design a new bioinformatic portal for sgRNA library design in several mosquito genomes, engineer mosquito cell lines to express Cas9 and accept sgRNA at scale, and identify optimal promoters for sgRNA expression in several mosquito species. We then optimize a recombination-mediated cassette exchange system to deliver CRISPR sgRNA and perform pooled CRISPR screens in an Anopheles cell line. Altogether, we provide a platform for high-throughput genome-scale screening in cell lines from disease vector species.
Graphical image of tissue culture, fly pushing, and computer, and the team of people who work with them

DRSC/TRiP and DRSC-BTRR Office Hours

September 13, 2021

New this fall: Online office hours!

Do you have questions about modifying Drosophila cell lines with CRISPR or performing large-scale cell screens? Questions about in vivo RNAi with TRiP fly stocks or CRISPR knockout or activation with our sgRNA fly stocks? Questions about our new protocols and resources for CRISPR mosquito cell lines? Pop into our Zoom office hours to say hello and get our expert input! Registration is required (see below).

DRSC/TRiP & DRSC-BTRR Office Hours Schedule:

Mon. Sept. 27, 2021, 12...

Read more about DRSC/TRiP and DRSC-BTRR Office Hours
Raghuvir Viswanatha, Enzo Mameli, Jonathan Rodiger, Pierre Merckaert, Fabiana Feitosa-Suntheimer, Tonya M. Colpitts, Stephanie E. Mohr, Yanhui Hu, and Norbert Perrimon. 3/30/2021. “Bioinformatic and cell-based tools for pooled CRISPR knockout screening in mosquitos [NOTE: A modified final version was published in Nat Comm and is now available.].” bioRxiv. Publisher's VersionAbstract
Mosquito-borne diseases present a worldwide public health burden. Genome-scale screening tools that could inform our understanding of mosquitos and their control are lacking. Here, we adapt a recombination-mediated cassette exchange system for delivery of CRISPR sgRNA libraries into cell lines from several mosquito species and perform pooled CRISPR screens in an Anopheles cell line. To implement this method, we engineered modified mosquito cell lines, validated promoters and developed bioinformatics tools for multiple mosquito species.Competing Interest StatementThe authors have declared no competing interest.
R. Viswanatha, M. Zaffagni, J. Zirin, N. Perrimon, and S. Kadener. 11/1/2020. “CRISPR-Cas13 mediated Knock Down in Drosophila cultured cells.” BioRxiv.Abstract
Manipulation of gene expression is one of the best approaches for studying gene function in vivo. CRISPR-Cas13 has the potential to be a powerful technique for manipulating RNA expression in diverse animal systems in vivo, including Drosophila melanogaster. Studies using Cas13 in mammalian cell lines for gene knockdown showed increased on-target efficiency and decreased off-targeting relative to RNAi. Moreover, catalytically inactive Cas13 fusions can be used to image RNA molecules, install precise changes to the epitranscriptome, or alter splicing. However, recent studies have suggested that there may be limitations to the deployment of these tools in Drosophila, so further optimization of the system is required. Here, we report a new set of PspCas13b and RfxCas13d expression constructs and use these reagents to successfully knockdown both reporter and endogenous transcripts in Drosophila cells. As toxicity issues have been reported with high level of Cas13, we effectively decreased PspCas13b expression without impairing its function by tuning down translation. Furthermore, we altered the spatial activity of both PspCas13b and RfxCas13d by introducing Nuclear Exportation Sequences (NES) and Nuclear Localization Sequences (NLS) while maintaining activity. Finally, we generated a stable cell line expressing RfxCas13d under the inducible metallothionein promoter, establishing a useful tool for high-throughput genetic screening. Thus, we report new reagents for performing RNA CRISPR-Cas13 experiments in Drosophila, providing additional Cas13 expression constructs that retain activity.
J. A. Bosch, G. Birchak, and N. Perrimon. 2021. “Precise genome engineering in Drosophila using prime editing.” Proc Natl Acad Sci U S A, 118.Abstract
Precise genome editing is a valuable tool to study gene function in model organisms. Prime editing, a precise editing system developed in mammalian cells, does not require double-strand breaks or donor DNA and has low off-target effects. Here, we applied prime editing for the model organism Drosophila melanogaster and developed conditions for optimal editing. By expressing prime editing components in cultured cells or somatic cells of transgenic flies, we precisely introduce premature stop codons in three classical visible marker genes, ebony, white, and forked Furthermore, by restricting editing to germ cells, we demonstrate efficient germ-line transmission of a precise edit in ebony to 36% of progeny. Our results suggest that prime editing is a useful system in Drosophila to study gene function, such as engineering precise point mutations, deletions, or epitope tags.
Yanhui Hu, Aram Comjean, Jonathan Rodiger, Yifang Liu, Yue Gao, Verena Chung, Jonathan Zirin, Norbert Perrimon, and Stephanie E Mohr. 2020. “FlyRNAi.org-the database of the Drosophila RNAi screening center and transgenic RNAi project: 2021 update.” Nucleic Acids Res.Abstract
The FlyRNAi database at the Drosophila RNAi Screening Center and Transgenic RNAi Project (DRSC/TRiP) provides a suite of online resources that facilitate functional genomics studies with a special emphasis on Drosophila melanogaster. Currently, the database provides: gene-centric resources that facilitate ortholog mapping and mining of information about orthologs in common genetic model species; reagent-centric resources that help researchers identify RNAi and CRISPR sgRNA reagents or designs; and data-centric resources that facilitate visualization and mining of transcriptomics data, protein modification data, protein interactions, and more. Here, we discuss updated and new features that help biological and biomedical researchers efficiently identify, visualize, analyze, and integrate information and data for Drosophila and other species. Together, these resources facilitate multiple steps in functional genomics workflows, from building gene and reagent lists to management, analysis, and integration of data.
Image of an anesthetized male Drosophila fruit fly

