Cell-based RNAi

Christophe J Echeverri and Norbert Perrimon. 2006. “High-throughput RNAi screening in cultured cells: a user's guide.” Nat Rev Genet, 7, 5, Pp. 373-84.Abstract

RNA interference has re-energized the field of functional genomics by enabling genome-scale loss-of-function screens in cultured cells. Looking back on the lessons that have been learned from the first wave of technology developments and applications in this exciting field, we provide both a user's guide for newcomers to the field and a detailed examination of some more complex issues, particularly concerning optimization and quality control, for more advanced users. From a discussion of cell lines, screening paradigms, reagent types and read-out methodologies, we explore in particular the complexities of designing optimal controls and normalization strategies for these challenging but extremely powerful studies.

Natalie G Farny, Jessica A Hurt, and Pamela A Silver. 2008. “Definition of global and transcript-specific mRNA export pathways in metazoans.” Genes Dev, 22, 1, Pp. 66-78.Abstract

Eukaryotic gene expression requires export of messenger RNAs (mRNAs) from their site of transcription in the nucleus to the cytoplasm where they are translated. While mRNA export has been studied in yeast, the complexity of gene structure and cellular function in metazoan cells has likely led to increased diversification of these organisms' export pathways. Here we report the results of a genome-wide RNAi screen in which we identify 72 factors required for polyadenylated [poly-(A(+))] mRNA export from the nucleus in Drosophila cells. Using structural and functional conservation analysis of yeast and Drosophila mRNA export factors, we expose the evolutionary divergence of eukaryotic mRNA export pathways. Additionally, we demonstrate the differential export requirements of two endogenous heat-inducible transcripts--intronless heat-shock protein 70 (HSP70) and intron-containing HSP83--and identify novel export factors that participate in HSP83 mRNA splicing. We characterize several novel factors and demonstrate their participation in interactions with known components of the Drosophila export machinery. One of these factors, Drosophila melanogaster PCI domain-containing protein 2 (dmPCID2), associates with polysomes and may bridge the transition between exported messenger ribonucleoprotein particles (mRNPs) and polysomes. Our results define the global network of factors involved in Drosophila mRNA export, reveal specificity in the export requirements of different transcripts, and expose new avenues for future work in mRNA export.

Dashnamoorthy Ravi, Amy M Wiles, Selvaraj Bhavani, Jianhua Ruan, Philip Leder, and Alexander JR Bishop. 2009. “A network of conserved damage survival pathways revealed by a genomic RNAi screen.” PLoS Genet, 5, 6, Pp. e1000527.Abstract

Damage initiates a pleiotropic cellular response aimed at cellular survival when appropriate. To identify genes required for damage survival, we used a cell-based RNAi screen against the Drosophila genome and the alkylating agent methyl methanesulphonate (MMS). Similar studies performed in other model organisms report that damage response may involve pleiotropic cellular processes other than the central DNA repair components, yet an intuitive systems level view of the cellular components required for damage survival, their interrelationship, and contextual importance has been lacking. Further, by comparing data from different model organisms, identification of conserved and presumably core survival components should be forthcoming. We identified 307 genes, representing 13 signaling, metabolic, or enzymatic pathways, affecting cellular survival of MMS-induced damage. As expected, the majority of these pathways are involved in DNA repair; however, several pathways with more diverse biological functions were also identified, including the TOR pathway, transcription, translation, proteasome, glutathione synthesis, ATP synthesis, and Notch signaling, and these were equally important in damage survival. Comparison with genomic screen data from Saccharomyces cerevisiae revealed no overlap enrichment of individual genes between the species, but a conservation of the pathways. To demonstrate the functional conservation of pathways, five were tested in Drosophila and mouse cells, with each pathway responding to alkylation damage in both species. Using the protein interactome, a significant level of connectivity was observed between Drosophila MMS survival proteins, suggesting a higher order relationship. This connectivity was dramatically improved by incorporating the components of the 13 identified pathways within the network. Grouping proteins into "pathway nodes" qualitatively improved the interactome organization, revealing a highly organized "MMS survival network." We conclude that identification of pathways can facilitate comparative biology analysis when direct gene/orthologue comparisons fail. A biologically intuitive, highly interconnected MMS survival network was revealed after we incorporated pathway data in our interactome analysis.

