Disease-related studies

Christine Akimana, Souhaila Al-Khodor, and Yousef Abu Kwaik. 2010. “Host factors required for modulation of phagosome biogenesis and proliferation of Francisella tularensis within the cytosol.” PLoS One, 5, 6, Pp. e11025.Abstract

Francisella tularensis is a highly infectious facultative intracellular bacterium that can be transmitted between mammals by arthropod vectors. Similar to many other intracellular bacteria that replicate within the cytosol, such as Listeria, Shigella, Burkholderia, and Rickettsia, the virulence of F. tularensis depends on its ability to modulate biogenesis of its phagosome and to escape into the host cell cytosol where it proliferates. Recent studies have identified the F. tularensis genes required for modulation of phagosome biogenesis and escape into the host cell cytosol within human and arthropod-derived cells. However, the arthropod and mammalian host factors required for intracellular proliferation of F. tularensis are not known. We have utilized a forward genetic approach employing genome-wide RNAi screen in Drosophila melanogaster-derived cells. Screening a library of approximately 21,300 RNAi, we have identified at least 186 host factors required for intracellular bacterial proliferation. We silenced twelve mammalian homologues by RNAi in HEK293T cells and identified three conserved factors, the PI4 kinase PI4KCA, the ubiquitin hydrolase USP22, and the ubiquitin ligase CDC27, which are also required for replication in human cells. The PI4KCA and USP22 mammalian factors are not required for modulation of phagosome biogenesis or phagosomal escape but are required for proliferation within the cytosol. In contrast, the CDC27 ubiquitin ligase is required for evading lysosomal fusion and for phagosomal escape into the cytosol. Although F. tularensis interacts with the autophagy pathway during late stages of proliferation in mouse macrophages, this does not occur in human cells. Our data suggest that F. tularensis utilizes host ubiquitin turnover in distinct mechanisms during the phagosomal and cytosolic phases and phosphoinositide metabolism is essential for cytosolic proliferation of F. tularensis. Our data will facilitate deciphering molecular ecology, patho-adaptation of F. tularensis to the arthropod vector and its role in bacterial ecology and patho-evolution to infect mammals.

Richelle Sopko, You Bin Lin, Kalpana Makhijani, Brandy Alexander, Norbert Perrimon, and Katja Brückner. 2015. “A systems-level interrogation identifies regulators of Drosophila blood cell number and survival.” PLoS Genet, 11, 3, Pp. e1005056.Abstract

In multicellular organisms, cell number is typically determined by a balance of intracellular signals that positively and negatively regulate cell survival and proliferation. Dissecting these signaling networks facilitates the understanding of normal development and tumorigenesis. Here, we study signaling by the Drosophila PDGF/VEGF Receptor (Pvr) in embryonic blood cells (hemocytes) and in the related cell line Kc as a model for the requirement of PDGF/VEGF receptors in vertebrate cell survival and proliferation. The system allows the investigation of downstream and parallel signaling networks, based on the ability of Pvr to activate Ras/Erk, Akt/TOR, and yet-uncharacterized signaling pathway/s, which redundantly mediate cell survival and contribute to proliferation. Using Kc cells, we performed a genome wide RNAi screen for regulators of cell number in a sensitized, Pvr deficient background. We identified the receptor tyrosine kinase (RTK) Insulin-like receptor (InR) as a major Pvr Enhancer, and the nuclear hormone receptors Ecdysone receptor (EcR) and ultraspiracle (usp), corresponding to mammalian Retinoid X Receptor (RXR), as Pvr Suppressors. In vivo analysis in the Drosophila embryo revealed a previously unrecognized role for EcR to promote apoptotic death of embryonic blood cells, which is balanced with pro-survival signaling by Pvr and InR. Phosphoproteomic analysis demonstrates distinct modes of cell number regulation by EcR and RTK signaling. We define common phosphorylation targets of Pvr and InR that include regulators of cell survival, and unique targets responsible for specialized receptor functions. Interestingly, our analysis reveals that the selection of phosphorylation targets by signaling receptors shows qualitative changes depending on the signaling status of the cell, which may have wide-reaching implications for other cell regulatory systems.

