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Abstract Genome-wide screens in Drosophila cells have offered numerous insights into gene

function, yet a major limitation has been the inability to stably deliver large multiplexed DNA

libraries to cultured cells allowing barcoded pooled screens. Here, we developed a site-specific

integration strategy for library delivery and performed a genome-wide CRISPR knockout screen in

Drosophila S2R+ cells. Under basal growth conditions, 1235 genes were essential for cell fitness at

a false-discovery rate of 5%, representing the highest-resolution fitness gene set yet assembled for

Drosophila, including 407 genes which likely duplicated along the vertebrate lineage and whose

orthologs were underrepresented in human CRISPR screens. We additionally performed context-

specific fitness screens for resistance to or synergy with trametinib, a Ras/ERK/ETS inhibitor, or

rapamycin, an mTOR inhibitor, and identified key regulators of each pathway. The results present a

novel, scalable, and versatile platform for functional genomic screens in invertebrate cells.

DOI: https://doi.org/10.7554/eLife.36333.001

Introduction
Systematic perturbation of gene function in eukaryotic cells using arrayed (well-by-well) reagents is a

powerful technique that has been used to successfully assay many fundamental biological questions

such as proliferation, protein secretion, morphology, organelle maintenance, viral entry, synthetic

lethality, and other topics (Mohr et al., 2014). An alternative approach, widely used in mammalian

cells, is pooled screening that uses limited titers of integrating lentiviral vectors carrying a perturba-

tive DNA sequence such that each cell receives one integrating virus. In pooled screens, the perturb-

ing DNA reagent serves as the tag in subsequent sequencing (Berns et al., 2004; Moffat et al.,

2006; Brummelkamp and Bernards, 2003). A key benefit of this approach is that pool size can be

extremely large, allowing high reagent multiplicity and thus increased screen quality. The pooled

approach in mammalian cells has been used extensively to perform RNAi and more recently single

guide RNA (sgRNA) screens using CRISPR/Cas9 (Shalem et al., 2014; Wang et al., 2015;

Hart et al., 2015).

Genetic loss-of-function arrayed RNAi screens in Drosophila cell lines have provided insight into

genes regulating various biological processes (Boutros et al., 2004; Björklund et al., 2006;

Kiger et al., 2003; D’Ambrosio and Vale, 2010; Bard et al., 2006; Guo et al., 2008; Hao et al.,

2008; Housden et al., 2015). However, this approach has drawbacks that limit resolution, including

off-target effects and incomplete loss-of-function due to RNAi, and the high cost of reagent multi-

plicity and replication due to the arrayed format. Pooled CRISPR may address the major drawbacks:

CRISPR generates complete loss-of-function alleles and causes fewer off-target effects on average

(Morgens et al., 2016; Evers et al., 2016), and the pooled format allows greater multiplicity and

replication for unit cost. Approximately half of the genes in Drosophila, arguably the best
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characterized multicellular genetic model system, lack functional characterization (Ewen-

Campen et al., 2017), so the need to develop orthogonal screening approaches is clear.

By comparing the abundance of guides present in actively growing populations of cells at differ-

ent time points during growth, CRISPR screens provide a relative measurement of cell doubling, but

because the cause of proliferation reduction is unclear from the screen alone, the screens are said to

identify genes necessary for optimal fitness rather than essential genes (Hart et al., 2015). Essential

genes, those absolutely required for cell doubling, are, by definition, a subset of fitness genes.

Here, we introduce a new method to deliver pooled DNA libraries stably into cell lines. We use

this technology to conduct a genome-wide CRISPR screen for optimal fitness in Drosophila cells and

identify 1235 genes essential for fitness, 303 of which are uncharacterized in Drosophila. Moreover,

we show that the system can be used in combination with drug perturbation to identify genes that

when knocked out buffer cells against the drug or act synergistically with it. The method should be

amenable to adapting any pooled DNA library screening approach to Drosophila or other inverte-

brate cell lines, such as shRNA knockdown (Berns et al., 2004) or CRISPR activation/inhibition.

Results

Development of a pooled library delivery method for Drosophila cell-
lines
Pooled mammalian cell-line screens use lentiviral vectors to deliver highly complex libraries of DNA

reagents. However, the use of lentiviral vectors in insect cells is extremely inefficient (unpublished

observations) possibly due to toxicity (Qin et al., 2010). An important advantage of library delivery

using lentiviral transduction is that each sequence integrates into a transcriptionally active site in the

eLife digest Genes are made up of DNA and carry the instructions necessary to build an

organism. Humans have over 20,000 genes, while other animals, such as fruit flies, have about

14,000. An ongoing challenge in biology is to identify the role of every gene in the human body.

Since most of them are conserved in the fruit fly, this insect is one of the most extensively studied

organisms.

Scientists often use a technique called CRISPR to edit genes. It enables researchers to modify

DNA sequences to selectively alter the purpose of a gene or even turn it off to find out what it does.

CRISPR requires a guide molecule (for example, sgRNAs), which leads the system to a particular

DNA sequence to start the process. Often, researchers create many sgRNAs and deliver them to a

large pool of cells with the help of viruses, so that each cell gets a different sgRNA that mutates a

different gene. When the cells are then treated with a specific drug, the composition of the sgRNAs

in the pool changes, depending on which genes are needed to withstand the drug, and which genes

– when turned-off – create cells that are resistant to the drug.

Although thousands of mutant flies have been created to investigate how a deactivated or faulty

gene can affect the health and behavior of the fly, we still lack meaningful information on about half

of their genes. This is partly because the viruses used to deliver sgRNAs in mammals do not work in

fly cells. Here, Viswanatha et al. developed a simple protocol to generate cell pools of CRISPR

mutants, which uses a new strategy that uses bacteria to deliver DNA to fly cells.

This allowed to identify over 1,000 genes necessary for cells to multiply properly, many of which

had not been studied before. The technique was also used in combination with drugs to examine

the interactions between genes and drugs – an approach that could be further adapted to examine

interactions between genes and nutrients, or between genes.

This new approach will open doors to systematically uncover the purpose of every gene in the fly.

A better understanding of what genes do could help to identify potential genetic weaknesses in

certain types of cancer or other diseases, which may lead to the development of more effective

treatments. Moreover, the method is likely to work in other insects, for example, mosquitos, where

it may uncover new genes involved in mosquito-borne diseases such as malaria or Zika virus.