Ralph A Neumüller and Norbert Perrimon. 2011. “Where gene discovery turns into systems biology: genome-scale RNAi screens in Drosophila.” Wiley Interdiscip Rev Syst Biol Med, 3, 4, Pp. 471-8.Abstract

Systems biology aims to describe the complex interplays between cellular building blocks which, in their concurrence, give rise to the emergent properties observed in cellular behaviors and responses. This approach tries to determine the molecular players and the architectural principles of their interactions within the genetic networks that control certain biological processes. Large-scale loss-of-function screens, applicable in various different model systems, have begun to systematically interrogate entire genomes to identify the genes that contribute to a certain cellular response. In particular, RNA interference (RNAi)-based high-throughput screens have been instrumental in determining the composition of regulatory systems and paired with integrative data analyses have begun to delineate the genetic networks that control cell biological and developmental processes. Through the creation of tools for both, in vitro and in vivo genome-wide RNAi screens, Drosophila melanogaster has emerged as one of the key model organisms in systems biology research and over the last years has massively contributed to and hence shaped this discipline. WIREs Syst Biol Med 2011 3 471-478 DOI: 10.1002/wsbm.127

Clemens Bergwitz, Mark J Wee, Sumi Sinha, Joanne Huang, Charles DeRobertis, Lawrence B Mensah, Jonathan Cohen, Adam Friedman, Meghana Kulkarni, Yanhui Hu, Arunachalam Vinayagam, Michael Schnall-Levin, Bonnie Berger, Lizabeth A Perkins, Stephanie E Mohr, and Norbert Perrimon. 2013. “Genetic determinants of phosphate response in Drosophila.” PLoS One, 8, 3, Pp. e56753.Abstract

Phosphate is required for many important cellular processes and having too little phosphate or too much can cause disease and reduce life span in humans. However, the mechanisms underlying homeostatic control of extracellular phosphate levels and cellular effects of phosphate are poorly understood. Here, we establish Drosophila melanogaster as a model system for the study of phosphate effects. We found that Drosophila larval development depends on the availability of phosphate in the medium. Conversely, life span is reduced when adult flies are cultured on high phosphate medium or when hemolymph phosphate is increased in flies with impaired malpighian tubules. In addition, RNAi-mediated inhibition of MAPK-signaling by knockdown of Ras85D, phl/D-Raf or Dsor1/MEK affects larval development, adult life span and hemolymph phosphate, suggesting that some in vivo effects involve activation of this signaling pathway by phosphate. To identify novel genetic determinants of phosphate responses, we used Drosophila hemocyte-like cultured cells (S2R+) to perform a genome-wide RNAi screen using MAPK activation as the readout. We identified a number of candidate genes potentially important for the cellular response to phosphate. Evaluation of 51 genes in live flies revealed some that affect larval development, adult life span and hemolymph phosphate levels.

Stephanie E Mohr, Jennifer A Smith, Caroline E Shamu, Ralph A Neumüller, and Norbert Perrimon. 2014. “RNAi screening comes of age: improved techniques and complementary approaches.” Nat Rev Mol Cell Biol, 15, 9, Pp. 591-600.Abstract

Gene silencing through sequence-specific targeting of mRNAs by RNAi has enabled genome-wide functional screens in cultured cells and in vivo in model organisms. These screens have resulted in the identification of new cellular pathways and potential drug targets. Considerable progress has been made to improve the quality of RNAi screen data through the development of new experimental and bioinformatics approaches. The recent availability of genome-editing strategies, such as the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system, when combined with RNAi, could lead to further improvements in screen data quality and follow-up experiments, thus promoting our understanding of gene function and gene regulatory networks.

