Cell-based RNAi

Erica Larschan, Marcela ML Soruco, Ok-Kyung Lee, Shouyong Peng, Eric Bishop, Jessica Chery, Karen Goebel, Jessica Feng, Peter J Park, and Mitzi I Kuroda. 2012. “Identification of chromatin-associated regulators of MSL complex targeting in Drosophila dosage compensation.” PLoS Genet, 8, 7, Pp. e1002830.Abstract

Sex chromosome dosage compensation in Drosophila provides a model for understanding how chromatin organization can modulate coordinate gene regulation. Male Drosophila increase the transcript levels of genes on the single male X approximately two-fold to equal the gene expression in females, which have two X-chromosomes. Dosage compensation is mediated by the Male-Specific Lethal (MSL) histone acetyltransferase complex. Five core components of the MSL complex were identified by genetic screens for genes that are specifically required for male viability and are dispensable for females. However, because dosage compensation must interface with the general transcriptional machinery, it is likely that identifying additional regulators that are not strictly male-specific will be key to understanding the process at a mechanistic level. Such regulators would not have been recovered from previous male-specific lethal screening strategies. Therefore, we have performed a cell culture-based, genome-wide RNAi screen to search for factors required for MSL targeting or function. Here we focus on the discovery of proteins that function to promote MSL complex recruitment to "chromatin entry sites," which are proposed to be the initial sites of MSL targeting. We find that components of the NSL (Non-specific lethal) complex, and a previously unstudied zinc-finger protein, facilitate MSL targeting and display a striking enrichment at MSL entry sites. Identification of these factors provides new insight into how MSL complex establishes the specialized hyperactive chromatin required for dosage compensation in Drosophila.

Richelle Sopko, You Bin Lin, Kalpana Makhijani, Brandy Alexander, Norbert Perrimon, and Katja Brückner. 2015. “A systems-level interrogation identifies regulators of Drosophila blood cell number and survival.” PLoS Genet, 11, 3, Pp. e1005056.Abstract

In multicellular organisms, cell number is typically determined by a balance of intracellular signals that positively and negatively regulate cell survival and proliferation. Dissecting these signaling networks facilitates the understanding of normal development and tumorigenesis. Here, we study signaling by the Drosophila PDGF/VEGF Receptor (Pvr) in embryonic blood cells (hemocytes) and in the related cell line Kc as a model for the requirement of PDGF/VEGF receptors in vertebrate cell survival and proliferation. The system allows the investigation of downstream and parallel signaling networks, based on the ability of Pvr to activate Ras/Erk, Akt/TOR, and yet-uncharacterized signaling pathway/s, which redundantly mediate cell survival and contribute to proliferation. Using Kc cells, we performed a genome wide RNAi screen for regulators of cell number in a sensitized, Pvr deficient background. We identified the receptor tyrosine kinase (RTK) Insulin-like receptor (InR) as a major Pvr Enhancer, and the nuclear hormone receptors Ecdysone receptor (EcR) and ultraspiracle (usp), corresponding to mammalian Retinoid X Receptor (RXR), as Pvr Suppressors. In vivo analysis in the Drosophila embryo revealed a previously unrecognized role for EcR to promote apoptotic death of embryonic blood cells, which is balanced with pro-survival signaling by Pvr and InR. Phosphoproteomic analysis demonstrates distinct modes of cell number regulation by EcR and RTK signaling. We define common phosphorylation targets of Pvr and InR that include regulators of cell survival, and unique targets responsible for specialized receptor functions. Interestingly, our analysis reveals that the selection of phosphorylation targets by signaling receptors shows qualitative changes depending on the signaling status of the cell, which may have wide-reaching implications for other cell regulatory systems.

Susan Armknecht, Michael Boutros, Amy Kiger, Kent Nybakken, Bernard Mathey-Prevot, and Norbert Perrimon. 2005. “High-throughput RNA interference screens in Drosophila tissue culture cells.” Methods Enzymol, 392, Pp. 55-73.Abstract

This chapter describes the method used to conduct high-throughput screening (HTs) by RNA interference in Drosophila tissue culture cells. It covers four main topics: (1) a brief description of the existing platforms to conduct RNAi-screens in cell-based assays; (2) a table of the Drosophila cell lines available for these screens and a brief mention of the need to establish other cell lines as well as cultures of primary cells; (3) a discussion of the considerations and protocols involved in establishing assays suitable for HTS in a 384-well format; and (A) a summary of the various ways of handling raw data from an ongoing screen, with special emphasis on how to apply normalization for experimental variation and statistical filters to sort out noise from signals.