DOI: https://doi.org/10.7554/eLife.36333.002
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host chromosome where it is expressed and remains in the genome as a detectable barcode such

that enrichment or depletion of each sequence can be monitored by massively parallel (next-genera-

tion) sequencing. As an alternative strategy, we assessed the efficiency of phiC31 site-specific

recombination mediated by plasmid transfection. Methods for recombination in cell lines were

recently developed (Manivannan and Simcox, 2016; Neumüller et al., 2012; Cherbas et al., 2015),

but the quantitative efficiency of integration has not been reported. Efficiency is critical for pooled

screening applications as it must reach a threshold above which generating and maintaining >1000X

representation of a library of tens of thousands of elements becomes technically and cost-feasible

(Kampmann et al., 2014). We note that a previous study attempted to use pooled transient trans-

fection for barcoded delivery of a DNA library in Drosophila cells but failed to identify any essential

genes using the system, most likely due to the lack of a mechanism for retention of the DNA

reagents in the cells through extended passaging (Bassett et al., 2015).

To test phiC31 integration efficiency in Drosophila cells, a Drosophila S2R + cell line derivative,

PT5, harboring a mobilized MiMIC transposon containing attP sites flanking mCherry

(Neumüller et al., 2012) was transfected with a plasmid containing attB flanking a GFP-2A-Puro(res)

cassette, which we termed ‘pLib6.4’, along with a phiC31 helper plasmid (Figure 1A). The popula-

tion was then passaged for two months to dilute unintegrated DNA. Importantly, no selection

reagent was added during these passages in order to monitor the efficiency of integration rather

than the added efficiencies of integration and selection. Integration efficiency, inferred through flow

cytometry (Figure 1B), suggested that phiC31-mediated cassette exchange occurred in ~20% of the

cells (even without accounting for incomplete transfection), 123-fold more than the background ille-

gitimate recombination rate observed without phiC31 (Figure 1B). Interestingly, pLib6.4, which con-

tains separated attB sites flanking the DNA sequence to be integrated, allowed ~40 fold greater

integration efficiency than traditional Drosophila attB40 vectors such as pCa4B (Markstein et al.,

2008), in which the attB sites are adjacent and require integration of the entire plasmid (data not

shown). Growth in puromycin enriched for integrants (Figure 1B).

We next adapted the platform to CRISPR-Cas9 knockout screening. First, we generated PT5

S2R + cells stably expressing metallothionein-driven SpCas9 (‘PT5/Cas9’). In combination with an

sgRNA targeting the nonessential gene Dredd, PT5/Cas9 cells without induction were capable of

editing nearly 50% of Dredd alleles, which was higher than that achieved by repeated rounds of tran-

sient transfection with a SpCas9 expression plasmid (Figure 1C) and not improved by copper induc-

tion (Figure 1—figure supplement 1). In a pilot test of a pooled screening system, we transfected

cells with a pool of sgRNAs in pLib6.4 and monitored sgRNA abundance following passaging, rea-

soning that sgRNAs targeting genes required for optimal fitness would be lost while genes whose

presence or absence has no effect on cell growth would be retained (Figure 1D). After 60 days

(roughly 60 cell doublings), the pools were significantly depleted of some sgRNAs targeting the

essential genes Rho1 and Diap1 relative to those targeting genes predicted to have non-essential

functions (Figure 1E). Monitoring Rho1 or Diap1-targeted sgRNAs in the screen pools 30, 45, or 60

days post-transfection showed that 45 days of passaging is optimal (Figure 1F). A principle concern

of transfection-mediated pooled screening is the potential for low signal-to-noise due to multiple

sgRNA delivery to the same cell shortly after transfection, but the subsequent loss of all but one

sgRNA at the end of the assay. To determine whether the signal-to-noise ratio could be improved

by reducing transfection multiplicity, we developed in parallel an inducible Cas9 expression system

in S2R+/PT5 cells using intein-Cas9 (Davis et al., 2015) coupled with inducible expression in order

to withhold Cas9 activity until sgRNAs have integrated (Figure 1G, Figure 1—figure supplement

2). Surprisingly, a comparison of dropout efficiencies between the inducible and constitutive Cas9

platforms showed more selective reduction of Rho1 or Diap1 sgRNAs with constitutive rather than

inducible Cas9, most likely due to the lower overall editing efficiency from intein-Cas9 as previously

reported (Liu et al., 2016) (Figure 1G, Figure 1—figure supplement 2B,C). From these results, we

conclude that the use of phiC31 integration into the PT5/Cas9 cells is suitable for scalable perturba-

tion screening using a pooled sgRNA library in Drosophila cells.

Genome-wide CRISPR screening in Drosophila cells and screen metrics
To construct a genome-wide sgRNA knockout library for Drosophila, we pre-computed sgRNAs for

the first half of the coding region of all genes (Ren et al., 2013), applied efficiency and frame-shift

filters previously shown to correlate with reagent success (Housden et al., 2015; Bae et al., 2014),
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Figure 1. A novel method for introducing highly complex DNA libraries using phiC31 recombination. (A) phiC31 attP-attB recombination strategy. S2R

+/PT5 cells containing attP sites (gold) flanking mCherry were recombined with attB donor (pLib6.4) containing attB sites (yellow) flanking U6 promoter

for sgRNA expression and GFP-2A-Puro expression cassette. (B) Recombination efficiency measured by flow-cytometry. Transfected cells were and

grown with or without puromycin as indicated and passaged for 60 days. Graphs reflect total percentage of stable integrants (GFP+/total). N = 3. (C)

Cells stably or transiently transfected to express Cas9 or control vector were each additionally transfected with an sgRNA targeting the Dredd allele

followed by editing efficiency assay (T7E1) at the Dredd locus. (D) Scheme for pooled screens containing a library of integrating sgRNA expression

vectors. (E) Dropout of essential-gene targeted sgRNAs from a minipool of 31 sgRNAs. Two replicates of PT5 or PT5/Cas9 cells transfected with

sgRNAs targeting Rho1 (red) or Diap1 (blue) and additional sgRNAs targeting eight genes predicted to have non-essential functions (grey) were

passaged with puromycin for 60 days and sgRNA abundance was measured using next-generation sequencing. Graph shows log2(fold-change) of each

sgRNA in cells expressing Cas9 divided by sgRNAs in cells not expressing Cas9. (E) Optimizing passage time for dropout measurements. sgRNA

abundance was detected from cells transfected as in (D) but analyzed initially, after 30 days, or after 45 days, and log2 fold-changes were compared to

those at 60 days. (G) Left: Schematic of experiment to test effect of inducible versus constitutive Cas9 activity. Right: Dropout efficiencies from pooled

screens using inducible versus constitutive Cas9 and a mixture of sgRNAs targeting either essential genes or those predicted to be non-essential.