Jennifer A Philips, Eric J Rubin, and Norbert Perrimon. 2005. “Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection.” Science, 309, 5738, Pp. 1251-3.Abstract

Certain pathogens, such as Mycobacterium tuberculosis, survive within the hostile intracellular environment of a macrophage. To identify host factors required for mycobacterial entry and survival within macrophages, we performed a genomewide RNA interference screen in Drosophila macrophage-like cells, using Mycobacterium fortuitum. We identified factors required for general phagocytosis, as well as those needed specifically for mycobacterial infection. One specific factor, Peste (Pes), is a CD36 family member required for uptake of mycobacteria, but not Escherichia coli or Staphylococcus aureus. Moreover, mammalian class B scavenger receptors (SRs) conferred uptake of bacteria into nonphagocytic cells, with SR-BI and SR-BII uniquely mediating uptake of M. fortuitum, which suggests a conserved role for class B SRs in pattern recognition and innate immunity.

Chris Bakal, John Aach, George Church, and Norbert Perrimon. 2007. “Quantitative morphological signatures define local signaling networks regulating cell morphology.” Science, 316, 5832, Pp. 1753-6.Abstract

Although classical genetic and biochemical approaches have identified hundreds of proteins that function in the dynamic remodeling of cell shape in response to upstream signals, there is currently little systems-level understanding of the organization and composition of signaling networks that regulate cell morphology. We have developed quantitative morphological profiling methods to systematically investigate the role of individual genes in the regulation of cell morphology in a fast, robust, and cost-efficient manner. We analyzed a compendium of quantitative morphological signatures and described the existence of local signaling networks that act to regulate cell protrusion, adhesion, and tension.

Chris Bakal, Rune Linding, Flora Llense, Elleard Heffern, Enrique Martin-Blanco, Tony Pawson, and Norbert Perrimon. 2008. “Phosphorylation networks regulating JNK activity in diverse genetic backgrounds.” Science, 322, 5900, Pp. 453-6.Abstract

Cellular signaling networks have evolved to enable swift and accurate responses, even in the face of genetic or environmental perturbation. Thus, genetic screens may not identify all the genes that regulate different biological processes. Moreover, although classical screening approaches have succeeded in providing parts lists of the essential components of signaling networks, they typically do not provide much insight into the hierarchical and functional relations that exist among these components. We describe a high-throughput screen in which we used RNA interference to systematically inhibit two genes simultaneously in 17,724 combinations to identify regulators of Drosophila JUN NH(2)-terminal kinase (JNK). Using both genetic and phosphoproteomics data, we then implemented an integrative network algorithm to construct a JNK phosphorylation network, which provides structural and mechanistic insights into the systems architecture of JNK signaling.

Chaohong Wu, Joost Schulte, Katharine J Sepp, Troy J Littleton, and Pengyu Hong. 2010. “Automatic robust neurite detection and morphological analysis of neuronal cell cultures in high-content screening.” Neuroinformatics, 8, 2, Pp. 83-100.Abstract

Cell-based high content screening (HCS) is becoming an important and increasingly favored approach in therapeutic drug discovery and functional genomics. In HCS, changes in cellular morphology and biomarker distributions provide an information-rich profile of cellular responses to experimental treatments such as small molecules or gene knockdown probes. One obstacle that currently exists with such cell-based assays is the availability of image processing algorithms that are capable of reliably and automatically analyzing large HCS image sets. HCS images of primary neuronal cell cultures are particularly challenging to analyze due to complex cellular morphology. Here we present a robust method for quantifying and statistically analyzing the morphology of neuronal cells in HCS images. The major advantages of our method over existing software lie in its capability to correct non-uniform illumination using the contrast-limited adaptive histogram equalization method; segment neuromeres using Gabor-wavelet texture analysis; and detect faint neurites by a novel phase-based neurite extraction algorithm that is invariant to changes in illumination and contrast and can accurately localize neurites. Our method was successfully applied to analyze a large HCS image set generated in a morphology screen for polyglutamine-mediated neuronal toxicity using primary neuronal cell cultures derived from embryos of a Drosophila Huntington's Disease (HD) model.