Adam Friedman and Norbert Perrimon. 2006. “A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling.” Nature, 444, 7116, Pp. 230-4.Abstract

Receptor tyrosine kinase (RTK) signalling through extracellular-signal-regulated kinases (ERKs) has pivotal roles during metazoan development, underlying processes as diverse as fate determination, differentiation, proliferation, survival, migration and growth. Abnormal RTK/ERK signalling has been extensively documented to contribute to developmental disorders and disease, most notably in oncogenic transformation by mutant RTKs or downstream pathway components such as Ras and Raf. Although the core RTK/ERK signalling cassette has been characterized by decades of research using mammalian cell culture and forward genetic screens in model organisms, signal propagation through this pathway is probably regulated by a larger network of moderate, context-specific proteins. The genes encoding these proteins may not have been discovered through traditional screens owing, in particular, to the requirement for visible phenotypes. To obtain a global view of RTK/ERK signalling, we performed an unbiased, RNA interference (RNAi), genome-wide, high-throughput screen in Drosophila cells using a novel, quantitative, cellular assay monitoring ERK activation. Here we show that ERK pathway output integrates a wide array of conserved cellular processes. Further analysis of selected components-in multiple cell types with different RTK ligands and oncogenic stimuli-validates and classifies 331 pathway regulators. The relevance of these genes is highlighted by our isolation of a Ste20-like kinase and a PPM-family phosphatase that seem to regulate RTK/ERK signalling in vivo and in mammalian cells. Novel regulators that modulate specific pathway outputs may be selective targets for drug discovery.

Sriram Sathyanarayanan, Xiangzhong Zheng, Shailesh Kumar, Chun-Hong Chen, Dechun Chen, Bruce Hay, and Amita Sehgal. 2008. “Identification of novel genes involved in light-dependent CRY degradation through a genome-wide RNAi screen.” Genes Dev, 22, 11, Pp. 1522-33.Abstract

Circadian clocks regulate many different physiological processes and synchronize these to environmental light:dark cycles. In Drosophila, light is transmitted to the clock by a circadian blue light photoreceptor CRYPTOCHROME (CRY). In response to light, CRY promotes the degradation of the circadian clock protein TIMELESS (TIM) and then is itself degraded. To identify novel genes involved in circadian entrainment, we performed an unbiased genome-wide screen in Drosophila cells using a sensitive and quantitative assay that measures light-induced degradation of CRY. We systematically knocked down the expression of approximately 21,000 genes and identified those that regulate CRY stability. These genes include ubiquitin ligases, signal transduction molecules, and redox molecules. Many of the genes identified in the screen are specific for CRY degradation and do not affect degradation of the TIM protein in response to light, suggesting that, for the most part, these two pathways are distinct. We further validated the effect of three candidate genes on CRY stability in vivo by assaying flies mutant for each of these genes. This work identifies a novel regulatory network involved in light-dependent CRY degradation and demonstrates the power of a genome-wide RNAi approach for understanding circadian biology.

Sheng Zhang, Richard Binari, Rui Zhou, and Norbert Perrimon. 2010. “A genomewide RNA interference screen for modifiers of aggregates formation by mutant Huntingtin in Drosophila.” Genetics, 184, 4, Pp. 1165-79.Abstract

Protein aggregates are a common pathological feature of most neurodegenerative diseases (NDs). Understanding their formation and regulation will help clarify their controversial roles in disease pathogenesis. To date, there have been few systematic studies of aggregates formation in Drosophila, a model organism that has been applied extensively in modeling NDs and screening for toxicity modifiers. We generated transgenic fly lines that express enhanced-GFP-tagged mutant Huntingtin (Htt) fragments with different lengths of polyglutamine (polyQ) tract and showed that these Htt mutants develop protein aggregates in a polyQ-length- and age-dependent manner in Drosophila. To identify central regulators of protein aggregation, we further generated stable Drosophila cell lines expressing these Htt mutants and also established a cell-based quantitative assay that allows automated measurement of aggregates within cells. We then performed a genomewide RNA interference screen for regulators of mutant Htt aggregation and isolated 126 genes involved in diverse cellular processes. Interestingly, although our screen focused only on mutant Htt aggregation, several of the identified candidates were known previously as toxicity modifiers of NDs. Moreover, modulating the in vivo activity of hsp110 (CG6603) or tra1, two hits from the screen, affects neurodegeneration in a dose-dependent manner in a Drosophila model of Huntington's disease. Thus, other aggregates regulators isolated in our screen may identify additional genes involved in the protein-folding pathway and neurotoxicity.

