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 12 

The explosive growth of regulatory hypotheses from single-cell datasets demands 13 

accurate prioritization of hypotheses for in vivo validation, but current computational 14 

methods fail to shortlist a high-confidence subset that can be feasibly tested. We present 15 

Haystack, an algorithm that combines active learning and optimal transport theory to 16 

identify and prioritize transient but causally-active transcription factors in cell lineages.  17 

We apply Haystack to single-cell observations, guiding efficient and cost-effective in vivo 18 

validations that reveal causal mechanisms of cell differentiation in Drosophila gut and 19 

blood lineages. 20 

The temporal control of lineage-determining transcription factors (TFs) is crucial to tissue 21 

development and homeostasis. Single-cell transcriptomics (scRNA-seq) enable an 22 

unprecedented reconstruction of cell lineages in a pseudotemporal manner which can be 23 

correlated with the expression of individual TFs to hypothesize the regulators of cell 24 

differentiation. However, causality can only be hypothesized, but not confirmed from 25 

observational scRNA-seq studies1. The perturbational experiments required to test these 26 
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hypotheses remain slow and expensive (Supplementary Note 1), even as high-throughput 27 

scRNA-seq predictions of causally-active TFs become available.  28 

Hypothesis prioritization approaches are thus crucial in allocating downstream validation 29 

efforts to a small set of high-confidence regulatory hypotheses, but existing scRNA-seq analysis 30 

approaches are not selective enough to generate such hypotheses. Typically, these infer gene 31 

regulatory networks (GRN) by correlating one TF’s expression with another, with some methods 32 

also incorporating pseudotime2–4. Prioritizing high-confidence causal TFs from these methods is 33 

challenging because they quantify a TF’s activity solely from its transcript counts and are 34 

vulnerable to the noise and sparsity of scRNA-seq data5.  35 

  We present a hybrid computational-experimental method, Haystack, to identify TFs 36 

involved in differentiation from scRNA-seq datasets. TFs are computationally prioritized and 37 

then validated in an active learning framework6 that iteratively prunes validation targets (Fig. 38 

1a). Towards accurate and robust TF prioritization, the key conceptual advance of our work is 39 

leveraging optimal transport (OT) to synthesize two previously disparate views of regulatory 40 

activity: one that relates a TF to its transcriptional targets and the other that considers 41 

expression changes over differentiation to estimate gene regulatory networks. We begin by 42 

computing the TF modules (SCENIC7 regulons) of a scRNA-seq dataset and map them to the 43 

pseudotime landscape. Each regulon relates to the activity of one TF, quantified in terms of its 44 

own expression and its putative targets, thus producing a more robust estimate of TF activity 45 

than using transcript-counts alone. We then pursue the intuition that lineage-determining TF 46 

modules should be active primarily in undifferentiated cells with targets active in differentiated 47 

cells. 48 

We frame the challenge of accurately and robustly characterizing TF activation profiles 49 

along a pseudotime trajectory as an optimal transport problem. Transport theory calculates the 50 
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optimal coupling of two probability distributions under a cost function, with OT-based metrics 51 

having emerged as powerful approaches to compare irregular and noisy datasets. For example, 52 

Schiebinger et al.8 temporally-coupled separate scRNA-seq datasets using OT with a cost 53 

metric defined by whole transcriptome changes. In our context, we model individual TF activity 54 

in single lineages as a probability distribution over pseudotime. The OT distance (over the one-55 

dimensional pseudotime axis) between each TF distribution and the baseline, or between two 56 

TFs, is indicative of the location and concentration of a TF’s activity during differentiation 57 

(Methods). For example, TFs localized to a specific differentiation state will have a large OT 58 

distance from the baseline probability distribution. Our OT-based metric offers the advantage of 59 

enabling non-parametric testing, thereby not assuming an underlying distribution (unlike the t-60 

test). It therefore captures not only the differences of means but also the higher moments. 61 

Finally, measuring TF activity along pseudotime and not in discrete cell clusters means that our 62 

approach does not rely on cell-type annotations.  63 

To improve robustness and precision, we incorporate additional analyses and public 64 

epigenetic data. The OT-based TF scores are ensembled with a Schema-based9 feature-65 

selection analysis that prioritizes TFs most predictive of a cell’s pseudotime score. The latter 66 

addresses potential false positives where a non-localized bimodal TF distribution may have high 67 

OT scores. The combined TF rankings are further refined by considering potential source-target 68 

TF pairs, i.e. where the binding site (from the cisTarget database7) of TFsource is upstream of 69 

TFtarget’s genomic locus and the former is active earlier in the pseudotime landscape. The OT 70 

distance between each putative pair is computed, and the source TFs corresponding to the 71 

highest OT distances are selected as the initial set of high-confidence hypotheses for 72 

experimental validation— these are the TFs expected to be active in progenitor cells, regulating 73 

the differentiation into terminal lineages. 74 
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We applied our OT prioritization scheme on scRNA-seq studies of mouse intestine10 75 

(Fig. 1b,c) and human leukemia cells11 (Fig. 1e,f), finding that it identified biologically relevant 76 

TFs (Fig. 1d,g). For each dataset, we aggregated the top-scoring source TF modules across 77 

lineages and found that 75-85% of the prioritized TFs have substantial support in published 78 

literature for their involvement in progenitor differentiation (Table S1,S2; Supplementary Note 79 

2). Previously, several methods2–4 for GRN inference incorporated pseudotime but used an 80 

individual TFs’ transcript counts as a readout for activity (which can be noisy). Other methods 81 

that infer TF activity more robustly (e.g. SCENIC7) fail to consider differentiation as a continuous 82 

landscape. Haystack benefits by combining these hitherto disconnected views.  83 

We evaluated Haystack within an existing framework for benchmarking GRN inference 84 

methods, assessing it on ground-truth ChIP-Seq datasets across five cell types curated by 85 

Pratapa et al5. We compared Haystack against the top-ranking methods from that study, and 86 

calculated early precision (i.e. the validity of each method’s top predictions). Compared to 87 

existing methods, Haystack achieved substantially higher precision on the top 10, 20 or 30 88 

predictions, robustly outperforming them across different hyperparameter settings (Fig. 1h, S1a-89 

f). To assess our predictions for mouse gut development and human blood cell differentiation 90 

studies, we needed corresponding ground-truth gene sets. We therefore text-mined PubMed to 91 

collect the sets of genes reported in these tissues (Table S4; Supplementary Note 2). 92 