DRSC/TRiP presentations from June 2020 Boston Area Drosophila Meeting

June 12, 2020
Did you miss the presentations from Claire Hu and Jonathan Zirin at the June 2020 Boston Area Drosophila Meeting? No problem! The slides can be accessed from this post. Click the title above to view the whole post, then scroll down to access the PDFs. These presentations describe what's new and next in bioinformatics and in vivo technologies at the DRSC/TRiP. Feel free to reach out with questions. Interested in the BAD meeting? Info about the meeting can be found here. Read more about DRSC/TRiP presentations from June 2020 Boston Area Drosophila Meeting
Jonathan Zirin, Yanhui Hu, Luping Liu, Donghui Yang-Zhou, Ryan Colbeth, Dong Yan, Ben Ewen-Campen, Rong Tao, Eric Vogt, Sara VanNest, Cooper Cavers, Christians Villalta, Aram Comjean, Jin Sun, Xia Wang, Yu Jia, Ruibao Zhu, Ping Peng, Jinchao Yu, Da Shen, Yuhao Qiu, Limmond Ayisi, Henna Ragoowansi, Ethan Fenton, Senait Efrem, Annette Parks, Kuniaki Saito, Shu Kondo, Liz Perkins, Stephanie E Mohr, Jianquan Ni, and Norbert Perrimon. 2020. “Large-Scale Transgenic Resource Collections for Loss- and Gain-of-Function Studies.” Genetics.Abstract
The Transgenic RNAi Project (TRiP), a functional genomics platform at Harvard Medical School, was initiated in 2008 to generate and distribute a genome-scale collection of RNAi fly stocks. To date, the TRiP has generated >15,000 RNAi fly stocks. As this covers most genes, we have largely transitioned to development of new resources based on CRISPR technology. Here, we present an update on our libraries of publicly available RNAi and CRISPR fly stocks, and focus on the TRiP-CRISPR overexpression (TRiP-OE) and TRiP-CRISPR knockout (TRiP-KO) collections. TRiP-OE stocks express sgRNAs targeting upstream of a gene transcription start site. Gene activation is triggered by co-expression of catalytically dead Cas9 (dCas9) fused to an activator domain, either VP64-p65-Rta (VPR) or Synergistic Activation Mediator (SAM). TRiP-KO stocks express one or two sgRNAs targeting the coding sequence of a gene or genes. Cutting is triggered by co-expression of Cas9, allowing for generation of indels in both germline and somatic tissue. To date, we have generated more than 5,000 CRISPR-OE or -KO stocks for the community. These resources provide versatile, transformative tools for gene activation, gene repression, and genome engineering.
Justin A Bosch, Shannon Knight, Oguz Kanca, Jonathan Zirin, Donghui Yang-Zhou, Yanhui Hu, Jonathan Rodiger, Gabriel Amador, Hugo J Bellen, Norbert Perrimon, and Stephanie E Mohr. 2020. “Use of the CRISPR-Cas9 System in Drosophila Cultured Cells to Introduce Fluorescent Tags into Endogenous Genes.” Curr Protoc Mol Biol, 130, 1, Pp. e112.Abstract
