Cell-based assays

Sylvia Erhardt, Barbara G Mellone, Craig M Betts, Weiguo Zhang, Gary H Karpen, and Aaron F Straight. 2008. “Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation.” J Cell Biol, 183, 5, Pp. 805-18.Abstract

Centromeres are the structural and functional foundation for kinetochore formation, spindle attachment, and chromosome segregation. In this study, we isolated factors required for centromere propagation using genome-wide RNA interference screening for defects in centromere protein A (CENP-A; centromere identifier [CID]) localization in Drosophila melanogaster. We identified the proteins CAL1 and CENP-C as essential factors for CID assembly at the centromere. CID, CAL1, and CENP-C coimmunoprecipitate and are mutually dependent for centromere localization and function. We also identified the mitotic cyclin A (CYCA) and the anaphase-promoting complex (APC) inhibitor RCA1/Emi1 as regulators of centromere propagation. We show that CYCA is centromere localized and that CYCA and RCA1/Emi1 couple centromere assembly to the cell cycle through regulation of the fizzy-related/CDH1 subunit of the APC. Our findings identify essential components of the epigenetic machinery that ensures proper specification and propagation of the centromere and suggest a mechanism for coordinating centromere inheritance with cell division.

Theresa S Moser, Russell G Jones, Craig B Thompson, Carolyn B Coyne, and Sara Cherry. 2010. “A kinome RNAi screen identified AMPK as promoting poxvirus entry through the control of actin dynamics.” PLoS Pathog, 6, 6, Pp. e1000954.Abstract

Poxviruses include medically important human pathogens, yet little is known about the specific cellular factors essential for their replication. To identify genes essential for poxvirus infection, we used high-throughput RNA interference to screen the Drosophila kinome for factors required for vaccinia infection. We identified seven genes including the three subunits of AMPK as promoting vaccinia infection. AMPK not only facilitated infection in insect cells, but also in mammalian cells. Moreover, we found that AMPK is required for macropinocytosis, a major endocytic entry pathway for vaccinia. Furthermore, we show that AMPK contributes to other virus-independent actin-dependent processes including lamellipodia formation and wound healing, independent of the known AMPK activators LKB1 and CaMKK. Therefore, AMPK plays a highly conserved role in poxvirus infection and actin dynamics independent of its role as an energy regulator.

Stephanie C Stotz and David E Clapham. 2012. “Anion-sensitive fluorophore identifies the Drosophila swell-activated chloride channel in a genome-wide RNA interference screen.” PLoS One, 7, 10, Pp. e46865.Abstract

When cells swell in hypo-osmotic solutions, chloride-selective ion channels (Cl(swell)) activate to reduce intracellular osmolality and prevent catastrophic cell rupture. Despite intensive efforts to assign a molecular identity to the mammalian Cl(swell) channel, it remains unknown. In an unbiased genome-wide RNA interference (RNAi) screen of Drosophila cells stably expressing an anion-sensitive fluorescent indicator, we identify Bestrophin 1 (dBest1) as the Drosophila Cl(swell) channel. Of the 23 screen hits with mammalian homologs and predicted transmembrane domains, only RNAi specifically targeting dBest1 eliminated the Cl(swell) current (I(Clswell)). We further demonstrate the essential contribution of dBest1 to Drosophila I(Clswell) with the introduction of a human Bestrophin disease-associated mutation (W94C). Overexpression of the W94C construct in Drosophila cells significantly reduced the endogenous I(Clswell). We confirm that exogenous expression of dBest1 alone in human embryonic kidney (HEK293) cells creates a clearly identifiable Drosophila-like I(Clswell). In contrast, activation of mouse Bestrophin 2 (mBest2), the closest mammalian ortholog of dBest1, is swell-insensitive. The first 64 residues of dBest1 conferred swell activation to mBest2. The chimera, however, maintains mBest2-like pore properties, strongly indicating that the Bestrophin protein forms the Cl(swell) channel itself rather than functioning as an essential auxiliary subunit. dBest1 is an anion channel clearly responsive to swell; this activation depends upon its N-terminus.