Calculating the enrichment of predicted TFs in these ground-truth sets, we found that Haystack 93 

again achieved substantially higher precision than existing methods (Fig. 1i).  94 

In Drosophila, where predictions can be readily tested with genetic perturbations, we 95 

experimentally validated Haystack (Supplementary Note 3) on scRNA-seq datasets of fly gut 96 

(Fig. 2a,b,S3) and blood (Fig. 2g,h,S4)12–14. We took an active learning approach, starting with 97 

a preliminary assay whose results guide further validations. Specifically, the initial OT-based 98 

shortlist of TFs is investigated with qRT-PCR of cell-type markers, with changes in cell-type 99 
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composition estimated by a novel aggregate-fold-change metric (Methods). TFs with supporting 100 

evidence are then assayed with microscopy (Fig. 1a). Haystack identified both known and novel 101 

TFs of biological relevance in Drosophila (Fig. 2c,i). In particular, validation in the fly gut 102 

resolved previous conflicting observations of peb roles, where two independent groups had 103 

identified peb to play opposite functions in the fly midgut15,16. Consistent with Baechler et al., our 104 

iterative validation found peb as a driver of enterocyte differentiation (Fig. 2d-f). Towards 105 

regulatory cascade discovery, our method made accurate source-target TF predictions and 106 

suggested that peb-dependent enterocyte differentiation may be mediated via Myc (Fig. S3). In 107 

the fly blood, Haystack predictions were successfully validated in multiple lineages (Fig. S4), 108 

where we focused in particular on the poorly studied lamellocyte (LM) lineage, identifying Xbp1 109 

and CG3328 as novel regulators of LM differentiation (Fig. 2h-l). Altogether, Haystack can 110 

reliably be applied to various scRNA-seq datasets across species to shed light on novel and 111 

high-confidence determinants of cell lineages.  112 

The strength of Haystack is the ability to capture transient TF cascades within short-113 

timescale differentiation processes. It is well-suited for analyzing scRNA-seq datasets assayed 114 

from only a single time-point, where the continuous transitions between cell states are extracted 115 

from pseudotime analysis. An alternative approach, better suited to study organogenesis over 116 

the course of days, would be to sample single-cell transcriptomes at well-spaced temporal 117 

intervals throughout development to identify TFs that co-vary with differentiation. Recently, Qiu 118 

et al. sought to identify TFs that specify cell types that emerge during mouse gastrulation by 119 

integrating ~480 scRNA-seq datasets (comprising ~1.6 million cells) over 19 stages spanning 120 

from E3.5 to E13.517. Evidently, integrating multiple separate datasets is challenging with the 121 

potential of introducing biological artifacts due to batch effects (e.g., Qiu et al. re-assayed some 122 

time-points to remedy integration difficulties). Furthermore, this approach is contingent on 123 

discretizing individual scRNA-seq datasets into well-defined cell types to link them across time-124 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2022. ; https://doi.org/10.1101/2022.06.27.497786doi: bioRxiv preprint 

https://paperpile.com/c/tg0hTv/Frt1P+hbpDw
https://paperpile.com/c/tg0hTv/NRLw
https://doi.org/10.1101/2022.06.27.497786
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

points. As such, it is not ideal for studying differentiation phenomena where many cells are in 125 

transient states, making cell-type discretization infeasible. Haystack resolves this by using OT 126 

metrics to capture TF activation across differentiation continuums within short timescales, 127 

without making assumptions on where the transition of a specific cell state/type begins or ends. 128 

Single-cell genomics has led to an exponential growth of data with computational 129 

analyses that generate a multitude of hypotheses18. However, more data does not imply more 130 

insight— our knowledge of the causal mechanisms of cell development has not kept pace with 131 

such data explosion. Currently, a key bottleneck in research progress is validating causal 132 

hypotheses generated from observational scRNA-seq studies. The active learning framework of 133 

Haystack represents a general, principled approach to this challenge: a combination of robust 134 

inference, hypothesis prioritization, and iterative experimentation can efficiently discover 135 

regulatory mechanisms in diverse biological systems.  136 

 137 

 138 

 139 

 140 

 141 

 142 

 143 

  144 
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Methods 145 

Trajectory analysis and transcription factor (TF) module identification  146 

Trajectory analysis and pseudotime computation of the scRNA-seq data was used to estimate 147 

the differentiation time-course; in the case of multiple branching trajectories, we repeat our 148 

analysis for each branch separately and aggregate the results. Haystack can be applied with a 149 

preferred pseudotime (or RNA velocity) estimation program; here we present results with 150 

SlingShot19, diffusion pseudotime20, and Monocle 321, choosing the method used in the original 151 

scRNA-seq study whenever available. The optimal transport analysis in Haystack does not 152 

require any knowledge of the cell types in the dataset and the differentiation stage of a cell is 153 

inferred solely from pseudotime analysis. When cell types are known, they may be used to limit 154 

Haystack analysis to a lineage of interest. TF regulons are mapped over the differentiation time-155 

course, where regulons are inferred from the cisTarget database of TF binding sites.  156 

 157 

 158 

Characterizing TF localization through optimal transport 159 

To identify TFs that are active in just one differentiation stage and not broadly active, we 160 

arrange cells along a one-dimensional pseudotime axis (Fig. 1a). Each TF activity is 161 

characterized as a probability distribution along the pseudotime axis, computed from the 162 

histogram of per-cell regulon activity indicators (for each regulon, SCENIC7 reports the cells with 163 

statistically significant activity of the regulon). We also compute the baseline probability 164 

distribution (i.e. histogram) of all cells along this axis. Using optimal transport (OT), we compute 165 

for each TF the distance between its distribution and the baseline. OT is a mathematical 166 

formulation for measuring the distance between two probability distributions under some cost 167 

function. In our context, the cost between two cells corresponds to the difference of their score 168 

along pseudotime axis, capturing the distance between their differentiation stages; other 169 
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measures like RNA velocity could be similarly incorporated. Intuitively, TFs that are active only 170 

in a limited region of the time-course will be at a substantial OT distance from the baseline. We 171 

note that the OT metric captures not only the differences of mean between distributions (first 172 

moment) but also differences in higher moments: e.g. even if the probability distribution of a TF 173 

has the same mean as the baseline, if the former is concentrated around this location (i.e. has a 174 

lower variance than the baseline), the OT distance can be large. The use of OT offers key 175 

advantages over alternative approaches. In OT, the empirical probability distribution of TFs over 176 

cells is directly computed upon, so we do not need to assume that the underlying distribution 177 

obeys specific properties (e.g. those required by statistical tests like the t-test). Unlike some 178 

metrics over probability distributions (e.g. mutual information or Jensen-Shannon distance)22, 179 

the OT formulation incorporates the concept of cost which allows us to account for the 180 

pseudotemporal distance between two TFs (or between a TF and the background). 181 