Vertical axis reflects log2(fold-change) for each sgRNA. Shown are means of two independent replicates.

DOI: https://doi.org/10.7554/eLife.36333.003

The following figure supplements are available for figure 1:

Figure supplement 1. Copper induction is not required in PT5/MT-Cas9 cells to give maximal gene editing efficiency.

DOI: https://doi.org/10.7554/eLife.36333.004

Figure supplement 2. Validation of Cas9 induction system in Drosophila S2R + cells.

DOI: https://doi.org/10.7554/eLife.36333.005

Figure supplement 3. Design of sgRNA library vector and sgRNA PCR for next-generation sequencing.

DOI: https://doi.org/10.7554/eLife.36333.006
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and ranked the remaining designs based on the uniqueness of the seed region sequence (12 bp

downstream of the PAM) and the number of potential off-target sites. The top ranked 6–8 sgRNAs

per gene (85,558 in total) were chosen and synthesized together on a microarray chip with non-tar-

geting and intergenic negative controls, harvested by PCR, and cloned into pLib6.4 using published

methods (Gilbert et al., 2014). We used a barcode strategy to separate the full library into three

focused library pools so that we could perform focused or genome-wide screens. Each focused sub-

set of the library targets a unique set of experimental genes as well as a common set of controls

(Figure 2A; Supplementary file 1).

To identify fitness genes under basal growth conditions, we transfected cells with pLib6.4 contain-

ing the library of sgRNAs along with phiC31 helper plasmid and passaged the cells every 5 days for

45 days. We transfected ~1500 cells per sgRNA and carried >1500 cells per sgRNA per passage to

maintain the diversity of the original library. Each experimental library was in-line barcoded using

specific primers and sequenced together using next-generation sequencing (Figure 1—figure sup-

plement 3). To determine reagent correlation, the three separated sgRNA pools were each trans-

fected and cells passaged independently and common controls were compared (Figure 2A;

Supplementary file 1). Comparing sgRNAs prior to transfection versus 45 days after transfection

yielded high reagent correlations between the same sgRNAs as demonstrated for Rho1 or intergenic

guides, for which different sequences produced a highly reproducible range of varied dropout effi-

ciencies (Figure 2B; Supplementary file 1).

We used MAGeCK (Li et al., 2014) maximum likelihood estimation (MLE) to compute fitness

Z-scores for each gene from the log2 fold-changes of individual sgRNAs, which yielded good gene-

level correlation between sequential biological replicates (Figure 2C; Pearson’s r = 0.65). Because all

true fitness genes must be expressed as mRNA, fitness scores were compared with gene expression

from S2R+ cells (Celniker et al., 2009) as an orthogonal validation of the CRISPR results

(Figure 2D). Fitness genes were highly enriched for genes with any expression level of RPKM > 1

(Figure 2D). By ranking genes by fitness score, we calculated a rank-wise false-discovery rate (FDR,

defined as cumulative distribution of false-positive/[true positive + false positive]) and set a cutoff at

5%, identifying 1235 fitness genes (Figure 2E).

The current state-of-the-art for Drosophila cell-based screens is arrayed RNAi (Mohr et al.,

2014). We re-analyzed a genome-wide RNAi viability screen in S2R+ cells (Boutros et al., 2004) and

removed double-stranded RNA designs with predicted off-targets, which significantly lowered the

FDR of the RNAi screen (see Materials and methods). Nevertheless, compared with pooled CRISPR

screen results, the re-analyzed RNAi-based fitness gene set still had a far higher FDR, allowing the

discovery of only 145 fitness genes at an FDR of 5% or incurring 44% FDR with a fitness gene set of

1235 genes (Figure 2E). Among genes with an RPKM > 1, RNAi was more likely to identify highly

expressed genes, whereas this bias was less prominent in the CRISPR screen (Figure 2—figure sup-

plement 1). We used receiver-operating characteristic (ROC) curves to determine screen sensitivity

for conserved, large macromolecular complexes. Whereas CRISPR and RNAi were both able to

detect cytoplasmic ribosomal or proteasomal genes, CRISPR was better able than RNAi to identify

significant fractions of the mitochondrial ribosome, aminoacyl-tRNA ligases, RNA polymerase II,

basal transcription factors, RNA exosome, or the replication fork at low FDR (Figure 2F). As a con-

trol, neither method detected peroxisome genes, consistent with the observation that cell lines lack-

ing peroxisomes grow normally (Goldfischer et al., 1973) (data not shown) (Figure 2F).

Interestingly, a human CRISPR-RNAi screen comparison also found a similar inability of RNAi to

detect genes of the mitochondrial ribosome whereas it exceeded CRISPR sensitivity in detecting

genes of the cytoplasmic ribosome, possibly due to differences in mRNA stability (Hart et al.,

2015).