Alfeu Zanotto-Filho, Ravi Dashnamoorthy, Eva Loranc, Luis HT de Souza, José CF Moreira, Uthra Suresh, Yidong Chen, and Alexander JR Bishop. 2016. “Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.” PLoS One, 11, 4, Pp. e0153970.Abstract

Alkylating agents are a key component of cancer chemotherapy. Several cellular mechanisms are known to be important for its survival, particularly DNA repair and xenobiotic detoxification, yet genomic screens indicate that additional cellular components may be involved. Elucidating these components has value in either identifying key processes that can be modulated to improve chemotherapeutic efficacy or may be altered in some cancers to confer chemoresistance. We therefore set out to reevaluate our prior Drosophila RNAi screening data by comparison to gene expression arrays in order to determine if we could identify any novel processes in alkylation damage survival. We noted a consistent conservation of alkylation survival pathways across platforms and species when the analysis was conducted on a pathway/process level rather than at an individual gene level. Better results were obtained when combining gene lists from two datasets (RNAi screen plus microarray) prior to analysis. In addition to previously identified DNA damage responses (p53 signaling and Nucleotide Excision Repair), DNA-mRNA-protein metabolism (transcription/translation) and proteasome machinery, we also noted a highly conserved cross-species requirement for NRF2, glutathione (GSH)-mediated drug detoxification and Endoplasmic Reticulum stress (ER stress)/Unfolded Protein Responses (UPR) in cells exposed to alkylation. The requirement for GSH, NRF2 and UPR in alkylation survival was validated by metabolomics, protein studies and functional cell assays. From this we conclude that RNAi/gene expression fusion is a valid strategy to rapidly identify key processes that may be extendable to other contexts beyond damage survival.

AA Kiger, B Baum, S Jones, MR Jones, A Coulson, C Echeverri, and N Perrimon. 2003. “A functional genomic analysis of cell morphology using RNA interference.” J Biol, 2, 4, Pp. 27.Abstract

BACKGROUND: The diversity of metazoan cell shapes is influenced by the dynamic cytoskeletal network. With the advent of RNA-interference (RNAi) technology, it is now possible to screen systematically for genes controlling specific cell-biological processes, including those required to generate distinct morphologies. RESULTS: We adapted existing RNAi technology in Drosophila cell culture for use in high-throughput screens to enable a comprehensive genetic dissection of cell morphogenesis. To identify genes responsible for the characteristic shape of two morphologically distinct cell lines, we performed RNAi screens in each line with a set of double-stranded RNAs (dsRNAs) targeting 994 predicted cell shape regulators. Using automated fluorescence microscopy to visualize actin filaments, microtubules and DNA, we detected morphological phenotypes for 160 genes, one-third of which have not been previously characterized in vivo. Genes with similar phenotypes corresponded to known components of pathways controlling cytoskeletal organization and cell shape, leading us to propose similar functions for previously uncharacterized genes. Furthermore, we were able to uncover genes acting within a specific pathway using a co-RNAi screen to identify dsRNA suppressors of a cell shape change induced by Pten dsRNA. CONCLUSIONS: Using RNAi, we identified genes that influence cytoskeletal organization and morphology in two distinct cell types. Some genes exhibited similar RNAi phenotypes in both cell types, while others appeared to have cell-type-specific functions, in part reflecting the different mechanisms used to generate a round or a flat cell morphology.

Sara Cherry, Amit Kunte, Hui Wang, Carolyn Coyne, Robert B Rawson, and Norbert Perrimon. 2006. “COPI activity coupled with fatty acid biosynthesis is required for viral replication.” PLoS Pathog, 2, 10, Pp. e102.Abstract

During infection by diverse viral families, RNA replication occurs on the surface of virally induced cytoplasmic membranes of cellular origin. How this process is regulated, and which cellular factors are required, has been unclear. Moreover, the host-pathogen interactions that facilitate the formation of this new compartment might represent critical determinants of viral pathogenesis, and their elucidation may lead to novel insights into the coordination of vesicular trafficking events during infection. Here we show that in Drosophila cells, Drosophila C virus remodels the Golgi apparatus and forms a novel vesicular compartment, on the surface of which viral RNA replication takes place. Using genome-wide RNA interference screening, we found that this step in the viral lifecycle requires at least two host encoded pathways: the coat protein complex I (COPI) coatamer and fatty acid biosynthesis. Our results integrate, clarify, and extend numerous observations concerning the cell biology of viral replication, allowing us to conclude that the coupling of new cellular membrane formation with the budding of these vesicles from the Golgi apparatus allows for the regulated generation of this new virogenic organelle, which is essential for viral replication. Additionally, because these pathways are also limiting in flies and in human cells infected with the related RNA virus poliovirus, they may represent novel targets for antiviral therapies.