Jennifer A Philips, Maura C Porto, Hui Wang, Eric J Rubin, and Norbert Perrimon. 2008. “ESCRT factors restrict mycobacterial growth.” Proc Natl Acad Sci U S A, 105, 8, Pp. 3070-5.Abstract

Nearly 1.7 billion people are infected with Mycobacterium tuberculosis. Its ability to survive intracellularly is thought to be central to its success as a pathogen, but how it does this is poorly understood. Using a Drosophila model of infection, we identify three host cell activities, Rab7, CG8743, and the ESCRT machinery, that modulate the mycobacterial phagosome. In the absence of these factors the cell no longer restricts growth of the non-pathogen Mycobacterium smegmatis. Hence, we identify factors that represent unique vulnerabilities of the host cell, because manipulation of any one of them alone is sufficient to allow a nonpathogenic mycobacterial species to proliferate. Furthermore, we demonstrate that, in mammalian cells, the ESCRT machinery plays a conserved role in restricting bacterial growth.

Clemens Bergwitz, Mark J Wee, Sumi Sinha, Joanne Huang, Charles DeRobertis, Lawrence B Mensah, Jonathan Cohen, Adam Friedman, Meghana Kulkarni, Yanhui Hu, Arunachalam Vinayagam, Michael Schnall-Levin, Bonnie Berger, Lizabeth A Perkins, Stephanie E Mohr, and Norbert Perrimon. 2013. “Genetic determinants of phosphate response in Drosophila.” PLoS One, 8, 3, Pp. e56753.Abstract

Phosphate is required for many important cellular processes and having too little phosphate or too much can cause disease and reduce life span in humans. However, the mechanisms underlying homeostatic control of extracellular phosphate levels and cellular effects of phosphate are poorly understood. Here, we establish Drosophila melanogaster as a model system for the study of phosphate effects. We found that Drosophila larval development depends on the availability of phosphate in the medium. Conversely, life span is reduced when adult flies are cultured on high phosphate medium or when hemolymph phosphate is increased in flies with impaired malpighian tubules. In addition, RNAi-mediated inhibition of MAPK-signaling by knockdown of Ras85D, phl/D-Raf or Dsor1/MEK affects larval development, adult life span and hemolymph phosphate, suggesting that some in vivo effects involve activation of this signaling pathway by phosphate. To identify novel genetic determinants of phosphate responses, we used Drosophila hemocyte-like cultured cells (S2R+) to perform a genome-wide RNAi screen using MAPK activation as the readout. We identified a number of candidate genes potentially important for the cellular response to phosphate. Evaluation of 51 genes in live flies revealed some that affect larval development, adult life span and hemolymph phosphate levels.

Andrés Dekanty, Nuria M Romero, Agustina P Bertolin, María G Thomas, Claudia C Leishman, Joel I Perez-Perri, Graciela L Boccaccio, and Pablo Wappner. 2010. “Drosophila genome-wide RNAi screen identifies multiple regulators of HIF-dependent transcription in hypoxia.” PLoS Genet, 6, 6, Pp. e1000994.Abstract

Hypoxia-inducible factors (HIFs) are a family of evolutionary conserved alpha-beta heterodimeric transcription factors that induce a wide range of genes in response to low oxygen tension. Molecular mechanisms that mediate oxygen-dependent HIF regulation operate at the level of the alpha subunit, controlling protein stability, subcellular localization, and transcriptional coactivator recruitment. We have conducted an unbiased genome-wide RNA interference (RNAi) screen in Drosophila cells aimed to the identification of genes required for HIF activity. After 3 rounds of selection, 30 genes emerged as critical HIF regulators in hypoxia, most of which had not been previously associated with HIF biology. The list of genes includes components of chromatin remodeling complexes, transcription elongation factors, and translational regulators. One remarkable hit was the argonaute 1 (ago1) gene, a central element of the microRNA (miRNA) translational silencing machinery. Further studies confirmed the physiological role of the miRNA machinery in HIF-dependent transcription. This study reveals the occurrence of novel mechanisms of HIF regulation, which might contribute to developing novel strategies for therapeutic intervention of HIF-related pathologies, including heart attack, cancer, and stroke.

Benjamin E Housden, Alexander J Valvezan, Colleen Kelley, Richelle Sopko, Yanhui Hu, Charles Roesel, Shuailiang Lin, Michael Buckner, Rong Tao, Bahar Yilmazel, Stephanie E Mohr, Brendan D Manning, and Norbert Perrimon. 2015. “Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi.” Sci Signal, 8, 393, Pp. rs9.Abstract