 182 

If a TF has high activity in two separate pseudotime regions distinct from the baseline (e.g. at 183 

both the start and end of the time-course), the OT metric may also score such non-localized 184 

bimodal distributions highly. To address such potential false positives, we incorporate an 185 

additional measure of TF localization: we represent each cell as feature-vector of TF activations 186 

and identify the features (i.e. TFs) that are most informative of the cell’s pseudotime score. We 187 

built upon Schema9, a metric learning approach for feature selection in multimodal single-cell 188 

data, to solve a quadratic program to identify TFs whose activation is most informative of the 189 

cell’s pseudotime score. We ensembled the two approaches by converting their outputs to rank-190 

scores of TFs and computing a weighted combination of the two. Small-scale explorations 191 

indicated that results were robust to the choice of weight around 0.5, which we have chosen for 192 

all results presented here. We then limited our analysis to the top-third of the TFs. 193 

 194 

 195 
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Identifying lineage-determining TFs  196 

Lineage-determining TFs typically have more than one downstream target23, with their ability to 197 

influence a broad transcriptional program being key to fate determination. Accordingly, we 198 

queried the cisTarget database24 to identify TF pairs (TFsource–TFtarget) where the binding site of 199 

TFsource was found upstream of TFtarget, suggesting that TFsource might regulate TFtarget. From the 200 

shortlist of well-localized TFs, we considered every pairwise combination of TFs (say, TF1 and 201 

TF2) such that TF1 is active earlier in the pseudotime landscape than TF2 and with the binding 202 

site of TF1 upstream of TF2. We then applied OT to compute the pseudotime distance between 203 

the two TFs. From these pairs, we extracted the subset corresponding to high OT distance. The 204 

source TFs in these pairs are the candidate TFs we generate as the initial set of high-205 

confidence hypotheses prioritized for experimental validation. Within this set, we rank TFs by 206 

the number of well-separated pairs in which the TF occurs as a source.  207 

 208 

 209 

Estimating cell-type decomposition from qRT-PCR assays of marker genes  210 

Quantitative Real Time Polymerase Chain Reaction (qRT-PCR)-based validation provides a 211 

medium-throughput validation that is more efficient than imaging and phenotypic studies. For 212 

each of the shortlisted TFs, we perform perturbation experiments (e.g., for Drosophila gut and 213 

blood studies, we overexpressed or knocked down the TFs of interest). From the original 214 

scRNA-seq study, we identified the cell types/clusters of interest and applied differential 215 

expression analysis to identify a limited set of markers (typically, 1-3) per cell type. In our 216 

Drosophila assays, this resulted in less than 15 markers in total, and thus amenable to a single 217 

qRT-PCR study. We assayed these markers to assess changes in cell type composition as a 218 

result of the perturbation, by comparing qRT-PCR values in the wild type tissue against the 219 

overexpressed/knocked-down tissue. Furthermore, since the markers are the same for each 220 
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perturbation, the same qRT-PCR primers and setup can be used across all perturbations in 221 

parallel, speeding up the process.  222 

 223 

A confounding issue in estimating cell-type composition changes using qRT-PCR is that a 224 

perturbation may vary the overall proliferation rate of the tissue vis-a-vis the organismal 225 

background. Since qRT-PCR cycle threshold (CT) values are typically normalized against the 226 

background CT value of a housekeeping or ribosomal gene, this can confound cell type 227 

composition analysis. Accordingly, we introduce a fold-change metric to adjust for this 228 

confounding factor and robustly recover estimates of cell type compositions: we first compute 229 

robust estimates of cell type expression by averaging the markers for each cell type. We then 230 

choose one cell type’s abundance as the baseline (typically, the progenitor cell type), and 231 

express all other cell type abundances as a ratio against this baseline. Wild-type and 232 

perturbation lines can now be compared using a fold-change metric on this ratio to identify 233 

which, if any, differentiated cell types have increased or decreased. 234 

 235 

Drosophila stocks and culture 236 

Flies were reared in humidified incubators at 25°C on standard lab food composed of 15 g 237 

yeast, 8.6 g soy flour, 63 g corn flour, 5 g agar, 5 g malt, 74 ml corn syrup per liter with 12/12 hr 238 

dark/light cycles. For all Gal80ts (temperature sensitive) experiments, crosses were reared at 239 

18°C. After eclosion, flies were kept at 18°C for 3 days before shifting to 29°C (permissive 240 

temperature) for 10 days. For all blood experiments, fly larvae of respective genotypes were 241 

grown on the standard lab food until late third larval instar (LL3) at 25°C. 242 

The following stocks were obtained from the Bloomington Drosophila Stock Center (BL), DGRC 243 

(NIG) and FlyORF: UAS-Luc-i (BL36303), UAS-peb-i (BL28735), UAS-peb (BL5358), UAS-Psi-i 244 
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(BL31301), UAS-Psi (BL16371), UAS-drm (BL7072), UAS-Tet-i (BL62280), UAS-Mondo-i 245 

(BL27059), UAS-Mondo (BL20102), UAS-cnc (BL17502), UAS-Tet-i (BL62280), UAS-tbp-i (NIG 246 

9874R-1), UAS-FoxK (F000615), UAS-Mondo (F001398), UAS-Xbp1 (BL60730), UAS-247 

E(spl)mbeta-HLH (BL26675), UAS-CG3328-i (BL55211) and UAS-Xbp1-i (BL36755). The 248 

following Gal4 lines used to perturb genes in guts and hemocytes, respectively, were: esg-Gal4 249 

and w[1118];Hml-Gal4.Delta,UAS-2xEGFP (BL30140), hereafter referred to as HmlGFP. 250 

Oregon R (OreR) control flies were obtained from the Perrimon Lab stock. The BcF6-mCherry 251 

(a crystal cell reporter)25 stock obtained from Dr. Tsuyoshi Tokusumi (Schulz Lab), was crossed 252 

with the HmlGFP line to obtain HmlGFP;BcF6-mCh stock. To drive the expression of CG3328 in 253 

blood cells in a Cas9-based transcriptional activation (CRISPRa) manner26, the Hml-Gal4,UAS-254 