Jianwu Bai, Richard Binari, Jian-Quan Ni, Marina Vijayakanthan, Hong-Sheng Li, and Norbert Perrimon. 2008. “RNA interference screening in Drosophila primary cells for genes involved in muscle assembly and maintenance.” Development, 135, 8, Pp. 1439-49.Abstract

To facilitate the genetic analysis of muscle assembly and maintenance, we have developed a method for efficient RNA interference (RNAi) in Drosophila primary cells using double-stranded RNAs (dsRNAs). First, using molecular markers, we confirm and extend the observation that myogenesis in primary cultures derived from Drosophila embryonic cells follows the same developmental course as that seen in vivo. Second, we apply this approach to analyze 28 Drosophila homologs of human muscle disease genes and find that 19 of them, when disrupted, lead to abnormal muscle phenotypes in primary culture. Third, from an RNAi screen of 1140 genes chosen at random, we identify 49 involved in late muscle differentiation. We validate our approach with the in vivo analyses of three genes. We find that Fermitin 1 and Fermitin 2, which are involved in integrin-containing adhesion structures, act in a partially redundant manner to maintain muscle integrity. In addition, we characterize CG2165, which encodes a plasma membrane Ca2+-ATPase, and show that it plays an important role in maintaining muscle integrity. Finally, we discuss how Drosophila primary cells can be manipulated to develop cell-based assays to model human diseases for RNAi and small-molecule screens.

Franz Wendler, Alison K Gillingham, Rita Sinka, Cláudia Rosa-Ferreira, David E Gordon, Xavier Franch-Marro, Andrew A Peden, Jean-Paul Vincent, and Sean Munro. 2010. “A genome-wide RNA interference screen identifies two novel components of the metazoan secretory pathway.” EMBO J, 29, 2, Pp. 304-14.Abstract

Genetic screens in the yeast Saccharomyces cerevisiae have identified many proteins involved in the secretory pathway, most of which have orthologues in higher eukaryotes. To investigate whether there are additional proteins that are required for secretion in metazoans but are absent from yeast, we used genome-wide RNA interference (RNAi) to look for genes required for secretion of recombinant luciferase from Drosophila S2 cells. This identified two novel components of the secretory pathway that are conserved from humans to plants. Gryzun is distantly related to, but distinct from, the Trs130 subunit of the TRAPP complex but is absent from S. cerevisiae. RNAi of human Gryzun (C4orf41) blocks Golgi exit. Kish is a small membrane protein with a previously uncharacterised orthologue in yeast. The screen also identified Drosophila orthologues of almost 60% of the yeast genes essential for secretion. Given this coverage, the small number of novel components suggests that contrary to previous indications the number of essential core components of the secretory pathway is not much greater in metazoans than in yeasts.

Adam A Friedman, George Tucker, Rohit Singh, Dong Yan, Arunachalam Vinayagam, Yanhui Hu, Richard Binari, Pengyu Hong, Xiaoyun Sun, Maura Porto, Svetlana Pacifico, Thilakam Murali, Russell L Finley, John M Asara, Bonnie Berger, and Norbert Perrimon. 2011. “Proteomic and functional genomic landscape of receptor tyrosine kinase and ras to extracellular signal-regulated kinase signaling.” Sci Signal, 4, 196, Pp. rs10.Abstract

Characterizing the extent and logic of signaling networks is essential to understanding specificity in such physiological and pathophysiological contexts as cell fate decisions and mechanisms of oncogenesis and resistance to chemotherapy. Cell-based RNA interference (RNAi) screens enable the inference of large numbers of genes that regulate signaling pathways, but these screens cannot provide network structure directly. We describe an integrated network around the canonical receptor tyrosine kinase (RTK)-Ras-extracellular signal-regulated kinase (ERK) signaling pathway, generated by combining parallel genome-wide RNAi screens with protein-protein interaction (PPI) mapping by tandem affinity purification-mass spectrometry. We found that only a small fraction of the total number of PPI or RNAi screen hits was isolated under all conditions tested and that most of these represented the known canonical pathway components, suggesting that much of the core canonical ERK pathway is known. Because most of the newly identified regulators are likely cell type- and RTK-specific, our analysis provides a resource for understanding how output through this clinically relevant pathway is regulated in different contexts. We report in vivo roles for several of the previously unknown regulators, including CG10289 and PpV, the Drosophila orthologs of two components of the serine/threonine-protein phosphatase 6 complex; the Drosophila ortholog of TepIV, a glycophosphatidylinositol-linked protein mutated in human cancers; CG6453, a noncatalytic subunit of glucosidase II; and Rtf1, a histone methyltransferase.