Artyom A Alekseyenko, Joshua WK Ho, Shouyong Peng, Marnie Gelbart, Michael Y Tolstorukov, Annette Plachetka, Peter V Kharchenko, Youngsook L Jung, Andrey A Gorchakov, Erica Larschan, Tingting Gu, Aki Minoda, Nicole C Riddle, Yuri B Schwartz, Sarah CR Elgin, Gary H Karpen, Vincenzo Pirrotta, Mitzi I Kuroda, and Peter J Park. 2012. “Sequence-specific targeting of dosage compensation in Drosophila favors an active chromatin context.” PLoS Genet, 8, 4, Pp. e1002646.Abstract

The Drosophila MSL complex mediates dosage compensation by increasing transcription of the single X chromosome in males approximately two-fold. This is accomplished through recognition of the X chromosome and subsequent acetylation of histone H4K16 on X-linked genes. Initial binding to the X is thought to occur at "entry sites" that contain a consensus sequence motif ("MSL recognition element" or MRE). However, this motif is only ∼2 fold enriched on X, and only a fraction of the motifs on X are initially targeted. Here we ask whether chromatin context could distinguish between utilized and non-utilized copies of the motif, by comparing their relative enrichment for histone modifications and chromosomal proteins mapped in the modENCODE project. Through a comparative analysis of the chromatin features in male S2 cells (which contain MSL complex) and female Kc cells (which lack the complex), we find that the presence of active chromatin modifications, together with an elevated local GC content in the surrounding sequences, has strong predictive value for functional MSL entry sites, independent of MSL binding. We tested these sites for function in Kc cells by RNAi knockdown of Sxl, resulting in induction of MSL complex. We show that ectopic MSL expression in Kc cells leads to H4K16 acetylation around these sites and a relative increase in X chromosome transcription. Collectively, our results support a model in which a pre-existing active chromatin environment, coincident with H3K36me3, contributes to MSL entry site selection. The consequences of MSL targeting of the male X chromosome include increase in nucleosome lability, enrichment for H4K16 acetylation and JIL-1 kinase, and depletion of linker histone H1 on active X-linked genes. Our analysis can serve as a model for identifying chromatin and local sequence features that may contribute to selection of functional protein binding sites in the genome.

AA Kiger, B Baum, S Jones, MR Jones, A Coulson, C Echeverri, and N Perrimon. 2003. “A functional genomic analysis of cell morphology using RNA interference.” J Biol, 2, 4, Pp. 27.Abstract

BACKGROUND: The diversity of metazoan cell shapes is influenced by the dynamic cytoskeletal network. With the advent of RNA-interference (RNAi) technology, it is now possible to screen systematically for genes controlling specific cell-biological processes, including those required to generate distinct morphologies. RESULTS: We adapted existing RNAi technology in Drosophila cell culture for use in high-throughput screens to enable a comprehensive genetic dissection of cell morphogenesis. To identify genes responsible for the characteristic shape of two morphologically distinct cell lines, we performed RNAi screens in each line with a set of double-stranded RNAs (dsRNAs) targeting 994 predicted cell shape regulators. Using automated fluorescence microscopy to visualize actin filaments, microtubules and DNA, we detected morphological phenotypes for 160 genes, one-third of which have not been previously characterized in vivo. Genes with similar phenotypes corresponded to known components of pathways controlling cytoskeletal organization and cell shape, leading us to propose similar functions for previously uncharacterized genes. Furthermore, we were able to uncover genes acting within a specific pathway using a co-RNAi screen to identify dsRNA suppressors of a cell shape change induced by Pten dsRNA. CONCLUSIONS: Using RNAi, we identified genes that influence cytoskeletal organization and morphology in two distinct cell types. Some genes exhibited similar RNAi phenotypes in both cell types, while others appeared to have cell-type-specific functions, in part reflecting the different mechanisms used to generate a round or a flat cell morphology.