The CRISPR-Cas9 system makes it possible to cause double-strand breaks in specific regions, inducing repair. In the presence of a donor construct, repair can involve insertion or 'knock-in' of an exogenous cassette. One common application of knock-in technology is to generate cell lines expressing fluorescently tagged endogenous proteins. The standard approach relies on production of a donor plasmid with ∼500 to 1000 bp of homology on either side of an insertion cassette that contains the fluorescent protein open reading frame (ORF). We present two alternative methods for knock-in of fluorescent protein ORFs into Cas9-expressing Drosophila S2R+ cultured cells, the single-stranded DNA (ssDNA) Drop-In method and the CRISPaint universal donor method. Both methods eliminate the need to clone a large plasmid donor for each target. We discuss the advantages and limitations of the standard, ssDNA Drop-In, and CRISPaint methods for fluorescent protein tagging in Drosophila cultured cells. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Knock-in into Cas9-positive S2R+ cells using the ssDNA Drop-In approach Basic Protocol 2: Knock-in into Cas9-positive S2R+ cells by homology-independent insertion of universal donor plasmids that provide mNeonGreen (CRISPaint method) Support Protocol 1: sgRNA design and cloning Support Protocol 2: ssDNA donor synthesis Support Protocol 3: Transfection using Effectene Support Protocol 4: Electroporation of S2R+-MT::Cas9 Drosophila cells Support Protocol 5: Single-cell isolation of fluorescent cells using FACS.
Chiao-Lin Chen, Jonathan Rodiger, Verena Chung, Raghuvir Viswanatha, Stephanie E Mohr, Yanhui Hu, and Norbert Perrimon. 2019. “SNP-CRISPR: A Web Tool for SNP-Specific Genome Editing.” G3 (Bethesda).Abstract
CRISPR-Cas9 is a powerful genome editing technology in which a short guide RNA (sgRNA) confers target site specificity to achieve Cas9-mediated genome editing. Numerous sgRNA design tools have been developed based on reference genomes for humans and model organisms. However, existing resources are not optimal as genetic mutations or single nucleotide polymorphisms (SNPs) within the targeting region affect the efficiency of CRISPR-based approaches by interfering with guide-target complementarity. To facilitate identification of sgRNAs (1) in non-reference genomes, (2) across varying genetic backgrounds, or (3) for specific targeting of SNP-containing alleles, for example, disease relevant mutations, we developed a web tool, SNP-CRISPR (https://www.flyrnai.org/tools/snp_crispr/). SNP-CRISPR can be used to design sgRNAs based on public variant data sets or user-identified variants. In addition, the tool computes efficiency and specificity scores for sgRNA designs targeting both the variant and the reference. Moreover, SNP-CRISPR provides the option to upload multiple SNPs and target single or multiple nearby base changes simultaneously with a single sgRNA design. Given these capabilities, SNP-CRISPR has a wide range of potential research applications in model systems and potential applications for design of sgRNAs for disease-associated mutant correction.
Raghuvir Viswanatha, Roderick Brathwaite, Yanhui Hu, Zhongchi Li, Jonathan Rodiger, Pierre Merckaert, Verena Chung, Stephanie E Mohr, and Norbert Perrimon. 2019. “Pooled CRISPR Screens in Drosophila Cells.” Curr Protoc Mol Biol, 129, 1, Pp. e111.Abstract