The tuberous sclerosis complex (TSC) family of tumor suppressors, TSC1 and TSC2, function together in an evolutionarily conserved protein complex that is a point of convergence for major cell signaling pathways that regulate mTOR complex 1 (mTORC1). Mutation or aberrant inhibition of the TSC complex is common in various human tumor syndromes and cancers. The discovery of novel therapeutic strategies to selectively target cells with functional loss of this complex is therefore of clinical relevance to patients with nonmalignant TSC and those with sporadic cancers. We developed a CRISPR-based method to generate homogeneous mutant Drosophila cell lines. By combining TSC1 or TSC2 mutant cell lines with RNAi screens against all kinases and phosphatases, we identified synthetic interactions with TSC1 and TSC2. Individual knockdown of three candidate genes (mRNA-cap, Pitslre, and CycT; orthologs of RNGTT, CDK11, and CCNT1 in humans) reduced the population growth rate of Drosophila cells lacking either TSC1 or TSC2 but not that of wild-type cells. Moreover, individual knockdown of these three genes had similar growth-inhibiting effects in mammalian TSC2-deficient cell lines, including human tumor-derived cells, illustrating the power of this cross-species screening strategy to identify potential drug targets.

Mijung Kwon, Susana A Godinho, Namrata S Chandhok, Neil J Ganem, Ammar Azioune, Manuel Thery, and David Pellman. 2008. “Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes.” Genes Dev, 22, 16, Pp. 2189-203.Abstract

Multiple centrosomes in tumor cells create the potential for multipolar divisions that can lead to aneuploidy and cell death. Nevertheless, many cancer cells successfully divide because of mechanisms that suppress multipolar mitoses. A genome-wide RNAi screen in Drosophila S2 cells and a secondary analysis in cancer cells defined mechanisms that suppress multipolar mitoses. In addition to proteins that organize microtubules at the spindle poles, we identified novel roles for the spindle assembly checkpoint, cortical actin cytoskeleton, and cell adhesion. Using live cell imaging and fibronectin micropatterns, we found that interphase cell shape and adhesion pattern can determine the success of the subsequent mitosis in cells with extra centrosomes. These findings may identify cancer-selective therapeutic targets: HSET, a normally nonessential kinesin motor, was essential for the viability of certain extra centrosome-containing cancer cells. Thus, morphological features of cancer cells can be linked to unique genetic requirements for survival.

Zheng Yin, Amine Sadok, Heba Sailem, Afshan McCarthy, Xiaofeng Xia, Fuhai Li, Mar Arias Garcia, Louise Evans, Alexis R Barr, Norbert Perrimon, Christopher J Marshall, Stephen TC Wong, and Chris Bakal. 2013. “A screen for morphological complexity identifies regulators of switch-like transitions between discrete cell shapes.” Nat Cell Biol, 15, 7, Pp. 860-71.Abstract

The way in which cells adopt different morphologies is not fully understood. Cell shape could be a continuous variable or restricted to a set of discrete forms. We developed quantitative methods to describe cell shape and show that Drosophila haemocytes in culture are a heterogeneous mixture of five discrete morphologies. In an RNAi screen of genes affecting the morphological complexity of heterogeneous cell populations, we found that most genes regulate the transition between discrete shapes rather than generating new morphologies. In particular, we identified a subset of genes, including the tumour suppressor PTEN, that decrease the heterogeneity of the population, leading to populations enriched in rounded or elongated forms. We show that these genes have a highly conserved function as regulators of cell shape in both mouse and human metastatic melanoma cells.

Hervé Agaisse, Laura S Burrack, Jennifer A Philips, Eric J Rubin, Norbert Perrimon, and Darren E Higgins. 2005. “Genome-wide RNAi screen for host factors required for intracellular bacterial infection.” Science, 309, 5738, Pp. 1248-51.Abstract

Most studies of host-pathogen interactions have focused on pathogen-specific virulence determinants. Here, we report a genome-wide RNA interference screen to identify host factors required for intracellular bacterial pathogenesis. Using Drosophila cells and the cytosolic pathogen Listeria monocytogenes, we identified 305 double-stranded RNAs targeting a wide range of cellular functions that altered L. monocytogenes infection. Comparison to a similar screen with Mycobacterium fortuitum, a vacuolar pathogen, identified host factors that may play a general role in intracellular pathogenesis and factors that specifically affect access to the cytosol by L. monocytogenes.

