RNAi validation

Arunachalam Vinayagam, Meghana M Kulkarni, Richelle Sopko, Xiaoyun Sun, Yanhui Hu, Ankita Nand, Christians Villalta, Ahmadali Moghimi, Xuemei Yang, Stephanie E Mohr, Pengyu Hong, John M Asara, and Norbert Perrimon. 9/13/2016. “An Integrative Analysis of the InR/PI3K/Akt Network Identifies the Dynamic Response to Insulin Signaling.” Cell Reports, 16, 11, Pp. 3062-3074.Abstract

Insulin regulates an essential conserved signaling pathway affecting growth, proliferation, and meta- bolism. To expand our understanding of the insulin pathway, we combine biochemical, genetic, and computational approaches to build a comprehensive Drosophila InR/PI3K/Akt network. First, we map the dynamic protein-protein interaction network sur- rounding the insulin core pathway using bait-prey interactions connecting 566 proteins. Combining RNAi screening and phospho-specific antibodies, we find that 47% of interacting proteins affect pathway activity, and, using quantitative phospho- proteomics, we demonstrate that $10% of interact- ing proteins are regulated by insulin stimulation at the level of phosphorylation. Next, we integrate these orthogonal datasets to characterize the structure and dynamics of the insulin network at the level of protein complexes and validate our method by iden- tifying regulatory roles for the Protein Phosphatase 2A (PP2A) and Reptin-Pontin chromatin-remodeling complexes as negative and positive regulators of ribosome biogenesis, respectively. Altogether, our study represents a comprehensive resource for the study of the evolutionary conserved insulin network. 

Joel M Swenson, Serafin U Colmenares, Amy R Strom, Sylvain V Costes, and Gary H Karpen. 2016. “The composition and organization of Drosophila heterochromatin are heterogeneous and dynamic.” Elife, 5.Abstract

Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown. We found that 13 of 16 tested candidates (83%) are required for gene silencing, providing a substantial increase in the number of identified components that impact heterochromatin properties. Surprisingly, image analysis revealed that although some HP1a interactors and regulators are broadly distributed within the heterochromatin domain, most localize to discrete subdomains that display dynamic localization patterns during the cell cycle. We conclude that heterochromatin composition and architecture is more spatially complex and dynamic than previously suggested, and propose that a network of subdomains regulates diverse heterochromatin functions.

Publication describes TRiP resources

Publication describes TRiP resources

July 8, 2016

Liz Perkins and colleagues have published a paper describing the Drosophila Transgenic RNAi Project (TRiP) at Harvard Medical School. The article, published in the November 1, 2015 issue of Geneticsdetails the TRiP production pipeline, reagents generated, state of the collection, and validation efforts.

This is a great introduction to the many in vivo RNAi resources the DRSC/TRiP-FGR provides to the scientific community.

Click...

Read more about Publication describes TRiP resources
Ian T Flockhart, Matthew Booker, Yanhui Hu, Benjamin McElvany, Quentin Gilly, Bernard Mathey-Prevot, Norbert Perrimon, and Stephanie E Mohr. 2012. “FlyRNAi.org--the database of the Drosophila RNAi screening center: 2012 update.” Nucleic Acids Res, 40, Database issue, Pp. D715-9.Abstract

FlyRNAi (http://www.flyrnai.org), the database and website of the Drosophila RNAi Screening Center (DRSC) at Harvard Medical School, serves a dual role, tracking both production of reagents for RNA interference (RNAi) screening in Drosophila cells and RNAi screen results. The database and website is used as a platform for community availability of protocols, tools, and other resources useful to researchers planning, conducting, analyzing or interpreting the results of Drosophila RNAi screens. Based on our own experience and user feedback, we have made several changes. Specifically, we have restructured the database to accommodate new types of reagents; added information about new RNAi libraries and other reagents; updated the user interface and website; and added new tools of use to the Drosophila community and others. Overall, the result is a more useful, flexible and comprehensive website and database.

Stephanie Mohr, Chris Bakal, and Norbert Perrimon. 2010. “Genomic screening with RNAi: results and challenges.” Annu Rev Biochem, 79, Pp. 37-64.Abstract

RNA interference (RNAi) is an effective tool for genome-scale, high-throughput analysis of gene function. In the past five years, a number of genome-scale RNAi high-throughput screens (HTSs) have been done in both Drosophila and mammalian cultured cells to study diverse biological processes, including signal transduction, cancer biology, and host cell responses to infection. Results from these screens have led to the identification of new components of these processes and, importantly, have also provided insights into the complexity of biological systems, forcing new and innovative approaches to understanding functional networks in cells. Here, we review the main findings that have emerged from RNAi HTS and discuss technical issues that remain to be improved, in particular the verification of RNAi results and validation of their biological relevance. Furthermore, we discuss the importance of multiplexed and integrated experimental data analysis pipelines to RNAi HTS.