EGFP;dCas9-VPR (HmlGFP;dCas9-VPR) was crossed to CG3328-sgRNA fly line (BL80297). 255 

 256 

RNA extraction and qRT-PCR 257 

Drosophila midguts: 7-10 midguts were dissected in 1xPBS and homogenized in 300uL of 258 

TRIzol (ThermoFischer, cat# 15596-026) using RNase-free pestles. RNA was extracted using 259 

Zymo Direct-zol RNA MicroPrep kit (cat# R2060) and subsequently DNase-treated using Turbo 260 

DNA free (cat# AM1907). 400-450ng of the resulting RNA was reverse transcribed using Bio-261 

Rad iScript Select cDNA synthesis kit (cat# 708896) and SyBr green (cat# 1708880) based 262 

qRT-PCR was performed to determine the levels of gene expression. qRT-PCR primers were 263 

designed using FlyPrimerBank27. The efficiency of primers was determined by running qRT-264 

PCR on serial dilutions of pooled cDNA. Only primers in the range of 85% to 110% efficiency 265 

were selected for further use. See Table S3. 266 

Drosophila hemocytes: RNA isolation of larval blood was performed as described previously 267 

with minor modifications14, where hemolymph from ~15-20 larvae (or ~50 for a better yield) are 268 
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sufficient for RNA isolation per biological replicate. For a detailed protocol regarding hemocyte 269 

isolation, RNA/cDNA preparation and qRT-PCR set up, see https://en.bio-270 

protocol.org/prep1155. 271 

 272 

Immunostaining and imaging 273 

Drosophila guts:  Whole midguts were dissected in PBS and fixed in 4% PFA in PBS at room 274 

temperature for 30 minutes. Fixed guts were washed once in 0.1% Triton X-100 in PBS (PBST), 275 

then blocked with a blocking buffer (0.1% Triton, 5%NDS in PBS) for 30 minutes at RT. Primary 276 

antibodies were incubated overnight at 4°C in the blocking buffer. Guts were washed 3x in the 277 

blocking buffer and incubated with secondary antibodies overnight at 4°C along with DAPI 278 

(1:1000 of 1mg/ml stock). After antibody staining, guts were washed 3 times in PBST and 279 

mounted in Vectashield antifade mounting medium (Vector Laboratories cat# H-1200). Tape 280 

was used as a spacer to prevent coverslips from crushing the guts. Antibody dilutions used 281 

were as follows: chicken anti-GFP (1:2000, Abcam cat# ab13970), donkey anti-rabbit 565 282 

(1:2000, Molecular Probes cat# A31572), goat anti-mouse 633 (1:2000, Thermo Scientific cat# 283 

A-21240) and goat anti-chicken 488 (1:2000, Thermo Fisher Scientific cat# A-11039). Guts were 284 

imaged on a spinning-disk confocal system, consisting of a Nikon Ti2 inverted microscope 285 

equipped with a W1 spinning disk head (50um pinhole, Yokogawa Corporation of America) and 286 

a Zyla 4.2 Plus sCMOS monochrome camera (Andor). 287 

Drosophila hemocytes: 20 late third instar larvae (LL3) from each genotype were vortexed, and 288 

bled in 300 ul of Schneider’s media in a 9-well spot glass plate. Next, the media with hemocytes 289 

was transferred to 8-well chambered cover glass slide (VWR, cat# 62407-296) and the cells 290 

were allowed to settle at room temperature for ~30 min. Alternatively, 96-well glass bottom 291 

plates (Cellvis, cat# P96-1.5H-N) were also used to plate hemocytes from 10 LL3 larvae per 292 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2022. ; https://doi.org/10.1101/2022.06.27.497786doi: bioRxiv preprint 

https://en.bio-protocol.org/prep1155
https://en.bio-protocol.org/prep1155
https://doi.org/10.1101/2022.06.27.497786
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

biological replicate per well. Next, 4% (final concentration) paraformaldehyde (Electron 293 

Microscopy Services, cat# 15710) was added to each well with Schneider’s media and 294 

hemocytes and incubated on a rocker for 20 min. Later, the fixed hemocytes were washed three 295 

times with 1x PBS (Gibco, cat# 10010-023) and blocked with a blocking buffer (5% BSA in 1x 296 

PBS containing 0.1% Triton-X) for 10 min. The cells were incubated with 1:100 dilution of anti-297 

Atilla L1abc antibody28 overnight at 4°C. The next day, the cells were washed three times with 298 

1x PBS and incubated with corresponding secondary antibody (1:500 dilution, anti-mouse alexa 299 

fluor 633) for 1 h at room temperature. Finally, the cells were washed three times with 1x PBS 300 

and Vectashield containing DAPI (Vector Laboratories Inc., cat# H-1200) was added before 301 

imaging the cells using Nikon Ti2 Spinning Disk Confocal Microscope. Cell counts were 302 

performed on 3-4 independent regions of interest (ROIs) per well (biological replicate) captured 303 

by the Nikon Ti2 Spinning Disk Confocal Microscope or GE IN Cell Analyzer 6000 Cell Imaging 304 

System. All images were analyzed by Fiji ImageJ software29. 305 

Code and Data Availability 306 

Python code and instructions for use of the Haystack framework are available at: 307 

https://cb.csail.mit.edu/cb/haystack/ 308 

Source data from the imaging and qRT-PCR assays is available upon request. The following 309 

public datasets were used in the analysis: 310 

 311 

Description Reference Accession/URL 

Human leukemia scRNA-
seq 

Petti et al. 10.5281/zenodo.3345981 

Drosophila midgut  Hung et al. GEO: GSE120537 

Mouse gut differentiation Bottcher et al. GEO: GSE152325 

Drosophila blood  Tattikota et al. GEO: GSE146596 
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Beeline Benchmark Data Pratapa et al. https://doi.org/10.5281/zenodo.3378975. It includes 
scRNA-seq data from GEO datasets, GSE81252 
(hHEP), GSE75748 (hESC), GSE98664 (mESC), 
GSE48968 (mDC) and GSE81682 (mHSC) 

cisTarget Aibar et al. https://resources.aertslab.org/cistarget/ 

Software: Python packages scanpy (v1.4.6), scipy (v1.6.0), scikit-learn (v0.24.1), and 312 

schema_learn (v0.1.5.3) were used. The R packages Monocle (v3), SlingShot (v3.15) were 313 

used. SCENIC (v1.1.1-7) was also used. In addition, the Github repository of Beeline (v1.0, 314 

https://github.com/Murali-group/Beeline) was used.  315 

 316 
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FIGURE 1:  