Yanhui Hu, Ian Flockhart, Arunachalam Vinayagam, Clemens Bergwitz, Bonnie Berger, Norbert Perrimon, and Stephanie E Mohr. 2011. “An integrative approach to ortholog prediction for disease-focused and other functional studies.” BMC Bioinformatics, 12, Pp. 357.Abstract

BACKGROUND: Mapping of orthologous genes among species serves an important role in functional genomics by allowing researchers to develop hypotheses about gene function in one species based on what is known about the functions of orthologs in other species. Several tools for predicting orthologous gene relationships are available. However, these tools can give different results and identification of predicted orthologs is not always straightforward. RESULTS: We report a simple but effective tool, the Drosophila RNAi Screening Center Integrative Ortholog Prediction Tool (DIOPT; http://www.flyrnai.org/diopt), for rapid identification of orthologs. DIOPT integrates existing approaches, facilitating rapid identification of orthologs among human, mouse, zebrafish, C. elegans, Drosophila, and S. cerevisiae. As compared to individual tools, DIOPT shows increased sensitivity with only a modest decrease in specificity. Moreover, the flexibility built into the DIOPT graphical user interface allows researchers with different goals to appropriately 'cast a wide net' or limit results to highest confidence predictions. DIOPT also displays protein and domain alignments, including percent amino acid identity, for predicted ortholog pairs. This helps users identify the most appropriate matches among multiple possible orthologs. To facilitate using model organisms for functional analysis of human disease-associated genes, we used DIOPT to predict high-confidence orthologs of disease genes in Online Mendelian Inheritance in Man (OMIM) and genes in genome-wide association study (GWAS) data sets. The results are accessible through the DIOPT diseases and traits query tool (DIOPT-DIST; http://www.flyrnai.org/diopt-dist). CONCLUSIONS: DIOPT and DIOPT-DIST are useful resources for researchers working with model organisms, especially those who are interested in exploiting model organisms such as Drosophila to study the functions of human disease genes.

Alfeu Zanotto-Filho, Ravi Dashnamoorthy, Eva Loranc, Luis HT de Souza, José CF Moreira, Uthra Suresh, Yidong Chen, and Alexander JR Bishop. 2016. “Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.” PLoS One, 11, 4, Pp. e0153970.Abstract

Alkylating agents are a key component of cancer chemotherapy. Several cellular mechanisms are known to be important for its survival, particularly DNA repair and xenobiotic detoxification, yet genomic screens indicate that additional cellular components may be involved. Elucidating these components has value in either identifying key processes that can be modulated to improve chemotherapeutic efficacy or may be altered in some cancers to confer chemoresistance. We therefore set out to reevaluate our prior Drosophila RNAi screening data by comparison to gene expression arrays in order to determine if we could identify any novel processes in alkylation damage survival. We noted a consistent conservation of alkylation survival pathways across platforms and species when the analysis was conducted on a pathway/process level rather than at an individual gene level. Better results were obtained when combining gene lists from two datasets (RNAi screen plus microarray) prior to analysis. In addition to previously identified DNA damage responses (p53 signaling and Nucleotide Excision Repair), DNA-mRNA-protein metabolism (transcription/translation) and proteasome machinery, we also noted a highly conserved cross-species requirement for NRF2, glutathione (GSH)-mediated drug detoxification and Endoplasmic Reticulum stress (ER stress)/Unfolded Protein Responses (UPR) in cells exposed to alkylation. The requirement for GSH, NRF2 and UPR in alkylation survival was validated by metabolomics, protein studies and functional cell assays. From this we conclude that RNAi/gene expression fusion is a valid strategy to rapidly identify key processes that may be extendable to other contexts beyond damage survival.

Sheng Zhang, Richard Binari, Rui Zhou, and Norbert Perrimon. 2010. “A genomewide RNA interference screen for modifiers of aggregates formation by mutant Huntingtin in Drosophila.” Genetics, 184, 4, Pp. 1165-79.Abstract

Protein aggregates are a common pathological feature of most neurodegenerative diseases (NDs). Understanding their formation and regulation will help clarify their controversial roles in disease pathogenesis. To date, there have been few systematic studies of aggregates formation in Drosophila, a model organism that has been applied extensively in modeling NDs and screening for toxicity modifiers. We generated transgenic fly lines that express enhanced-GFP-tagged mutant Huntingtin (Htt) fragments with different lengths of polyglutamine (polyQ) tract and showed that these Htt mutants develop protein aggregates in a polyQ-length- and age-dependent manner in Drosophila. To identify central regulators of protein aggregation, we further generated stable Drosophila cell lines expressing these Htt mutants and also established a cell-based quantitative assay that allows automated measurement of aggregates within cells. We then performed a genomewide RNA interference screen for regulators of mutant Htt aggregation and isolated 126 genes involved in diverse cellular processes. Interestingly, although our screen focused only on mutant Htt aggregation, several of the identified candidates were known previously as toxicity modifiers of NDs. Moreover, modulating the in vivo activity of hsp110 (CG6603) or tra1, two hits from the screen, affects neurodegeneration in a dose-dependent manner in a Drosophila model of Huntington's disease. Thus, other aggregates regulators isolated in our screen may identify additional genes involved in the protein-folding pathway and neurotoxicity.