Nadire Ramadan, Ian Flockhart, Matthew Booker, Norbert Perrimon, and Bernard Mathey-Prevot. 2007. “Design and implementation of high-throughput RNAi screens in cultured Drosophila cells.” Nat Protoc, 2, 9, Pp. 2245-64.Abstract

This protocol describes the various steps and considerations involved in planning and carrying out RNA interference (RNAi) genome-wide screens in cultured Drosophila cells. We focus largely on the procedures that have been modified as a result of our experience over the past 3 years and of our better understanding of the underlying technology. Specifically, our protocol offers a set of suggestions and considerations for screen optimization and a step-by-step description of the procedures successfully used at the Drosophila RNAi Screening Center for screen implementation, data collection and analysis to identify potential hits. In addition, this protocol briefly covers postscreen analysis approaches that are often needed to finalize the hit list. Depending on the scope of the screen and subsequent analysis and validation involved, the full protocol can take anywhere from 3 months to 2 years to complete.

Matthew Booker, Anastasia A Samsonova, Young Kwon, Ian Flockhart, Stephanie E Mohr, and Norbert Perrimon. 2011. “False negative rates in Drosophila cell-based RNAi screens: a case study.” BMC Genomics, 12, Pp. 50.Abstract

BACKGROUND: High-throughput screening using RNAi is a powerful gene discovery method but is often complicated by false positive and false negative results. Whereas false positive results associated with RNAi reagents has been a matter of extensive study, the issue of false negatives has received less attention. RESULTS: We performed a meta-analysis of several genome-wide, cell-based Drosophila RNAi screens, together with a more focused RNAi screen, and conclude that the rate of false negative results is at least 8%. Further, we demonstrate how knowledge of the cell transcriptome can be used to resolve ambiguous results and how the number of false negative results can be reduced by using multiple, independently-tested RNAi reagents per gene. CONCLUSIONS: RNAi reagents that target the same gene do not always yield consistent results due to false positives and weak or ineffective reagents. False positive results can be partially minimized by filtering with transcriptome data. RNAi libraries with multiple reagents per gene also reduce false positive and false negative outcomes when inconsistent results are disambiguated carefully.

Sriram Sathyanarayanan, Xiangzhong Zheng, Shailesh Kumar, Chun-Hong Chen, Dechun Chen, Bruce Hay, and Amita Sehgal. 2008. “Identification of novel genes involved in light-dependent CRY degradation through a genome-wide RNAi screen.” Genes Dev, 22, 11, Pp. 1522-33.Abstract

Circadian clocks regulate many different physiological processes and synchronize these to environmental light:dark cycles. In Drosophila, light is transmitted to the clock by a circadian blue light photoreceptor CRYPTOCHROME (CRY). In response to light, CRY promotes the degradation of the circadian clock protein TIMELESS (TIM) and then is itself degraded. To identify novel genes involved in circadian entrainment, we performed an unbiased genome-wide screen in Drosophila cells using a sensitive and quantitative assay that measures light-induced degradation of CRY. We systematically knocked down the expression of approximately 21,000 genes and identified those that regulate CRY stability. These genes include ubiquitin ligases, signal transduction molecules, and redox molecules. Many of the genes identified in the screen are specific for CRY degradation and do not affect degradation of the TIM protein in response to light, suggesting that, for the most part, these two pathways are distinct. We further validated the effect of three candidate genes on CRY stability in vivo by assaying flies mutant for each of these genes. This work identifies a novel regulatory network involved in light-dependent CRY degradation and demonstrates the power of a genome-wide RNAi approach for understanding circadian biology.