Inma Gonzalez, Julio Mateos-Langerak, Aubin Thomas, Thierry Cheutin, and Giacomo Cavalli. 2014. “Identification of regulators of the three-dimensional polycomb organization by a microscopy-based genome-wide RNAi screen.” Mol Cell, 54, 3, Pp. 485-99.Abstract

Polycomb group (PcG) proteins dynamically define cellular identities through epigenetic repression of key developmental genes. PcG target gene repression can be stabilized through the interaction in the nucleus at PcG foci. Here, we report the results of a high-resolution microscopy genome-wide RNAi screen that identifies 129 genes that regulate the nuclear organization of Pc foci. Candidate genes include PcG components and chromatin factors, as well as many protein-modifying enzymes, including components of the SUMOylation pathway. In the absence of SUMO, Pc foci coagulate into larger aggregates. Conversely, loss of function of the SUMO peptidase Velo disperses Pc foci. Moreover, SUMO and Velo colocalize with PcG proteins at PREs, and Pc SUMOylation affects its chromatin targeting, suggesting that the dynamic regulation of Pc SUMOylation regulates PcG-mediated silencing by modulating the kinetics of Pc binding to chromatin as well as its ability to form Polycomb foci.

Kent Nybakken, Steven A Vokes, Ting-Yi Lin, Andrew P McMahon, and Norbert Perrimon. 2005. “A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway.” Nat Genet, 37, 12, Pp. 1323-32.Abstract

Members of the Hedgehog (Hh) family of signaling proteins are powerful regulators of developmental processes in many organisms and have been implicated in many human disease states. Here we report the results of a genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. The screen identified hundreds of potential new regulators of Hh signaling, including many large protein complexes with pleiotropic effects, such as the coat protein complex I (COPI) complex, the ribosome and the proteasome. We identified the multimeric protein phosphatase 2A (PP2A) and two new kinases, the D. melanogaster orthologs of the vertebrate PITSLRE and cyclin-dependent kinase-9 (CDK9) kinases, as Hh regulators. We also identified a large group of constitutive and alternative splicing factors, two nucleoporins involved in mRNA export and several RNA-regulatory proteins as potent regulators of Hh signal transduction, indicating that splicing regulation and mRNA transport have a previously unrecognized role in Hh signaling. Finally, we showed that several of these genes have conserved roles in mammalian Hh signaling.

Isabelle Derré, Marc Pypaert, Alice Dautry-Varsat, and Hervé Agaisse. 2007. “RNAi screen in Drosophila cells reveals the involvement of the Tom complex in Chlamydia infection.” PLoS Pathog, 3, 10, Pp. 1446-58.Abstract

Chlamydia spp. are intracellular obligate bacterial pathogens that infect a wide range of host cells. Here, we show that C. caviae enters, replicates, and performs a complete developmental cycle in Drosophila SL2 cells. Using this model system, we have performed a genome-wide RNA interference screen and identified 54 factors that, when depleted, inhibit C. caviae infection. By testing the effect of each candidate's knock down on L. monocytogenes infection, we have identified 31 candidates presumably specific of C. caviae infection. We found factors expected to have an effect on Chlamydia infection, such as heparansulfate glycosaminoglycans and actin and microtubule remodeling factors. We also identified factors that were not previously described as involved in Chlamydia infection. For instance, we identified members of the Tim-Tom complex, a multiprotein complex involved in the recognition and import of nuclear-encoded proteins to the mitochondria, as required for C. caviae infection of Drosophila cells. Finally, we confirmed that depletion of either Tom40 or Tom22 also reduced C. caviae infection in mammalian cells. However, C. trachomatis infection was not affected, suggesting that the mechanism involved is C. caviae specific.