 

 

Fig.1. Haystack identifies biologically relevant transcription factors (TFs). 
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a. Haystack’s hybrid computational-experimental workflow relies on concepts of active learning and 

optimal transport to determine regulatory TFs along a trajectory inferred from an observational 

scRNA-seq study. Applying transport theory, we combine robust estimates of TF activity (also 

considering a TF’s targets) with pseudotime information to prioritize TFs. Cell-type decomposition 

inferred from qRT-PCR experiments further selects TFs whose perturbations result in changes in 

differentiation. Focused imaging-based validations are subsequently conducted on the highest-

confidence candidates.  

b-d. Uniform Manifold Approximation and Projection (UMAP) plots depicting the re-clustering 

analysis of (b) scRNA-seq data of mouse gut (Bottcher et al., 2021); (c) Monocle 3-based 

pseudotime analysis reveals that ISCs can give rise to four lineages: Goblet cells, EECs, Tuft cells, 

and Enterocytes; and (d) gene expression (yellow-green color scale) of the TFs Ezh2, Sox4, Sp5 

and Nr3c1, contrasted with their TF-module activations (in red, inferred by SCENIC) in the 

respective intestinal clusters. 

e-g. Re-clustering of leukemia scRNA-seq data11 (e) identifies known blood cell populations; (f) 

Monocle 3-based pseudotime analysis reveals a single lineage trajectory with HSCs as the source; 

and (g) UMAP plots showing the expression (yellow-green color scale) of the TFs Etv6, Xbp1, Irf1, 

and Runx1 compared to their TF-module activity (red).T 

h. The tabular plot presents the precision of the top-20 predictions of Haystack (All: source and 

target TFs, Sc: source-only TFs), PIDC, SCODE and SINGE on a variety of mouse and human cell 

types (Supplementary Note 2 for details). The yellow–green color gradient in each row is scaled to 

ensure a uniform maximum (yellow) across all rows. The ground-truth gene sets are sourced from 

ChIP-seq data, with both cell-type specific and non-specific ChIP-seq data (the latter are indicated 

by an asterisk).  

i.  The bar graph represents enrichment scores of TF predictions against ground-truth gene sets 

obtained by  literature text mining. The top 30 TFs (or fewer, as available) predictions derived from 

each GRN inference method are used to determine if they are enriched in a curated collection of 

Pubmed studies. The results are displayed as a fold-enrichment compared to the control of 30 

random genes. As additional controls, enrichment scores when using all TFs (i.e., more than 30) or 

TFs differentially expressed between the initial and final cell types are also shown.  
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FIGURE 2: 
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Fig. 2. Analysis of Drosophila midgut and larval blood scRNA-seq data by Haystack.  

a. Drosophila midgut scRNA-seq dataset12 shows six known intestinal cell populations: 

enteroendocrine (EE), intestinal stem cells/enteroblasts (ISC/EB), enterocytes (ECs) of the 

different regions of the gut [anterior (aEC), differentiating (dEC), middle (mEC), and posterior 

(pEC)]. 

b. Pseudotime analysis using Slingshot reveals three distinct lineages from the ISC/EB cluster: EE, 

aEC, and pEC. 

c. Haystack identifies source TFs specific to three lineages. 

d. qRT-PCR-based lineage analysis of ISC and EC cell-types in the midguts of Mondo, Psi, Peb, and 

cnc perturbations compared to their respective controls (w1118 and attp2). Only Peb displays 

mutually consistent overexpression and knockdown phenotypes. 

e-f.  Confocal images of Drosophila midguts of peb-i and peb-OE show a decrease in progenitors. 

Scale bar = 100um. 

g. Drosophila larval blood scRNA-seq14 shows plasmatocyte (PM), crystal cell (CC), and lamellocyte 

(LM) clusters. CC1 and LM1 represent putative immature while CC2 and LM2 represent mature 

CCs and LMs, respectively.  

h. Monocle 3-based pseudotime analysis shows that three lineages (PMlate, CC, and LM) emerge 

from the oligopotent PMearly cluster. 

i. Table representing source TFs identified by Haystack. 

j-k. qRT-PCR analysis of larval blood upon knockdown of CG3328 (j) and Xbp1 (k) shows an 

increase in the LM marker gene Atilla. Non-parametric multiple t tests were used and n.s. and * 

represent not significant and P<0.05, respectively. N=4 biological replicates. 

l. Confocal imaging of blood cells derived from HmlGFP>luci-i, CG3328-i, and Xbp1-i larvae. Scale 

bar = 50um.  
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Supplementary Information 

Supplementary Note 1 

Cost of perturbations 

Consider a relatively simple scenario, where one needs to analyze 10 homozygous mice that 

can only be generated from breeding heterozygous (het) animals. A total number of 40 offspring 

would be required to obtain these 10 (25%) homozygotes. Assuming a breeding female 

averages 6 pups/litter, a total of 7 het breeding pairs (7 females and 7 males; 7*6=42) would be 

required to generate one experimental cohort in one round of breeding (3 months). If het 

animals are not available, rearing wild type animals with a het animal generates ~50% het 

offspring. Thus, to generate 14 het mice would require 28 offspring. As such, ~5 WT x het 

breeding pairs are needed. Altogether, starting with 5 WT X het breeder pairs, the 10 

homozygous mice would be ready in about 6 months. For just one experiment, approximately 

80 mice will be generated. It would cost ~$2800 for housing the mice with the assumption of 

$1.25 per diem per animal (Boston University, https://tinyurl.com/yc5akwu8). This is an 

underestimation since in reality there are costs associated with reagents for genotyping and 

extra crosses that buffer for unsuccessful breedings. Additionally using qRT-PCR as a proxy for 

cell-type composition bypasses the need to buy costly reagents like antibodies or in situ probes 

to label cell-types. This highlights why selectively prioritizing high-confidence TFs for 

perturbation experiments is crucial for reducing cost. 
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Supplementary Note 2 

Applying Haystack on mouse gut and acute myeloid leukemia cells 

We applied Haystack on the scRNA-seq studies of mouse gut differentiation10 (GSE152325) 

and human acute myeloid leukemia (AML) cells11 (10.5281/zenodo.3345981). We used these 

datasets to first reconstruct cell lineages (diffusion pseudotime algorithm for the mouse gut as in 

the original study; Monocle 3 for the AML study) and identified TF modules along the 

trajectories. In the mouse gut, intestinal stem cells (ISC) differentiate along four lineages: 

enteroendocrine (EE) cells, tuft cells, goblet cells and enterocytes (ECs). Applying Haystack on 

each of the lineages, we identified the source TFs localized to or near the ISC cluster. 