A technical comparison of CRISPR screens in humans and fly cells indicated that the method per-

forms similarly in both systems. First, the fly screen had similar sensitivity (true-positive rate at 5%

FDR) to genome-wide screens in human cell-lines performed with similar reagent number (GeCKO

v2 screens) when compared against top RNAi hits (Sanjana et al., 2014) (Figure 2G). By comparing

sgRNAs that dropped out versus those that failed to dropout for known essential genes, we were

able to compute a probability-based position matrix for optimal sgRNA design in Drosophila

(Figure 2H). The position matrix shows complementary nucleotide biases at 15/21 positions and is

broadly consistent with human CRISPR screens (Doench et al., 2016). Specifically, out of the first

position of the PAM sequence and the 8 bp seed region before the PAM sequence, 5 of 9 positions
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Figure 2. Genome-wide CRISPR dropout screen in Drosophila S2R+ cells, results and metrics. (A) CRISPR library is maintained in three distinct

sublibrary groups as indicated, containing common controls. (B) sgRNA-level analysis of common controls in each group verify similar growth rates

during each sublibrary screen. log2(fold-changes) of all sgRNAs representing two common controls, Rho1 (grey) and intergenic (pink). The average and

standard deviation of log2(fold-changes) are shown for all individual sequences corresponding to Rho1-targeting positive controls or intergenic

negative control sequences. (C) Gene-level analysis of sequential replicate screens. Log2(fold-changes) for all sgRNAs (85,558 in total) were first

determined and then aggregated into a single Z-score using the maximum likelihood estimate (MLE) computational approach for each of 13,928

Drosophila genes in two independent, sequential replicates and plotted. (D) Z-score was calculated from average of replicate Log2(fold-changes),

(Supplementary file 1) and these were plotted against RNAseq expression value (log(RPKM + 0.010)) (MODEncode). (E) Rank-wise false-discovery rate

(FDR) of pooled CRISPR compared with arrayed RNAi (Boutros et al., 2004), original data or following re-analysis (see Materials and methods).

Cumulative distribution of false-discovery error at indicated gene rank divided by the total possible false-discovery error, where ‘error’ is defined as a

phenotypic assertion for any gene with RPKM <1. (A) True-positive rate (TPR) for major eukaryotic essential genes shows broader distribution of

functional classes revealing fitness essentiality from CRISPR than RNAi screens. Receiver operating characteristic (ROC) curves displaying rate of

discovery of components of selected essential eukaryotic complex (Kanehisa et al., 2017) as a function of FDR. Curves compare CRISPR knockout

screen (this study) with reanalyzed genome-wide RNAi (Boutros et al., 2004). (G) True-positive rate (TPR) of Drosophila CRISPR screen is in a similar

range to TPRs from human CRISPR screens using libraries of similar size. Comparison of true positive rate between human cell-line screens (infected

with GeCKO v2) and Drosophila CRISPR screening using high-confidence RNAi hits as true positives (Lenoir et al., 2018; Sanjana et al., 2014;

Figure 2 continued on next page
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are fully consistent while 2 of 9 position are partially consistent with the Doench score

(Doench et al., 2016) (Figure 2H). The analyses support an underlying mechanistic unity of targeting

by Cas9 and NHEJ repair between human and fly cells.

Copy number has been shown to correlate with the CRISPR viability score in some mammalian

CRISPR screens, presumably due to induction of greater DNA damage foci for copy-number-ampli-

fied (CNA) loci, creating spurious fitness calls (Meyers et al., 2017). By contrast, we find that CRISPR

in Drosophila shows no detectable bias towards CNA genes for 97% of the genome (Figure 2—fig-

ure supplement 1B). Interestingly, genes with extreme CNA of 8 or more copies (3% of genes)

exhibited a bias of ~1.8 fold in the CRISPR screen, but the magnitude of this bias was similar to that

seen in an RNAi screen for the same genes (Figure 2—figure supplement 1B), suggesting that CNA

genes in Drosophila cells are enriched for fitness essentiality. Finally, copy-number correction had no

detectable effect on FDR, true-positive rate, or enrichment of major macromolecular complexes (not

shown). The analysis shows that Drosophila CRISPR screens do not have detectable copy-number

bias.

Analysis of Drosophila cell fitness genes
We next analyzed fitness genes in Drosophila S2R+ cells. We first performed gene ontology enrich-

ment on CRISPR screen hits at 5% FDR. The gene set is enriched for essential processes such as

translation, transcription, splicing, etc. and depletion for processes such as chitin metabolism that

are necessary in whole flies but not cells (Figure 3A). Next, we compared CRISPR hits to fly genes

with lethal alleles annotated in FlyBase after removing genes for which no allele has yet been con-

structed. At 5% FDR,~17% of cell-essential genes overlapped with whole-fly essential genes

(Figure 3B). This overlap is in a similar range as knockout mouse viability compared with mouse cell-

line fitness essentiality (where the overlap is ~27%) (Bartha et al., 2018), and may represent different

genetic requirements of whole animals versus cell lines or of germline versus somatic cells (Garcia-

Bellido and Robbins, 1983).

A high-resolution fitness map in fly cells now allows us to compare fitness genes among species.

The fly fitness gene set partially but significantly overlaps with characterized fitness gene sets from

yeast and human cells (Figure 3C). Moreover, an unbiased comparison of gene ontology terms

between fly and human fitness genes displays a high degree of correlation (Figure 3D; Pearson’s r =

0.56). Despite significant overlap between fly and human cell-line fitness genes and conservation of

gene ontology terms enriched in both screens, many fly fitness genes map to human genes that

were not identified in human CRISPR screens. We hypothesized that fly CRISPR screens identify

essential genes in Drosophila cells but not in human cells due to paralog redundancy. To test this

hypothesis, we inferred putative paralog relationships for moderately or highly conserved orthologs

using the DRSC Integrative Ortholog Prediction Tool (DIOPT) (Hu et al., 2011) and retrieved fitness

scores for the corresponding human gene using genome-wide human cell-line CRISPR data

(Hart et al., 2015; Lenoir et al., 2018) (Figure 3E). Further, to account for the possibility that paral-

ogs may not be expressed, we only analyzed genes that were expressed as mRNA in the human

cell-line (Lenoir et al., 2018) (Figure 2E). Using this framework, 35% of conserved human genes con-

tain a fly-to-human paralog, and 407 fly fitness genes (at 5% FDR) are the orthologs of human genes

containing at least one paralog. In the human cell-line CRISPR screen, we noted a significant bias

against detecting genes that are conserved in flies and have a paralog in the human genome, and

this bias was dramatically elevated for the human orthologs of fly fitness genes (Figure 3F).

Figure 2 continued

Boutros et al., 2004). (H) Position matrix for optimal sgRNA design based on CRISPR screen. For the top 500 genes, which were hits with <2% FDR in

the CRISPR screen, hypergeometric probability of an A, C, G, or T nucleobase was calculated from strongly depleted (‘good’, LOG(p-value), above 0 on

the y-axis) sgRNA designs versus unchanging (‘bad’, negative LOG(p-value), below 0 on the y-axis) sgRNA designs.