David Sims, Peter Duchek, and Buzz Baum. 2009. “PDGF/VEGF signaling controls cell size in Drosophila.” Genome Biol, 10, 2, Pp. R20.Abstract

BACKGROUND: In multicellular animals, cell size is controlled by a limited set of conserved intracellular signaling pathways, which when deregulated contribute to tumorigenesis by enabling cells to grow outside their usual niche. To delineate the pathways controlling this process, we screened a genome-scale, image-based Drosophila RNA interference dataset for double-stranded RNAs that reduce the average size of adherent S2R+ cells. RESULTS: Automated analysis of images from this RNA interference screen identified the receptor tyrosine kinase Pvr, Ras pathway components and several novel genes as regulators of cell size. Significantly, Pvr/Ras signaling also affected the size of other Drosophila cell lines and of larval hemocytes. A detailed genetic analysis of this growth signaling pathway revealed a role for redundant secreted ligands, Pvf2 and Pvf3, in the establishment of an autocrine growth signaling loop. Downstream of Ras1, growth signaling was found to depend on parallel mitogen-activated protein kinase (MAPK) and phospho-inositide-3-kinase (PI3K) signaling modules, as well as the Tor pathway. CONCLUSIONS: This automated genome-wide screen identifies autocrine Pvf/Pvr signaling, upstream of Ras, MAPK and PI3K, as rate-limiting for the growth of immortalized fly cells in culture. Since, Pvf2/3 and Pvr show mutually exclusive in vivo patterns of gene expression, these data suggest that co-expression of this receptor-ligand pair plays a key role in driving cell autonomous growth during the establishment of Drosophila cell lines, as has been suggested to occur during tumor development.

Philippos Mourikis, Robert J Lake, Christopher B Firnhaber, and Brian S DeDecker. 2010. “Modifiers of notch transcriptional activity identified by genome-wide RNAi.” BMC Dev Biol, 10, Pp. 107.Abstract

BACKGROUND: The Notch signaling pathway regulates a diverse array of developmental processes, and aberrant Notch signaling can lead to diseases, including cancer. To obtain a more comprehensive understanding of the genetic network that integrates into Notch signaling, we performed a genome-wide RNAi screen in Drosophila cell culture to identify genes that modify Notch-dependent transcription. RESULTS: Employing complementary data analyses, we found 399 putative modifiers: 189 promoting and 210 antagonizing Notch activated transcription. These modifiers included several known Notch interactors, validating the robustness of the assay. Many novel modifiers were also identified, covering a range of cellular localizations from the extracellular matrix to the nucleus, as well as a large number of proteins with unknown function. Chromatin-modifying proteins represent a major class of genes identified, including histone deacetylase and demethylase complex components and other chromatin modifying, remodeling and replacement factors. A protein-protein interaction map of the Notch-dependent transcription modifiers revealed that a large number of the identified proteins interact physically with these core chromatin components. CONCLUSIONS: The genome-wide RNAi screen identified many genes that can modulate Notch transcriptional output. A protein interaction map of the identified genes highlighted a network of chromatin-modifying enzymes and remodelers that regulate Notch transcription. Our results open new avenues to explore the mechanisms of Notch signal regulation and the integration of this pathway into diverse cellular processes.

Keren Imberg-Kazdan, Susan Ha, Alex Greenfield, Christopher S Poultney, Richard Bonneau, Susan K Logan, and Michael J Garabedian. 2013. “A genome-wide RNA interference screen identifies new regulators of androgen receptor function in prostate cancer cells.” Genome Res, 23, 4, Pp. 581-91.Abstract

The androgen receptor (AR) is a mediator of both androgen-dependent and castration-resistant prostate cancers. Identification of cellular factors affecting AR transcriptional activity could in principle yield new targets that reduce AR activity and combat prostate cancer, yet a comprehensive analysis of the genes required for AR-dependent transcriptional activity has not been determined. Using an unbiased genetic approach that takes advantage of the evolutionary conservation of AR signaling, we have conducted a genome-wide RNAi screen in Drosophila cells for genes required for AR transcriptional activity and applied the results to human prostate cancer cells. We identified 45 AR-regulators, which include known pathway components and genes with functions not previously linked to AR regulation, such as HIPK2 (a protein kinase) and MED19 (a subunit of the Mediator complex). Depletion of HIPK2 and MED19 in human prostate cancer cells decreased AR target gene expression and, importantly, reduced the proliferation of androgen-dependent and castration-resistant prostate cancer cells. We also systematically analyzed additional Mediator subunits and uncovered a small subset of Mediator subunits that interpret AR signaling and affect AR-dependent transcription and prostate cancer cell proliferation. Importantly, targeting of HIPK2 by an FDA-approved kinase inhibitor phenocopied the effect of depletion by RNAi and reduced the growth of AR-positive, but not AR-negative, treatment-resistant prostate cancer cells. Thus, our screen has yielded new AR regulators including drugable targets that reduce the proliferation of castration-resistant prostate cancer cells.

Pages