Interestingly, when we visualized individual TFs using transcript levels alone (eg. Ezh2, Sox4, 

Sp5 and Nr3c1) (Fig. 1d), a diffuse expression pattern was observed. Instead, visualizing TF 

modules revealed that the same diffusely expressed TFs had very localized activity. We 

aggregated these results across the lineages by counting the total number of downstream 

targets per source TF and ranked them within each lineage. Of the 24 putative source TFs 

predicted by Haystack, 75% had substantial support in the literature for their involvement in the 

development of the gut, most of which were related to differentiation (see Table S1). 

 

For the human AML dataset, the pseudotime analysis revealed that hematopoietic stem cells 

(HSC) differentiate into dendritic cells, erythrocytes, NK T cells and monocytes in a linear 

trajectory. We found that TF modules exhibited clearly localized activity while the raw gene 

expression was diffusely expressed (e.g., Etv6, Xbp1, Irf1 and Runx3) (Fig. 1g). We identified a 

total of 25 high-confidence TF predictions, ~85% of which had substantial evidence in the 

literature to support involvement in blood function (see Table S2).  

 

Systematic benchmarking of Haystack in the BEELINE framework 

The BEELINE framework is a set of curated synthetic and experimental datasets (with 

corresponding ground-truth annotations and benchmarking software) for systematically 

evaluating GRN inference methods under uniform conditions5. Among the 12 GRN inference 

methods that were originally evaluated, PIDC3, SCODE2, Genie330 and GRNBoost231 were the 

top performers, especially on experimental data (Figure 6 of the original study). Here we chose 

PIDC and SCODE as benchmarks and excluded Genie3 and GRNBoost2 since they are 

indirectly used by Haystack as subroutines. Haystack leverages SCENIC to robustly infer TF 

activation and, in turn, SCENIC uses Genie3 or GRNBoost2 (depending on the user’s 

preference) to establish preliminary TF–target edges before refining them. Additionally, we also 

included SINGE4, which performed well on synthetic BEELINE data. We did not evaluate 

SCENIC separately here since it does not incorporate the differentiation trajectory or explicitly 

rank TFs, making it infeasible to evaluate the precision of its top hits.   

We focused our evaluation on experimental scRNA-seq datasets since our goal is to enable 

efficient wet-lab perturbations. Synthetic datasets are not reflective of real-world utility due to 

their small gene sets, simple dynamics, and low noise. From the BEELINE framework, we 
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obtained scRNA-seq data from five differentiating tissues: 1) mouse hematopoietic stem and 

progenitor cells (mHSC), 2) mouse embryonic stem cells (mESC), 3) mouse dendritic cells 

(mDC), 4) human mature hepatocytes (hHep), and 5) human embryonic stem cells (hESC). The 

mHSC dataset consisted of trajectories with multiple branches and was further subdivided into 

three subgroups: mHSC-E (erythroid), mHSC-L (lymphoid) and mHSC-GM (granulocyte-

monocyte).  

Existing GRN inference methods build a regulatory graph, encompassing both TFs and genes, 

directly from the provided input of expression profiles. Following the BEELINE framework, we 

applied each method on expression data of all TFs and the 1,000 most variable genes in each 

tissue. Where required, pseudotime information was also provided as an input. From the ranked 

list of gene–gene edges reported by each method, we extracted all edges that originate from a 

TF. Next, TFs were ranked based on their score computed as the sum of unsigned edge-

weights (i.e., both activation and repression) originating from itself. This approach is similar to 

the TF ranking procedure described in Matsumoto et al.2  The precision of top 10, 20 or 30 TFs 

by this ranking scheme were evaluated against ground truth annotations (Fig. 1h, S1a-b). We 

also tested an approach where each method was applied on just the set of TFs so that all 

reported GRN edges would be TF–TF; this approach performed substantially worse and was 

abandoned.  

For each scRNA-seq dataset, the BEELINE framework also offers ground-truth regulatory 

associations based on cell-type specific and non-specific ChIP-seq data. We converted both 

types of ChIP-seq data separately into a TF ranking as above, selecting the top 100 TFs as the 

gold standard to compare predictions against. Unlike the original study, we did not use the 

STRING database of protein associations32. Since the proteomic data in STRING contains an 

uneven collection of predicted (e.g., coexpression), indirect (e.g., homology-based) and direct 

physical interaction edges, we believe it is not an appropriate ground-truth benchmark for 

evaluating transcriptional regulation. 

In our evaluations, we report Haystack results derived from a ranked list of  source-only TFs as 

well as rankings that combine both source and target TFs. While we expect source TFs to be 

the focus of perturbational assays, we also report the combined source-and-target rankings to 

ensure a fair comparison with the baseline methods, which may not make distinctions between 

a source versus a target TF. We also explored Haystack’s performance at different choices of a 

key hyperparameter by varying the cutoff threshold for selecting well-localized TFs. Haystack’s 

outperformance was robust to this choice (Fig. S1c-f). 

 

 

 

Benchmarking Haystack on mouse gut and AML datasets  
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Generating a reference gene set by text mining: A standard approach to evaluating gene 

prioritization methods is to assess the subset of genes they prioritize against a reference list of 

genes documented to be involved in the process of interest. To our knowledge, for mouse gut or 

human AML differentiation no such reference gene sets are available. We therefore 

approximated the reference gene sets for the two tissues by text mining of research studies. 

Though these reference sets have not been derived by manual curation, we believe that our 

systematic approach results in unbiased errors, making these sets a useful validation 

benchmark. For each tissue, a collection of relevant studies was first acquired by querying the 

Pubmed database for publications whose title or abstract indicate that the study likely 

corresponds to the tissue of our interest. The queries used were: 

 

● Mouse gut: ("mouse"[Title/Abstract]) AND (gut[Title/Abstract] OR 

intestine[Title/Abstract]) AND (development[Title/Abstract] OR 

differentiation[Title/Abstract]) 

● Human AML cells: (human[Title/abstract]) AND (hematopoiesis[Title/Abstract] or 

"blood differentiation"[Title/Abstract] or leukemia[Title/Abstract]) AND 

regulation[Title/Abstract] 

 

An alternative querying approach would have been to limit ourselves to MeSH (Medical Subject 

Headings) gene and function annotations. However, we found the MEDLINE annotation of 

Pubmed articles by MeSH terms to miss important genes for our biological processes of 

interest. For example, the following query which uses only MeSH terms to search for 

publications of Ezh2 activity in mouse intestine development returned zero hits at the time of 

submission. In contrast, our approach identified four relevant publications (e.g., see Ezh2-

related reference in Table S1) 

 

● (("Ezh2 protein, mouse" [Supplementary Concept]) OR ("Polycomb Repressive 

Complex 2"[Mesh])) AND ("Intestines/growth and development"[Mesh]) 

 

From the titles and abstract of the queried list of publications, we identified gene names. The set 

of protein-coding gene names and their synonyms was sourced from the NCBI Gene database. 