DOI: https://doi.org/10.7554/eLife.36333.007

The following source data and figure supplement are available for figure 2:

Source data 1. CRISPR and RNAi screen comparisons, continued.

DOI: https://doi.org/10.7554/eLife.36333.009

Figure supplement 1. CRISPR and RNAi screen comparisons, continued.

DOI: https://doi.org/10.7554/eLife.36333.008
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Figure 3. Analysis of Drosophila S2R+ fitness genes. (A) Top enriched gene ontology (GO) terms for screen hits at 5% FDR compared with top enriched

GO terms for non-hits. (B) Overlap between cell-line CRISPR hits at 5% FDR and all ‘lethal’ Flybase entries after subtracting entries with no allele

information. (C) Overlap between Drosophila CRISPR hits at 5% FDR and orthologs in yeast (S. cerevisiae) or human cell-lines. (D) Gene ontology terms

enriched in human CRISPR fitness screens (Hart et al., 2015) compared with fly CRISPR fitness screens. Selective listing of co-enriched terms, a co-

Figure 3 continued on next page
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Furthermore, this paralog effect extended to a larger dataset generated by the cancer Dependency

Map project, in which CRISPR screens were conducted in 436 human cell-lines. By defining a fitness

gene as any gene with a CERES score less than 0.8, we sorted human orthologs of fly fitness by the

number of cell-lines out of 436 in which they displayed a fitness defect and according to their

paralog relationship between flies and humans (Figure 3G). The result again showed a bias against

detecting genes with fly-to-human paralogs in the panel of CRISPR screens (Figure 3H). Thus, we

propose that functional redundancy among closely related genes buffers each of them and makes

them invisible in viability screens, and that Drosophila cells may be more appropriate for screening

genes that expanded during the vertebrate lineage.

Although the Drosophila fitness genes we identified are enriched for characterized phenotypes

and publication count relative to all genes (data not shown), phenotypes have yet to be described

for 303 of them. Among these 303 genes, 251 have human orthologs (Supplementary file 2). Thus,

further studies of these conserved genes are likely to provide new insights into conserved, cell

essential processes not yet studied in flies. Also of interest are fly-specific fitness genes, as they pres-

ent a paradox and may reveal novel species-specific biology or overlooked structural/functional ana-

logs without sequence orthology and may have potential as targets for new insecticides. At 5% FDR,

we obtained 62 fitness genes with no sequence similarity outside of flies using DIOPT, and pheno-

type information exists regarding 25 of these (Supplementary file 2). In confirmation of our meth-

ods, these included known cell-essential divergent genes such as ver and HipHop, which encode

components of the telomerin complex, the putative functional analog of mammalian telomerase

(Raffa et al., 2011; 2010), and Kmn1, Kmn2 and Spc105R, whose gene products may be structural

anologs of Ndc80, and Mis12 complex components that interact with centromeric DNA, a proposed

driver of speciation (Schittenhelm et al., 2007; 2009; Henikoff et al., 2001), as well as several chro-

matin-interacting proteins (Supplementary file 2). Characterization of the remaining conserved and

non-conserved genes is likely to bring new insights into essential gene functions.

Use of Drosophila CRISPR screens to uncover gene-drug interactions in
the context of major signaling pathway suppression
We next asked whether our CRISPR screening platform could be used to identify genes acting in sig-

naling pathways that regulate cell growth and proliferation (Friedman and Perrimon, 2007). To do

this, we performed positive selection screens in the presence of trametinib (tra), an inhibitor of the

Ras/ERK/ETS pathway, or rapamycin (RAP), an inhibitor of the PI3K/mTor pathway, with the aim of

uncovering known and novel compensatory mechanisms or synergizing loss-of-function mutations.

Both pro-survival pathways have been extensively mapped through loss-of-function studies in fly tis-

sues and cell-lines (Friedman and Perrimon, 2007) (Figure 4A). For these experiments, we first

transfected cells with Group 1 and Group 2 sublibraries targeting a total of 3974 genes (Figure 2A).

The gene set interrogated comprises kinases, phosphatases, the fly ortholog of FDA-approved drugs

(Housden et al., 2017), and fly-to-human paralogs (Figure 2A). The cell pools were passaged for 15

days to allow sgRNA integration, subjected to passaging for an additional 30 in sub-lethal doses of

tra or RAP, and then re-sequenced (Figure 2B). The effect of each drug was carefully monitored by

periodically counting cells during the screen to confirm the effect on cell doubling rate (Figure 4C).

We observed highly context-specific modes of resistance to each drug. As an illustration, sgRNAs

against aop, a transcriptional repressor of the Ras/ERK/ETS pathway (Lai and Rubin, 1992), or the

putative intracellular co-factor for rapamycin, FK506-bp2 (Thomson and Johnson, 2010), conferred

Figure 3 continued

depleted term, and outliers. (E) Schematic for ‘fly-to-human paralog’ assignment and testing using high-resolution human CRISPR screen data

(Hart et al., 2015). For each fly gene with a unique human ortholog, no selection was performed. For fly genes with multiple human orthologs, the

most essential human ortholog was chosen. Genes were included in the analysis only if expressed in the human cell-line. Ortholog assignment used

DIOPT ‘high’ and ‘moderate’ confidence mapping calls (Hu et al., 2011). (F) Effect of fly-to-human paralogs on hit-calling in human CRISPR screens.

Cumulative average of gene fitness essentiality (negative Bayes Factor) for high-resolution human cell-line CRISPR screen (Lenoir et al., 2018;

Hart et al., 2015) examining indicated genesets: those with paralogs are dashed; orthologs of fly fitness genes are brown; orthologs of non-hits are

blue. (G) Schematic for ‘fly-to-human paralog’ assignment and testing using cancer Dependency Map data (Tsherniak et al., 2017). A CERES score

of <0.8 was used for fitness calls. (H) Effect of fly-to-human paralogs on number of cell-lines requiring a particular gene for fitness.
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Figure 4. Screens to identify genes regulating cell growth and proliferation. (A) Schematic of selected components of the Ras/ERK/ETS and PI3K/mTor

pathways and of inhibition by trametinib (‘tra’) or rapamycin (‘RAP’). (B) Experimental schematic: pathway-specific perturbations to identify context-

specific gene essentiality using Drosophila CRISPR screens. Dropout screens conducted with no additional treatment (N.T.) serves as a control. (C)

Estimates of doubling per day obtained during periodic counting of cell pools to verify that tra and RAP partially inhibit cell growth. Each observation

Figure 4 continued on next page
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resistance specifically in the context of tra or RAP, respectively (Figure 4D). We focused on other

such genes for which multiple sgRNAs provide a survival benefit or synergistic lethality in the context

of drug treatment using maximum likelihood estimate (Li et al., 2014) (MLE) (Figure 4E;

Supplementary file 3). Additional established context-specific pathway negative regulators

emerged: PTP-ER, which inactivates Erk (rl) (Karim and Rubin, 1999) and Pi3K21B and Pten, which

antagonize the activity of Pi3K92E (Weinkove et al., 1999; Huang et al., 1999; Goberdhan et al.,

1999).