Stephanie E Mohr and Norbert Perrimon. 2012. “RNAi screening: new approaches, understandings, and organisms.” Wiley Interdiscip Rev RNA, 3, 2, Pp. 145-58.Abstract

RNA interference (RNAi) leads to sequence-specific knockdown of gene function. The approach can be used in large-scale screens to interrogate function in various model organisms and an increasing number of other species. Genome-scale RNAi screens are routinely performed in cultured or primary cells or in vivo in organisms such as C. elegans. High-throughput RNAi screening is benefitting from the development of sophisticated new instrumentation and software tools for collecting and analyzing data, including high-content image data. The results of large-scale RNAi screens have already proved useful, leading to new understandings of gene function relevant to topics such as infection, cancer, obesity, and aging. Nevertheless, important caveats apply and should be taken into consideration when developing or interpreting RNAi screens. Some level of false discovery is inherent to high-throughput approaches and specific to RNAi screens, false discovery due to off-target effects (OTEs) of RNAi reagents remains a problem. The need to improve our ability to use RNAi to elucidate gene function at large scale and in additional systems continues to be addressed through improved RNAi library design, development of innovative computational and analysis tools and other approaches.

Ralph A Neumüller, Thomas Gross, Anastasia A Samsonova, Arunachalam Vinayagam, Michael Buckner, Karen Founk, Yanhui Hu, Sara Sharifpoor, Adam P Rosebrock, Brenda Andrews, Fred Winston, and Norbert Perrimon. 2013. “Conserved regulators of nucleolar size revealed by global phenotypic analyses.” Sci Signal, 6, 289, Pp. ra70.Abstract

Regulation of cell growth is a fundamental process in development and disease that integrates a vast array of extra- and intracellular information. A central player in this process is RNA polymerase I (Pol I), which transcribes ribosomal RNA (rRNA) genes in the nucleolus. Rapidly growing cancer cells are characterized by increased Pol I-mediated transcription and, consequently, nucleolar hypertrophy. To map the genetic network underlying the regulation of nucleolar size and of Pol I-mediated transcription, we performed comparative, genome-wide loss-of-function analyses of nucleolar size in Saccharomyces cerevisiae and Drosophila melanogaster coupled with mass spectrometry-based analyses of the ribosomal DNA (rDNA) promoter. With this approach, we identified a set of conserved and nonconserved molecular complexes that control nucleolar size. Furthermore, we characterized a direct role of the histone information regulator (HIR) complex in repressing rRNA transcription in yeast. Our study provides a full-genome, cross-species analysis of a nuclear subcompartment and shows that this approach can identify conserved molecular modules.

Yousang Gwack, Sonia Sharma, Julie Nardone, Bogdan Tanasa, Alina Iuga, Sonal Srikanth, Heidi Okamura, Diana Bolton, Stefan Feske, Patrick G Hogan, and Anjana Rao. 2006. “A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT.” Nature, 441, 7093, Pp. 646-50.Abstract

Precise regulation of the NFAT (nuclear factor of activated T cells) family of transcription factors (NFAT1-4) is essential for vertebrate development and function. In resting cells, NFAT proteins are heavily phosphorylated and reside in the cytoplasm; in cells exposed to stimuli that raise intracellular free Ca2+ levels, they are dephosphorylated by the calmodulin-dependent phosphatase calcineurin and translocate to the nucleus. NFAT dephosphorylation by calcineurin is countered by distinct NFAT kinases, among them casein kinase 1 (CK1) and glycogen synthase kinase 3 (GSK3). Here we have used a genome-wide RNA interference (RNAi) screen in Drosophila to identify additional regulators of the signalling pathway leading from Ca2+-calcineurin to NFAT. This screen was successful because the pathways regulating NFAT subcellular localization (Ca2+ influx, Ca2+-calmodulin-calcineurin signalling and NFAT kinases) are conserved across species, even though Ca2+-regulated NFAT proteins are not themselves represented in invertebrates. Using the screen, we have identified DYRKs (dual-specificity tyrosine-phosphorylation regulated kinases) as novel regulators of NFAT. DYRK1A and DYRK2 counter calcineurin-mediated dephosphorylation of NFAT1 by directly phosphorylating the conserved serine-proline repeat 3 (SP-3) motif of the NFAT regulatory domain, thus priming further phosphorylation of the SP-2 and serine-rich region 1 (SRR-1) motifs by GSK3 and CK1, respectively. Thus, genetic screening in Drosophila can be successfully applied to cross evolutionary boundaries and identify new regulators of a transcription factor that is expressed only in vertebrates.