We excluded gene synonyms that are also common English words. For instance, for the WASP 

actin nucleation promoting factor we included the synonyms IMD2, SCNX, THC, THC1, WASP, 

and WASPA; but we excluded the synonym WAS. The final reference set for each tissue was 

chosen as the genes listed in at least two publications (Table S4).  

 

 

Evaluating early precision with a gene enrichment metric: We computed the top TFs prioritized 

by Haystack as well as other methods (Fig. 1i). We evaluated three gene network inference 

methods: SCODE2, PIDC3, and SINGE4. Due to SINGE’s long run-time (10 days for a dataset 

with 3,000 cells), we applied it to a random subset of 3,000 cells in human AML tissue and 

2,000 cells in mouse gut tissue. For each method we selected the top 30 hits (fewer if the 

method reported less than 30 TF hits). We also shortlisted TFs by a differential expression 

analysis, performing the Wilcoxon rank-sum test to identify TFs differentially expressed between 

progenitor and other cell types as annotated in the original studies. The requirement of a pre-
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curated annotation might be infeasible for a poorly-studied tissue; therefore, neither Haystack 

nor the gene network inference methods require such pre-curated annotations. For each gene 

set, its enrichment in the reference set was evaluated, computed as the fold-change over the 

expected enrichment of an equal-sized random set of protein-coding genes.  

 

As another control, we computed the fold-enrichment of the set of all TFs in the species, finding 

this set to be enriched in both tissues. We interpret this as supporting our text-mining approach 

to extracting relevant studies: it would have been surprising if published studies of differentiation 

in these tissues did not highlight TFs more than other genes.     

 

Haystack’s improvement over SCENIC: We also attempted to examine the additional accuracy 

of Haystack over SCENIC. Notably, SCENIC does not consider the differentiation landscape 

and TFs are not ranked by their likelihood of being a source. Nonetheless, we evaluated the full 

set of SCENIC regulons (93 in the case of mouse gut; 219 for human AML cells), computing 

their enrichment against equal-sized sets of random protein-coding genes. In both the human 

AML and mouse gut tissues, the set of SCENIC regulons is substantially more enriched than 

random (fold-enrichment scores of 6.11 and 5.67, respectively), indicating that its module 

discovery process does enhance the TF signal in the data. However, SCENIC by itself is not 

sufficient— it outperformed single-gene differential expression in mouse gut (score of 2.34) but 

underperformed the latter in human AML cells (score of 5.84). In comparison, the set of TFs 

prioritized by Haystack (scores of 6.81 and 8.12 in mouse gut and human AML, respectively) 

not only displayed higher enrichment than either SCENIC or differential expression, but also 

higher than the gene network inference methods (Fig. 1i). 

 

Runtime and memory usage requirements of Haystack 

 

We assume here that pseudotime trajectories have been already computed by the researcher’s 

method of choice. Once TF modules and pseudotime have been computed, the optimal 

transport computation in Haystack runs under 5 minutes and requires less than 8 GB of RAM. 

The preprocessing step of computing TF modules via SCENIC 

(https://github.com/aertslab/pySCENIC) is more time intensive: on a 10,000 cell dataset, 

computing TF modules using the pySCENIC Docker instance (using the GRNBoost2 sub-

module and with parallelization enabled) required 22 minutes on a 24-core Intel Xenon 3.5 GHz 

server with peak memory consumption under 30 GB. The run-time of SCENIC increases with 

the number of cells and we therefore recommend sketching approaches33 to downsample 

datasets with hundreds of thousands of cells. We also recommend using GRNBoost2, rather 

than Genie3, as the subroutine inside SCENIC since the former is substantially faster.  

 

 

 

Supplementary Note 3 
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Applying Haystack on Drosophila midgut 

 

The fly midgut consists of a monolayer of absorptive enterocytes (ECs) and secretory 

enteroendocrine cells (EEs) that are replenished by self-renewable intestinal stem cells 

(ISCs)34,35. Previously, we had performed scRNA-seq on fly whole guts and identified a total of 

22 clusters mainly consisting of finer sub-classifications of EEs and ECs12,13. Some of these 

subtypes are distinguished by their spatial location whereas others were intermediate states 

between ISC/EB and a specific terminal state13. We applied Haystack on this scRNA-seq 

dataset. To avoid the confounding effects of unknown cell clusters, we limited our analysis to 

the known midgut cell-types; including EEs, ISC/EBs, anterior ECs, differentiating ECs, middle 

ECs and posterior ECs (Fig. S2a). Using SlingShot19, we mapped individual cells onto a 

pseudotime trajectory consisting of three lineages with the starting point set as ISC/EB and end 

points as EE, aEC or pEC (Fig. 2a,b). By mapping TF module activity along these trajectories, 

Haystack identified eight TFs that were localized to the ISC/EB starting point (Source TFs). 

These included Forkhead box K (FoxK), cap-n-collar (cnc), pebbled (peb), P-element somatic 

inhibitor (Psi), drumstick (drm), TATA binding protein (Tbp), Ten-Eleven Translocation family 

protein (Tet) and Mondo (Fig. S2b).  

 

As a broadly applicable intermediate validation, we measured mRNA levels (by qRT-PCR) of 

gene markers of specific cell types to approximate the cell-type composition. Using differential 

gene analysis, we selected a total of 11 markers that were distinctly expressed in ISC/EB (Dtg, 

N, LanB1), aEC (CG6295, Npc2f), pEC (LManVI, Gs2, Mur29B) or EE (esg, AstC, IA-2) (Fig. 

S2b). In the original Hung et al. study, these markers had been identified for individual cell 

clusters using a differential expression analysis in Seurat36 and for each cell type, we chose a 

combination of markers such that all sub-clusters of a cell type were covered. We knocked-

down or overexpressed the eight TFs specifically in adult ISC/EB with available reagents. 