The analysis also identified several pathway positive regulators as synthetic lethal (Figure 4E, and

mapped into pathway diagram, Figure 4A), cross-pathway synergy, and several novel candidate

pathway regulators (Supplementary file 3). Gene ontology showed similar but non-overlapping cat-

egories were detected as synergistically fitness-compromising with each drug (Figure 4E). More-

over, by using differential CRISPR score to map physical protein-protein interaction (PPI) networks,

both distinct and overlapping PPI relationships emerged (Figure 4F). For instance, a network

involved in photoreceptor cell differentiation scored most strongly as synergistically lethal with tra,

possibly because photoreceptor differentiation has been a workhorse phenotype for the characteri-

zation of mutants in the Ras/ERK/ETS pathway (Nagaraj and Banerjee, 2004). Similarly, the top

scoring PPI network for RAP-synergy was one involved in the positive regulation of cell-size, a key

morphological consequence of upgregulating the PI3K/mTOR pathway (Fingar and Blenis, 2004).

Interestingly, similar PPI networks involved in mitosis was identified in both screens (Figure 4F).

Taken together, these results demonstrate that CRISPR screening in Drosophila cells can reveal con-

text-specific compensatory mechanisms or synergy relevant to major signaling pathways.

Discussion
CRISPR screening technologies have illuminated the functions of uncharacterized genes and pro-

vided a straightforward, cost-effective pipeline to evaluate gene function in different contexts

(Doench, 2018). However, the benefits of this approach have been inaccessible for Drosophila and

other insects because the delivery of highly multiplexed DNA libraries has thus far required lentiviral

transduction, a process that fails to produce transformed cells (unpublished). Here, we show that

multiplexed DNA delivery by transfection followed by site-specific recombination is an effective

alternative strategy. We use this technique to deliver a genome-wide library of sgRNA expression

cassettes and perform CRISPR knockout fitness screens in Drosophila S2R+ cells, identifying 1235 fit-

ness genes at 5% FDR. Of note, our CRISPR screens were conducted after approximately 45 dou-

blings (basal essentiality) or 30 doublings (context-specific screens), while most mammalian screens

have been conducted with fewer than 30 doublings. This could possibly due to efficiency differences

of the CRISPR systems encoded in the two systems or because of the high ploidy of S2R+ cells. Since

our timing optimization data used only two sgRNAs (Figure 1F), we do not know how the set of fit-

ness genes would change in screens conducted with fewer doublings. A practical use for viability

screens is examining context-specific growth requirements. The Drosophila CRIPSR knockout system

identified mutants conferring drug resistance or synergy, and should thus be suitable for many future

context-specific fitness experiments examining gene-drug/nutrient or gene-gene interactions.

The introduction of systematic knockdown and knockout approaches have greatly reduced false-

positive assertions in human cell-line loss-of-function studies, but equally important is knowing what

genes are missed by these approaches and providing alternative screening strategies that can target

Figure 4 continued

and mean doubling time plotted. (D) Plot of log2(initial distribution) versus log2(fold-change) for indicated sgRNAs in each screen. Pathway-specific

resistance for sgRNAs targeting aop, a known suppressor of the Ras/ERK/ETS pathway in Drosophila (Lai and Rubin, 1992) or FK506-bp2, the putative

cellular co-factor for rapamycin (Thomson and Johnson, 2010). (E) Computed maximum likelihood estimate (MLE) Z score based on sgRNA fold-

change data comparing drug treatment condition with no treatment control. sgRNA fold-changes are mean of two independent replicates. Expected

intra-pathway negative or positive regulators are noted (see Supplementary file 3 for complete hit list and raw data). GO terms for synergistic

interactions are listed along with hypergeometric p-values for term assignment (PatherDB). (F) Physical protein-protein interaction (PPI) networks

enriched using differential CRISPR screens in tra or RAP. PPI network prediction and reported p-values use COMPLEAT, and requires complexes to

have >6 members per complex (Vinayagam et al., 2013).
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them. Of critical importance are paralogous genes with redundant functions, i.e., the presence of

one paralog buffers against the loss of another (Ewen-Campen et al., 2017). Although relevant to

human disease (Dickerson and Robertson, 2012), these genes are ‘invisible’ in singe-gene screens

and dramatically reduce search space in gene-by-gene screens (Ewen-Campen et al., 2017). When

we compared human and fly CRISPR screens, human CRISPR screens were less able to detect the fly

orthologs of fitness essential genes when those genes had paralogs relative to the fly genome. This

supports the use of parallel Drosophila and human screens as one approach to offset genetic

redundancy.

In addition to CRISPR knockout, the strategy we report can be used with numerous other high-

throughput screening modalities which were previously not possible in Drosophila, including CRISPR

activation, CRIPSR inhibition, CRISPR base-editing, shRNA knockdown, cDNA overexpression, per-

turb-SEQ, and combinatorial approaches for multigene suppression/activation (Doench, 2018;

Najm et al., 2018; Shen et al., 2017). Finally, the methods and constructs we employ are likely to

be directly transferable to the large number of existing cultured cell-lines derived from other insects

such as mosquitos, where they could be used to characterize viral propagation mechanisms in the

vectors of human pathogens such as Dengue or Zika.