Max V Staller, Dong Yan, Sakara Randklev, Meghan D Bragdon, Zeba B Wunderlich, Rong Tao, Lizabeth A Perkins, Angela H Depace, and Norbert Perrimon. 2013. “Depleting gene activities in early Drosophila embryos with the "maternal-Gal4-shRNA" system.” Genetics, 193, 1, Pp. 51-61.Abstract

In a developing Drosophila melanogaster embryo, mRNAs have a maternal origin, a zygotic origin, or both. During the maternal-zygotic transition, maternal products are degraded and gene expression comes under the control of the zygotic genome. To interrogate the function of mRNAs that are both maternally and zygotically expressed, it is common to examine the embryonic phenotypes derived from female germline mosaics. Recently, the development of RNAi vectors based on short hairpin RNAs (shRNAs) effective during oogenesis has provided an alternative to producing germline clones. Here, we evaluate the efficacies of: (1) maternally loaded shRNAs to knockdown zygotic transcripts and (2) maternally loaded Gal4 protein to drive zygotic shRNA expression. We show that, while Gal4-driven shRNAs in the female germline very effectively generate phenotypes for genes expressed maternally, maternally loaded shRNAs are not very effective at generating phenotypes for early zygotic genes. However, maternally loaded Gal4 protein is very efficient at generating phenotypes for zygotic genes expressed during mid-embryogenesis. We apply this powerful and simple method to unravel the embryonic functions of a number of pleiotropic genes.

Mijung Kwon, Susana A Godinho, Namrata S Chandhok, Neil J Ganem, Ammar Azioune, Manuel Thery, and David Pellman. 2008. “Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes.” Genes Dev, 22, 16, Pp. 2189-203.Abstract

Multiple centrosomes in tumor cells create the potential for multipolar divisions that can lead to aneuploidy and cell death. Nevertheless, many cancer cells successfully divide because of mechanisms that suppress multipolar mitoses. A genome-wide RNAi screen in Drosophila S2 cells and a secondary analysis in cancer cells defined mechanisms that suppress multipolar mitoses. In addition to proteins that organize microtubules at the spindle poles, we identified novel roles for the spindle assembly checkpoint, cortical actin cytoskeleton, and cell adhesion. Using live cell imaging and fibronectin micropatterns, we found that interphase cell shape and adhesion pattern can determine the success of the subsequent mitosis in cells with extra centrosomes. These findings may identify cancer-selective therapeutic targets: HSET, a normally nonessential kinesin motor, was essential for the viability of certain extra centrosome-containing cancer cells. Thus, morphological features of cancer cells can be linked to unique genetic requirements for survival.

Ramanuj DasGupta, Ajamete Kaykas, Randall T Moon, and Norbert Perrimon. 2005. “Functional genomic analysis of the Wnt-wingless signaling pathway.” Science, 308, 5723, Pp. 826-33.Abstract

The Wnt-Wingless (Wg) pathway is one of a core set of evolutionarily conserved signaling pathways that regulates many aspects of metazoan development. Aberrant Wnt signaling has been linked to human disease. In the present study, we used a genomewide RNA interference (RNAi) screen in Drosophila cells to screen for regulators of the Wnt pathway. We identified 238 potential regulators, which include known pathway components, genes with functions not previously linked to this pathway, and genes with no previously assigned functions. Reciprocal-Best-Blast analyses reveal that 50% of the genes identified in the screen have human orthologs, of which approximately 18% are associated with human disease. Functional assays of selected genes from the cell-based screen in Drosophila, mammalian cells, and zebrafish embryos demonstrated that these genes have evolutionarily conserved functions in Wnt signaling. High-throughput RNAi screens in cultured cells, followed by functional analyses in model organisms, prove to be a rapid means of identifying regulators of signaling pathways implicated in development and disease.

Yanhui Hu, Richelle Sopko, Marianna Foos, Colleen Kelley, Ian Flockhart, Noemie Ammeux, Xiaowei Wang, Lizabeth Perkins, Norbert Perrimon, and Stephanie E Mohr. 2013. “FlyPrimerBank: an online database for Drosophila melanogaster gene expression analysis and knockdown evaluation of RNAi reagents.” G3 (Bethesda), 3, 9, Pp. 1607-16.Abstract