High-throughput screens in Drosophila melanogaster cell lines have led to discovery of conserved gene functions related to signal transduction, host-pathogen interactions, ion transport, and more. CRISPR/Cas9 technology has opened the door to new types of large-scale cell-based screens. Whereas array-format screens require liquid handling automation and assay miniaturization, pooled-format screens, in which reagents are introduced at random and in bulk, can be done in a standard lab setting. We provide a detailed protocol for conducting and evaluating genome-wide CRISPR single guide RNA (sgRNA) pooled screens in Drosophila S2R+ cultured cells. Specifically, we provide step-by-step instructions for library design and production, optimization of cytotoxin-based selection assays, genome-scale screening, and data analysis. This type of project takes ∼3 months to complete. Results can be used in follow-up studies performed in vivo in Drosophila, mammalian cells, and/or other systems. © 2019 by John Wiley & Sons, Inc. Basic Protocol: Pooled-format screening with Cas9-expressing Drosophila S2R+ cells in the presence of cytotoxin Support Protocol 1: Optimization of cytotoxin concentration for Drosophila cell screening Support Protocol 2: CRISPR sgRNA library design and production for Drosophila cell screening Support Protocol 3: Barcode deconvolution and analysis of screening data.
Oguz Kanca, Jonathan Zirin, Jorge Garcia-Marques, Shannon Marie Knight, Donghui Yang-Zhou, Gabriel Amador, Hyunglok Chung, Zhongyuan Zuo, Liwen Ma, Yuchun He, Wen-Wen Lin, Ying Fang, Ming Ge, Shinya Yamamoto, Karen L Schulze, Yanhui Hu, Allan C Spradling, Stephanie E Mohr, Norbert Perrimon, and Hugo J Bellen. 2019. “An efficient CRISPR-based strategy to insert small and large fragments of DNA using short homology arms.” Elife, 8.Abstract
We previously reported a CRISPR-mediated knock-in strategy into introns of genes, generating an - transgenic library for multiple uses (Lee et al., 2018b). The method relied on double stranded DNA (dsDNA) homology donors with ~1 kb homology arms. Here, we describe three new simpler ways to edit genes in flies. We create single stranded DNA (ssDNA) donors using PCR and add 100 nt of homology on each side of an integration cassette, followed by enzymatic removal of one strand. Using this method, we generated GFP-tagged proteins that mark organelles in S2 cells. We then describe two dsDNA methods using cheap synthesized donors flanked by 100 nt homology arms and gRNA target sites cloned into a plasmid. Upon injection, donor DNA (1 to 5 kb) is released from the plasmid by Cas9. The cassette integrates efficiently and precisely . The approach is fast, cheap, and scalable.
Graphical image of tissue culture, fly pushing, and computer, and the team of people who work with them

DRSC-Biomedical Technology Research Resource

October 21, 2019

We are pleased to announce that we have been funded by NIH NIGMS to form the Drosophila Research & Screening Center-Biomedical Technology Research Resource (DRSC-BTRR). The P41-funded DRSC-BTRR (N. Perrimon, PI; S. Mohr, Co-I) builds upon and extends past goals of the Drosophila RNAi Screening Center.

As the DRSC-BTRR, we are working together with collaborators whose 'driving biomedical projects' inform development of new technologies at the DRSC. At the same time, we continue to support Drosophila cell-based RNAi and CRIPSR knockout screens and related...

Read more about DRSC-Biomedical Technology Research Resource

Pages