Materials and methods

Vectors and cell lines
pBS130, phiC31 integrase under control of the HSP70 promoter, was obtained from Addgene. Tran-

sient Cas9 expression used pl018 (Housden et al., 2015) containing Drosophila-optimized Cas9

under the strong Actin promoter. Cas9 from pl018 followed by the BGH terminator from pcDNA3.1

(Invitrogen) were cloned into the SpeI/NotI site of pMK33 (Koelle et al., 1991) to generate pMK33/

Cas9. Human codon-optimized intein-Cas9_S219-3XFLAG (Davis et al., 2015), a kind gift of D. Lui,

was amplified by PCR and cloned into pMK33 to generate pMK33/intein-Cas9_S219-3XFLAG.

pLib6.4 was generated by using standard cloning methods as follows. First, the Drosophila U6:2 and

Act5C promoter cassette from pl018 (Housden et al., 2015) was amplified by PCR using primers

containing the 5’ attB40 site and inserted into pUC19 using Gibson assembly. Next, GFP-T2A-Puro

from pAc-STABLE2 (González et al., 2011) was amplified with primers containing the 3’ attB40 and

introduced by ligation into an engineered site in the resulting vector and verified by Sanger

sequencing. For minipool experiments in Figure 1, sgRNAs were cloned individually using standard

methods into the BpiI/BbsI site of pLib6.4 and verified by Sanger sequencing and then mixed.

Sequencing reactions were carried out with an ABI3730xl DNA analyzer at the DNA Resource Core

of Dana-Farber/Harvard Cancer Center (funded in part by NCI Cancer Center support grant

2P30CA006516-48). S2R+ derivative PT5 (NPT005) was obtained from the Drosophila RNAi Screen-

ing Center (Neumüller et al., 2012) and grown in Schneider’s medium (Thermo Fisher Scientific)

containing 10% heat-inactivated FBS. PT5 cells were transfected with pMK33/Cas9 or pMK33/intein-

Cas9_S219-3XFLAG and selected over a period of two months in 200 ng/uL Hygromycin B (Calbio-

chem). The resulting PT5/Cas9 cells were maintained in Hygromycin until CRISPR library

transfection. pMK33/Cas9 (accession # EvNO00483429), pMK33/intein-Cas9_S219-3XFLAG (acces-

sion # EvNO00483430), and pLib6.4 (accession # EvNO00483431) are available through DF/HCC

DNA Resource Core (https://plasmid.med.harvard.edu/).

Library design and construction
In order to allow focused sublibrary screening as in Figure 3, sgRNA library was encoded in three

separable sublibraries with common controls (Suppl. Figure 2A). For gene-targeted sgRNAs, Group

1 targets kinases and phosphatases as assigned using GLAD (Hu et al., 2015) and FDA-approved

drug-targets (Housden et al., 2017). Group 2 targets fly-to-human paralogs, identified by using

‘moderate’ or ‘high’ orthology assignment according to DIOPT (Hu et al., 2011), not already present

in Group 1. Group 3 targets all other remaining genes. Library synthesis was performed by Custom-

Array using published methods (Gilbert et al., 2014; Shalem et al., 2014). Briefly, CRISPR sgRNAs

were encoded within a 110-nt single-stranded DNA oligo containing unique library-specific barcode

sequences and flanked by BpiI/BbsI sites. 15-cycles of PCR using Phusion Polymerase (New England

Biolabs) were used to amplify each sub-library, and then BpiI (Fermentas) was added to the
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amplicons. A non-denaturing 20% TBE gel (Thermo) was used to purify the resulting 23-mer frag-

ment and eluted overnight using the crush-soak method. The concentration of ligatable fragments in

each preparation was empirically optimized by test ligations in pLib6.4. Optimized concentrations

were used in ligations with BpiI-digested pLib6.4 and then electroporated into Ecloni 10GF’ electro-

competent cells (Lucigen) at a yield of 20–50 times diversity for each library, generating dense colo-

nies on ~60,150 mm LB-carbenicillin plates, which were grown for 18 hr at 37˚C and harvested by

scraping into LB medium followed by mixing suspended colonies by extensive vortexing. Glycerol

was added to 50% and the libraries were flash frozen in 1 mL aliquots. Each sublibrary was prepared

by pooled minipreps and eluted in buffer EB (Qiagen). Libraries are available at DRSC/TRiP Func-

tional Genomics Resources (https://fgr.hms.harvard.edu/crispr-cell-screening-reagents).

Transfection, pool maintenance, and drug addition
pBS130 and pLib6.4 containing CRISPR sublibraries were mixed and co-transfected 1:1 into PT5/

Cas9 cells using Effectene with the manufacturer’s recommended protocol (Qiagen). For each trans-

fection, cells were first grown until just confluent on T75 flasks for 2–3 days. Doubling was monitored

at this passage and determined to be approximately 1/day. Then cells were removed by forceful tap-

ping and replated at 3 � 106 per well into 6-well dishes. The number of dishes required reflected

the library size and accounted for incomplete transfection efficiency to give at least 1500 cells/

sgRNA (for reference, a full-genome screen required all wells of eight 6-well dishes). t = 0 used plas-

mid readcount values. Transfection efficiency and integration efficiency were monitored periodically

after transfection for the first twelve days using flow cytometry (BD LSRII). Flow cytometry was per-

formed at the Harvard Medical School Department of Immunology Flow Core. Each 1.5 wells of cells

was transferred to one 10 cm dish and passaged in the presence of 5 ug/mL puromycin and cells

were allowed to become confluent over 4–6 days. Next, the pool was contracted by two-fold, and 2

� 107 cells from each of two plates was combined into a single 10 cm dish. 2 � 107 cells were pas-

saged every 5 days until downstream processing at the indicated time. These steps during early

phases of selection ensured no loss of diversity due to variable transfection efficiency. To determine

partially inhibitory dose of trametinib (Selleck) or rapamycin (Tocris), the effect of varying doses of

each drug was first measured in a 4 day treatment to PT5/Cas9 cells by Cell Titer Glo assay (Prom-

ega), using manufacturer’s recommended protocol (not shown). From this data, 50 nM trametinib or

2 nM rapamycin was chosen as partially perturbative concentrations for focused library screens (Fig-

ure 3). To verify that drug treatment decreased doubling rate during the screen, cell counts were

performed periodically using a hemocytometer (Figure 3B).