The evaluation of specific endogenous transcript levels is important for understanding transcriptional regulation. More specifically, it is useful for independent confirmation of results obtained by the use of microarray analysis or RNA-seq and for evaluating RNA interference (RNAi)-mediated gene knockdown. Designing specific and effective primers for high-quality, moderate-throughput evaluation of transcript levels, i.e., quantitative, real-time PCR (qPCR), is nontrivial. To meet community needs, predefined qPCR primer pairs for mammalian genes have been designed and sequences made available, e.g., via PrimerBank. In this work, we adapted and refined the algorithms used for the mammalian PrimerBank to design 45,417 primer pairs for 13,860 Drosophila melanogaster genes, with three or more primer pairs per gene. We experimentally validated primer pairs for ~300 randomly selected genes expressed in early Drosophila embryos, using SYBR Green-based qPCR and sequence analysis of products derived from conventional PCR. All relevant information, including primer sequences, isoform specificity, spatial transcript targeting, and any available validation results and/or user feedback, is available from an online database (www.flyrnai.org/flyprimerbank). At FlyPrimerBank, researchers can retrieve primer information for fly genes either one gene at a time or in batch mode. Importantly, we included the overlap of each predicted amplified sequence with RNAi reagents from several public resources, making it possible for researchers to choose primers suitable for knockdown evaluation of RNAi reagents (i.e., to avoid amplification of the RNAi reagent itself). We demonstrate the utility of this resource for validation of RNAi reagents in vivo.

Lorna S Kategaya, Binita Changkakoty, Travis Biechele, William H Conrad, Ajamete Kaykas, Ramanuj DasGupta, and Randall T Moon. 2009. “Bili inhibits Wnt/beta-catenin signaling by regulating the recruitment of axin to LRP6.” PLoS One, 4, 7, Pp. e6129.Abstract

BACKGROUND: Insights into how the Frizzled/LRP6 receptor complex receives, transduces and terminates Wnt signals will enhance our understanding of the control of the Wnt/ss-catenin pathway. METHODOLOGY/PRINCIPAL FINDINGS: In pursuit of such insights, we performed a genome-wide RNAi screen in Drosophila cells expressing an activated form of LRP6 and a beta-catenin-responsive reporter. This screen resulted in the identification of Bili, a Band4.1-domain containing protein, as a negative regulator of Wnt/beta-catenin signaling. We found that the expression of Bili in Drosophila embryos and larval imaginal discs significantly overlaps with the expression of Wingless (Wg), the Drosophila Wnt ortholog, which is consistent with a potential function for Bili in the Wg pathway. We then tested the functions of Bili in both invertebrate and vertebrate animal model systems. Loss-of-function studies in Drosophila and zebrafish embryos, as well as human cultured cells, demonstrate that Bili is an evolutionarily conserved antagonist of Wnt/beta-catenin signaling. Mechanistically, we found that Bili exerts its antagonistic effects by inhibiting the recruitment of AXIN to LRP6 required during pathway activation. CONCLUSIONS: These studies identify Bili as an evolutionarily conserved negative regulator of the Wnt/beta-catenin pathway.

Yousang Gwack, Sonal Srikanth, Stefan Feske, Fernando Cruz-Guilloty, Masatsugu Oh-hora, Daniel S Neems, Patrick G Hogan, and Anjana Rao. 2007. “Biochemical and functional characterization of Orai proteins.” J Biol Chem, 282, 22, Pp. 16232-43.Abstract

Stimulation of immune cells triggers Ca2+ entry through store-operated Ca2+ release-activated Ca2+ channels, promoting nuclear translocation of the transcription factor NFAT. Through genome-wide RNA interference screens in Drosophila, we and others identified olf186-F (Drosophila Orai, dOrai) and dStim as critical components of store-operated Ca2+ entry and showed that dOrai and its human homologue Orai1 are pore subunits of the Ca2+ release-activated Ca2+ channel. Here we report that Orai1 is predominantly responsible for store-operated Ca2+ influx in human embryonic kidney 293 cells and human T cells and fibroblasts, although its paralogue Orai3 can partly compensate in the absence of functional Orai1. All three mammalian Orai are widely expressed at the mRNA level, and all three are incorporated into the plasma membrane. In human embryonic kidney 293 cells, Orai1 is glycosylated at an asparagine residue in the predicted second extracellular loop, but mutation of the residue does not compromise function. STIM1 and Orai1 colocalize after store depletion, but Orai1 does not associate detectably with STIM1 in glycerol gradient centrifugation or coimmunoprecipitation experiments. Glutamine substitutions in two conserved glutamate residues, located within predicted transmembrane helices of Drosophila Orai and human Orai1, greatly diminish store-operated Ca2+ influx, and primary T cells ectopically expressing mutant E106Q and E190Q Orai1 proteins show reduced proliferation and cytokine secretion. Together, these data establish Orai1 as a predominant mediator of store-operated calcium entry, proliferation, and cytokine production in T cells.

Pages