Shenyuan L Zhang, Andriy V Yeromin, Xiang H-F Zhang, Ying Yu, Olga Safrina, Aubin Penna, Jack Roos, Kenneth A Stauderman, and Michael D Cahalan. 2006. “Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity.” Proc Natl Acad Sci U S A, 103, 24, Pp. 9357-62.Abstract

Recent studies by our group and others demonstrated a required and conserved role of Stim in store-operated Ca(2+) influx and Ca(2+) release-activated Ca(2+) (CRAC) channel activity. By using an unbiased genome-wide RNA interference screen in Drosophila S2 cells, we now identify 75 hits that strongly inhibited Ca(2+) influx upon store emptying by thapsigargin. Among these hits are 11 predicted transmembrane proteins, including Stim, and one, olf186-F, that upon RNA interference-mediated knockdown exhibited a profound reduction of thapsigargin-evoked Ca(2+) entry and CRAC current, and upon overexpression a 3-fold augmentation of CRAC current. CRAC currents were further increased to 8-fold higher than control and developed more rapidly when olf186-F was cotransfected with Stim. olf186-F is a member of a highly conserved family of four-transmembrane spanning proteins with homologs from Caenorhabditis elegans to human. The endoplasmic reticulum (ER) Ca(2+) pump sarco-/ER calcium ATPase (SERCA) and the single transmembrane-soluble N-ethylmaleimide-sensitive (NSF) attachment receptor (SNARE) protein Syntaxin5 also were required for CRAC channel activity, consistent with a signaling pathway in which Stim senses Ca(2+) depletion within the ER, translocates to the plasma membrane, and interacts with olf186-F to trigger CRAC channel activity.

Jennifer A Philips, Maura C Porto, Hui Wang, Eric J Rubin, and Norbert Perrimon. 2008. “ESCRT factors restrict mycobacterial growth.” Proc Natl Acad Sci U S A, 105, 8, Pp. 3070-5.Abstract

Nearly 1.7 billion people are infected with Mycobacterium tuberculosis. Its ability to survive intracellularly is thought to be central to its success as a pathogen, but how it does this is poorly understood. Using a Drosophila model of infection, we identify three host cell activities, Rab7, CG8743, and the ESCRT machinery, that modulate the mycobacterial phagosome. In the absence of these factors the cell no longer restricts growth of the non-pathogen Mycobacterium smegmatis. Hence, we identify factors that represent unique vulnerabilities of the host cell, because manipulation of any one of them alone is sufficient to allow a nonpathogenic mycobacterial species to proliferate. Furthermore, we demonstrate that, in mammalian cells, the ESCRT machinery plays a conserved role in restricting bacterial growth.

Dawei Jiang, Linlin Zhao, and David E Clapham. 2009. “Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter.” Science, 326, 5949, Pp. 144-7.Abstract

Mitochondria are integral components of cellular calcium (Ca2+) signaling. Calcium stimulates mitochondrial adenosine 5'-triphosphate production, but can also initiate apoptosis. In turn, cytoplasmic Ca2+ concentrations are regulated by mitochondria. Although several transporter and ion-channel mechanisms have been measured in mitochondria, the molecules that govern Ca2+ movement across the inner mitochondrial membrane are unknown. We searched for genes that regulate mitochondrial Ca2+ and H+ concentrations using a genome-wide Drosophila RNA interference (RNAi) screen. The mammalian homolog of one Drosophila gene identified in the screen, Letm1, was found to specifically mediate coupled Ca2+/H+ exchange. RNAi knockdown, overexpression, and liposome reconstitution of the purified Letm1 protein demonstrate that Letm1 is a mitochondrial Ca2+/H+ antiporter.