Caroline H Yi, Dodzie K Sogah, Michael Boyce, Alexei Degterev, Dana E Christofferson, and Junying Yuan. 2007. “A genome-wide RNAi screen reveals multiple regulators of caspase activation.” J Cell Biol, 179, 4, Pp. 619-26.Abstract

Apoptosis is an evolutionally conserved cellular suicide mechanism that can be activated in response to a variety of stressful stimuli. Increasing evidence suggests that apoptotic regulation relies on specialized cell death signaling pathways and also integrates diverse signals from additional regulatory circuits, including those of cellular homeostasis. We present a genome-wide RNA interference screen to systematically identify regulators of apoptosis induced by DNA damage in Drosophila melanogaster cells. We identify 47 double- stranded RNA that target a functionally diverse set of genes, including several with a known function in promoting cell death. Further characterization uncovers 10 genes that influence caspase activation upon the removal of Drosophila inhibitor of apoptosis 1. This set includes the Drosophila initiator caspase Dronc and, surprisingly, several metabolic regulators, a candidate tumor suppressor, Charlatan, and an N-acetyltransferase, ARD1. Importantly, several of these genes show functional conservation in regulating apoptosis in mammalian cells. Our data suggest a previously unappreciated fundamental connection between various cellular processes and caspase-dependent cell death.

David Sims, Peter Duchek, and Buzz Baum. 2009. “PDGF/VEGF signaling controls cell size in Drosophila.” Genome Biol, 10, 2, Pp. R20.Abstract

BACKGROUND: In multicellular animals, cell size is controlled by a limited set of conserved intracellular signaling pathways, which when deregulated contribute to tumorigenesis by enabling cells to grow outside their usual niche. To delineate the pathways controlling this process, we screened a genome-scale, image-based Drosophila RNA interference dataset for double-stranded RNAs that reduce the average size of adherent S2R+ cells. RESULTS: Automated analysis of images from this RNA interference screen identified the receptor tyrosine kinase Pvr, Ras pathway components and several novel genes as regulators of cell size. Significantly, Pvr/Ras signaling also affected the size of other Drosophila cell lines and of larval hemocytes. A detailed genetic analysis of this growth signaling pathway revealed a role for redundant secreted ligands, Pvf2 and Pvf3, in the establishment of an autocrine growth signaling loop. Downstream of Ras1, growth signaling was found to depend on parallel mitogen-activated protein kinase (MAPK) and phospho-inositide-3-kinase (PI3K) signaling modules, as well as the Tor pathway. CONCLUSIONS: This automated genome-wide screen identifies autocrine Pvf/Pvr signaling, upstream of Ras, MAPK and PI3K, as rate-limiting for the growth of immortalized fly cells in culture. Since, Pvf2/3 and Pvr show mutually exclusive in vivo patterns of gene expression, these data suggest that co-expression of this receptor-ligand pair plays a key role in driving cell autonomous growth during the establishment of Drosophila cell lines, as has been suggested to occur during tumor development.

Philippos Mourikis, Robert J Lake, Christopher B Firnhaber, and Brian S DeDecker. 2010. “Modifiers of notch transcriptional activity identified by genome-wide RNAi.” BMC Dev Biol, 10, Pp. 107.Abstract

BACKGROUND: The Notch signaling pathway regulates a diverse array of developmental processes, and aberrant Notch signaling can lead to diseases, including cancer. To obtain a more comprehensive understanding of the genetic network that integrates into Notch signaling, we performed a genome-wide RNAi screen in Drosophila cell culture to identify genes that modify Notch-dependent transcription. RESULTS: Employing complementary data analyses, we found 399 putative modifiers: 189 promoting and 210 antagonizing Notch activated transcription. These modifiers included several known Notch interactors, validating the robustness of the assay. Many novel modifiers were also identified, covering a range of cellular localizations from the extracellular matrix to the nucleus, as well as a large number of proteins with unknown function. Chromatin-modifying proteins represent a major class of genes identified, including histone deacetylase and demethylase complex components and other chromatin modifying, remodeling and replacement factors. A protein-protein interaction map of the Notch-dependent transcription modifiers revealed that a large number of the identified proteins interact physically with these core chromatin components. CONCLUSIONS: The genome-wide RNAi screen identified many genes that can modulate Notch transcriptional output. A protein interaction map of the identified genes highlighted a network of chromatin-modifying enzymes and remodelers that regulate Notch transcription. Our results open new avenues to explore the mechanisms of Notch signal regulation and the integration of this pathway into diverse cellular processes.