Library sequencing and CRISPR screen data analysis
Genomic DNA was prepared using the Zymo miniprep kit. Assuming DNA content in S2R + cells

was 4N, each cell contains ~0.6 pg of DNA. To maintain diversity, all PCRs were conducted

from ~5,000 cells per sgRNA per condition. Library amplification was performed using a two-step

procedure (illustrated in Figure 1—figure supplement 3). First, in-line barcoded inside primers

(PCR1F x PCR1R) were used to amplify the library in 23 cycles such that the resulting amplicon had

the following sequence: 1/2Read1-(N)nANNEALINGSEQUENCE-sgRNA-tracrRNA. Primer sequences

conformed to: 5’- CTTTCCCTACACGACGCTCTTCCGATCT(N)n (B)6 gttttcctcaatacttcGTTCg-3’

(where N = any nucleotide; n = variable number between 1–9; and B = barcode nucleotide) and 5’-

TTTGTGTTTTTAGAATATAGAATTGCATGCTGggtacctc-3’. Next, common outside primers were

used to amplify these amplicons with an additional 11 cycles such that the resulting amplicons had

the following sequence: P5-Read1-(N)n-ANNEALINGSEQUENCE-sgRNA-tracrRNA-P7. All sequences

are provided in Supplementary file 1. Following second amplification, amplicons were gel purified

and concentration was determined using Qubit dsDNA HS Assay Kit (Thermo). Amplicons were

pooled according to concentration of sgRNAs per unit volume. Pooled barcoded amplicons were

subjected to sequencing using the NextSeq500 1 � 75 SE platform (Illumina). Sequencing was per-

formed at the CCIB DNA Core Facility at Massachusetts General Hospital (Cambridge, MA) or the

Harvard Medical School Biopolymers Facility (Boston, MA). De-multiplexing of the library was per-

formed using TagDust (Lassmann et al., 2009) and all downstream analysis was performed within

MAGeCK (Li et al., 2014) with the following experiment-specific changes: 1) Readcount files were

stripped of sgRNAs below the 10th percentile lowest initial readcounts for each sublibrary before
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processing in MAGeCK MLE; 2) we performed 1000 iterations for all Z-score assignments. For drug

selection experiments, several context-nonspecific sgRNAs providing survival benefit to cells under

normal growth conditions were removed due to wide variation of these sgRNAs upon selection.

Bioinformatics analysis
For ROC curves, major eukaryotic essential complex components for Drosophila were from KEGG

(http://www.genome.jp/). For gene ontology enrichment analysis, annotation file for Drosophila

genes was retrieved from NCBI (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz). Hypergeomet-

ric analysis was done to calculate the enrichment P value using in-house program written in JAVA.

Ortholog assignment as well as fly-to-human protein similarity score were obtained using DIOPT

v 6.0.2 using ‘moderate’ or ‘high’ confidence calls (Hu et al., 2011). RNAseq analysis in this paper

used the webtools DGET (http://www.flyrnai.org/tools/dget/web) or CellExpress (http://www.flyrnai.

org/cellexpress), which used RNAseq expression data from modENCODE (Celniker et al., 2009).

For re-analysis of genome-wide arrayed RNAi viability experiment, we re-examined all dsRNA ampli-

con targets reported in the earlier screen (Boutros et al., 2004) using FlyBase v 6. All amplicons

with greater than one unique target were discarded (removing 7818 dsRNAs and retaining 13,488).

Z-score was then re-calculated using the original methods (Boutros et al., 2004). Gene ontology

analysis in Figures 3D and 4E was performed using PantherDB (Mi et al., 2013). In Figure 3D, terms

were restricted to those with greater than or equal to 50 members. Complex enrichment analysis in

Figure 4F used COMPLEAT (Vinayagam et al., 2013). In Figure 4F, Z-scores in Supplementary file

3 were multiplied by �1 and top three non-redundant complexes from COMPLEAT with a minimum

number of 6 members are reported.

Data availability
Readcount files for CRISPR analysis compatible with MAGeCK are provided as Supplementary file

4–15 and Supplementary file 3. pMK33/Cas9, pMK33/intein-Cas9_S219-3XFLAG, and pLib6.4. are

available through Harvard PlasmID Database (http://plasmid.med.harvard.edu). The three CRISPR

sublibraries used in this study are available through DRSC/TRiP Functional Genomics Resources

(https://fgr.hms.harvard.edu/).
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. Supplementary file 13. Readcount file for average replicates 1 and 2, group 1. Readcounts were

internally normalized to a median value of 10000 prior to computing the average. Column 1 provides

internal ID number compatible with Supplementary file 1. Column 2 provides targeted gene ID.

Column 3, ‘REF’, provides readcount file from plasmid pool. Column 4 provides readcount following

transfection and outgrowth. File is compatible with MAGeCK (Li et al., 2014).

DOI: https://doi.org/10.7554/eLife.36333.024

. Supplementary file 14. Readcount file for average replicates 1 and 2, group 2. Readcounts were

internally normalized to a median value of 10000 prior to computing the average. Column 1 provides

internal ID number compatible with Supplementary file 1. Column 2 provides targeted gene ID.

Column 3, ‘REF’, provides readcount file from plasmid pool. Column 4 provides readcount following

transfection and outgrowth. File is compatible with MAGeCK (Li et al., 2014).

DOI: https://doi.org/10.7554/eLife.36333.025

. Supplementary file 15. Readcount file for average replicates 1 and 2, group 3. Readcounts were

internally normalized to a median value of 10000 prior to computing the average. Column 1 provides

internal ID number compatible with Supplementary file 1. Column 2 provides targeted gene ID.

Column 3, ‘REF’, provides readcount file from plasmid pool. Column 4 provides readcount following

transfection and outgrowth. File is compatible with MAGeCK (Li et al., 2014).

DOI: https://doi.org/10.7554/eLife.36333.026

. Transparent reporting form

DOI: https://doi.org/10.7554/eLife.36333.027

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Readcount files for CRISPR analysis compatible with MAGeCK are provided as Supplementary Files

4-15 and Supplementary File 3. pMK33/Cas9, pMK33/intein-Cas9_S219-3XFLAG, and pLib6.4. are

available through Harvard PlasmID Database. The three CRISPR sublibraries used in this study are

available through DRSC/TRiP Functional Genomics Resources (https://fgr.hms.harvard.edu/crispr-

cell-screening-reagents). Source data files have been provided for Figures 2 (Figure 2—source data

1) and 4 (Supplementary File 3).

The following datasets were generated:
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