Arunachalam Vinayagam, Jonathan Zirin, Charles Roesel, Yanhui Hu, Bahar Yilmazel, Anastasia A Samsonova, Ralph A Neumüller, Stephanie E Mohr, and Norbert Perrimon. 2014. “Integrating protein-protein interaction networks with phenotypes reveals signs of interactions.” Nat Methods, 11, 1, Pp. 94-9.Abstract

A major objective of systems biology is to organize molecular interactions as networks and to characterize information flow within networks. We describe a computational framework to integrate protein-protein interaction (PPI) networks and genetic screens to predict the 'signs' of interactions (i.e., activation-inhibition relationships). We constructed a Drosophila melanogaster signed PPI network consisting of 6,125 signed PPIs connecting 3,352 proteins that can be used to identify positive and negative regulators of signaling pathways and protein complexes. We identified an unexpected role for the metabolic enzymes enolase and aldo-keto reductase as positive and negative regulators of proteolysis, respectively. Characterization of the activation-inhibition relationships between physically interacting proteins within signaling pathways will affect our understanding of many biological functions, including signal transduction and mechanisms of disease.

Stefan Feske, Yousang Gwack, Murali Prakriya, Sonal Srikanth, Sven-Holger Puppel, Bogdan Tanasa, Patrick G Hogan, Richard S Lewis, Mark Daly, and Anjana Rao. 2006. “A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function.” Nature, 441, 7090, Pp. 179-85.Abstract

Antigen stimulation of immune cells triggers Ca2+ entry through Ca2+ release-activated Ca2+ (CRAC) channels, promoting the immune response to pathogens by activating the transcription factor NFAT. We have previously shown that cells from patients with one form of hereditary severe combined immune deficiency (SCID) syndrome are defective in store-operated Ca2+ entry and CRAC channel function. Here we identify the genetic defect in these patients, using a combination of two unbiased genome-wide approaches: a modified linkage analysis with single-nucleotide polymorphism arrays, and a Drosophila RNA interference screen designed to identify regulators of store-operated Ca2+ entry and NFAT nuclear import. Both approaches converged on a novel protein that we call Orai1, which contains four putative transmembrane segments. The SCID patients are homozygous for a single missense mutation in ORAI1, and expression of wild-type Orai1 in SCID T cells restores store-operated Ca2+ influx and the CRAC current (I(CRAC)). We propose that Orai1 is an essential component or regulator of the CRAC channel complex.

Adam A Friedman, George Tucker, Rohit Singh, Dong Yan, Arunachalam Vinayagam, Yanhui Hu, Richard Binari, Pengyu Hong, Xiaoyun Sun, Maura Porto, Svetlana Pacifico, Thilakam Murali, Russell L Finley, John M Asara, Bonnie Berger, and Norbert Perrimon. 2011. “Proteomic and functional genomic landscape of receptor tyrosine kinase and ras to extracellular signal-regulated kinase signaling.” Sci Signal, 4, 196, Pp. rs10.Abstract

Characterizing the extent and logic of signaling networks is essential to understanding specificity in such physiological and pathophysiological contexts as cell fate decisions and mechanisms of oncogenesis and resistance to chemotherapy. Cell-based RNA interference (RNAi) screens enable the inference of large numbers of genes that regulate signaling pathways, but these screens cannot provide network structure directly. We describe an integrated network around the canonical receptor tyrosine kinase (RTK)-Ras-extracellular signal-regulated kinase (ERK) signaling pathway, generated by combining parallel genome-wide RNAi screens with protein-protein interaction (PPI) mapping by tandem affinity purification-mass spectrometry. We found that only a small fraction of the total number of PPI or RNAi screen hits was isolated under all conditions tested and that most of these represented the known canonical pathway components, suggesting that much of the core canonical ERK pathway is known. Because most of the newly identified regulators are likely cell type- and RTK-specific, our analysis provides a resource for understanding how output through this clinically relevant pathway is regulated in different contexts. We report in vivo roles for several of the previously unknown regulators, including CG10289 and PpV, the Drosophila orthologs of two components of the serine/threonine-protein phosphatase 6 complex; the Drosophila ortholog of TepIV, a glycophosphatidylinositol-linked protein mutated in human cancers; CG6453, a noncatalytic subunit of glucosidase II; and Rtf1, a histone methyltransferase.

Pages