Marcelo Perez-Pepe, Victoria Slomiansky, Mariela Loschi, Luciana Luchelli, Maximiliano Neme, María Gabriela Thomas, and Graciela Lidia Boccaccio. 2012. “BUHO: a MATLAB script for the study of stress granules and processing bodies by high-throughput image analysis.” PLoS One, 7, 12, Pp. e51495.Abstract

The spontaneous and reversible formation of foci and filaments that contain proteins involved in different metabolic processes is common in both the nucleus and the cytoplasm. Stress granules (SGs) and processing bodies (PBs) belong to a novel family of cellular structures collectively known as mRNA silencing foci that harbour repressed mRNAs and their associated proteins. SGs and PBs are highly dynamic and they form upon stress and dissolve thus releasing the repressed mRNAs according to changes in cell physiology. In addition, aggregates containing abnormal proteins are frequent in neurodegenerative disorders. In spite of the growing relevance of these supramolecular aggregates to diverse cellular functions a reliable automated tool for their systematic analysis is lacking. Here we report a MATLAB Script termed BUHO for the high-throughput image analysis of cellular foci. We used BUHO to assess the number, size and distribution of distinct objects with minimal deviation from manually obtained parameters. BUHO successfully addressed the induction of both SGs and PBs in mammalian and insect cells exposed to different stress stimuli. We also used BUHO to assess the dynamics of specific mRNA-silencing foci termed Smaug 1 foci (S-foci) in primary neurons upon synaptic stimulation. Finally, we used BUHO to analyze the role of candidate genes on SG formation in an RNAi-based experiment. We found that FAK56D, GCN2 and PP1 govern SG formation. The role of PP1 is conserved in mammalian cells as judged by the effect of the PP1 inhibitor salubrinal, and involves dephosphorylation of the translation factor eIF2α. All these experiments were analyzed manually and by BUHO and the results differed in less than 5% of the average value. The automated analysis by this user-friendly method will allow high-throughput image processing in short times by providing a robust, flexible and reliable alternative to the laborious and sometimes unfeasible visual scrutiny.

Stephanie E Mohr, Yanhui Hu, Kirstin Rudd, Michael Buckner, Quentin Gilly, Blake Foster, Katarzyna Sierzputowska, Aram Comjean, Bing Ye, and Norbert Perrimon. 2015. “Reagent and Data Resources for Investigation of RNA Binding Protein Functions in Drosophila melanogaster Cultured Cells.” G3 (Bethesda), 5, 9, Pp. 1919-24.Abstract

RNA binding proteins (RBPs) are involved in many cellular functions. To facilitate functional characterization of RBPs, we generated an RNA interference (RNAi) library for Drosophila cell-based screens comprising reagents targeting known or putative RBPs. To test the quality of the library and provide a baseline analysis of the effects of the RNAi reagents on viability, we screened the library using a total ATP assay and high-throughput imaging in Drosophila S2R+ cultured cells. The results are consistent with production of a high-quality library that will be useful for functional genomics studies using other assays. Altogether, we provide resources in the form of an initial curated list of Drosophila RBPs; an RNAi screening library we expect to be used with additional assays that address more specific biological questions; and total ATP and image data useful for comparison of those additional assay results with fundamental information such as effects of a given reagent in the library on cell viability. Importantly, we make the baseline data, including more than 200,000 images, easily accessible online.

Ramanuj DasGupta, Ajamete Kaykas, Randall T Moon, and Norbert Perrimon. 2005. “Functional genomic analysis of the Wnt-wingless signaling pathway.” Science, 308, 5723, Pp. 826-33.Abstract

The Wnt-Wingless (Wg) pathway is one of a core set of evolutionarily conserved signaling pathways that regulates many aspects of metazoan development. Aberrant Wnt signaling has been linked to human disease. In the present study, we used a genomewide RNA interference (RNAi) screen in Drosophila cells to screen for regulators of the Wnt pathway. We identified 238 potential regulators, which include known pathway components, genes with functions not previously linked to this pathway, and genes with no previously assigned functions. Reciprocal-Best-Blast analyses reveal that 50% of the genes identified in the screen have human orthologs, of which approximately 18% are associated with human disease. Functional assays of selected genes from the cell-based screen in Drosophila, mammalian cells, and zebrafish embryos demonstrated that these genes have evolutionarily conserved functions in Wnt signaling. High-throughput RNAi screens in cultured cells, followed by functional analyses in model organisms, prove to be a rapid means of identifying regulators of signaling pathways implicated in development and disease.

Pages