Among these, we found five RNAi lines (peb-i, Psi-i, Tet-i, Mondo-i, cnc-i) and seven 

overexpression (OE) lines (peb-OE, Psi-OE, FoxK-OE, drm-OE, two Mondo-OE, cnc-OE) that 

successfully reduced or increased, respectively, the gene of perturbation when assaying mRNA 

extracted from the whole midgut (Fig. S2d). We measured the levels of the 11 markers for each 

perturbation, which amounted to a total of 132 observations. We calculated the fold change 

(FCRpL32) in comparison to a control, using RpL32 as a reference. In all cases, perturbation led 

to at least one, and up to 11, significant fold change(s) in marker gene expression. The FCRpL32 

in markers gave us a proxy for the cell-type composition of the gut. For example, knockdown of 

Psi in intestinal progenitors caused a decrease in EE and pEC markers whilst ISC/EB and aEC 

markers remained unchanged (except for Npc2f). This suggests that Psi is involved in 

promoting the differentiation of progenitors to EEs and ECs in the posterior midgut (Fig. 2d). 

Drm overexpression caused an increase in ISC/EB markers with no changes in most terminal 

cell-type markers other than an increase in Mur29B. This suggests that drm promotes ISC 

proliferation and may not be involved in differentiation (Fig. S2d).  

 

To overcome the caveat that terminal markers are confounded by the proliferation of 

progenitors, we used the EC–ISC mean marker ratio to compare our perturbations with the 
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control. For peb perturbations, we knocked-down or overexpressed peb in adult intestinal 

progenitors and used confocal microscopy to observe cellular defects (see Fig. 2e,f). Intestinal 

progenitors were labeled by GFP expression and ECs were recognized by their polyploid nuclei 

(Fig. S2e-f). Compared to control, the raw cell counts (including GFP-positive cells, EEs, and 

ECs) were lower in both the peb-i and peb-OE, with a decrease more prominently observed in 

the posterior midgut than the anterior region (Fig. S2e-f). This similarity in the cell-count profile, 

because of opposite perturbations of the same gene, is surprising and could be a reason why 

previous studies15,16 arrived at different conclusions. We reasoned that the differences between 

the opposite perturbations might be clarified if we refined our parsing of cell types. Although 

mature ECs are polyploid and can be readily distinguished from other cell types, premature ECs 

undergoing endocycling can be hard to discern from ISCs. Additionally, ECs that have rapidly 

differentiated from ISCs can be GFP-positive as a result of the perdurance of the protein 

expressed in the progenitors. Thus, we measured nuclei area as a non-biased way to profile 

ISC/EB differentiation. In the anterior region, peb-i or peb-OE in intestinal progenitors resulted in 

no change in the mean nuclei area. The same perturbations, in the posterior midgut, caused a 

statistically significant but moderate increase in the mean nuclei area. Interestingly, differences 

could be observed by looking at the frequency distribution of the nuclei area. When compared to 

control, peb knockdown displayed a higher percentage of small nuclei cells (progenitors), a 

reduction in endocycling ECs, and an increase in large ECs in the anterior midgut. In the same 

region, peb-OE showed a reduction in the percentage of progenitors. In the posterior midgut, 

peb-i caused a decrease in early endocycling ECs but an increase in the late and mature ECs. 

Peb-OE causes a notable decrease in the proportion of progenitors and an increase in large 

ECs.  

 

Applying Haystack on Drosophila blood 

Drosophila hemolymph consists of three populations of blood cells or hemocytes: macrophage-

like plasmatocytes (PM), platelet-like crystal cells (CC), and giant-cell like lamellocytes (LM), 

which express the known marker genes NimC1, PPO1/2, and Atilla, respectively37. We applied 

our method on blood cell scRNA-seq pertaining to larvae upon wounding, which is sufficient to 

activate blood cells and induce LMs14,38. For simplicity, PM clusters from the original study have 

been combined into two groups, PMearly and PMlate, corresponding to the early (oligopotent) and 

late-stage (mature) PMs, respectively (Fig. 2g). The CC and LM cell types are also subdivided 

into two clusters, with CC1 and LM1 representing the putative immature states of mature CCs 

(CC2) and LMs (LM2) (Fig. 2g). We re-applied Monocle 3 on this dataset21 and identified three 

main lineage trajectories with the source set at oligopotent PMs (PMearly, in blue) (see Fig. 2h). 

For the PMearly → CC lineage, Haystack identified four source TFs: Dp, Jumu, Lz, and Myc (Fig. 

2i). The latter three TFs (Jumu, Lz, and Myc) have been implicated in the CC lineage39,40, 

suggesting the power of Haystack in accurately predicting lineage-determining TFs. For the 

PMearly → LM lineage, Haystack identified two novel source TFs CG3328 and Xbp1 (Fig. 2i), 

both of which displayed a diffused pattern of expression around the PMearly cluster (Fig. S4b,f). 

We note that the human ortholog of Xbp1 was also identified in the Haystack analysis of human 

leukemia data (see Fig. 1g), which suggests an evolutionarily conserved role for this TF in 

blood cell differentiation.  
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In this study, we focused on the LM lineage as the regulators of PM->LM differentiation are not 

well established. Hence, for in vivo perturbations, we knocked-down or overexpressed CG3328 

and Xbp1 in blood cells using the Hml-Gal4, UAS-2xEGFP driver (hereafter as HmlGFP), where 

EGFP marks most PMs41. To identify changes in blood cell lineages upon perturbation of 

CG3328 and Xbp1, we first performed qRT-PCR on total RNA derived from the larval 

hemolymph containing circulating and sessile blood cells of the various genotypes. RNAi-

mediated knockdown of CG3328 resulted in an induction of the LM marker gene Atilla (Fig. 2j), 

indicating activation of the LM lineage. To address the role of gain-of-function of CG3328, we 

utilized CRISPR-mediated activation (CRISPRa) approach using the Hml-Gal4, UAS-EGFP; 

UAS-dCas9 (HmlGFP;dCas9) driver. However, increasing the levels of CG3328 in PMs did not 

affect the expression of any of the lineage marker genes (Fig. S4c), suggesting that forced 

expression of CG3328 does not impact the blood cell type composition. With regards to the 

perturbation of Xbp1, we observed an increase in Atilla expression (Fig. 2k), akin to the 

knockdown of CG3328. On the other hand, overexpression of Xbp1 resulted in decreased 

expression patterns of NimC1 and Atilla, while Hml and PPO2 remain unchanged compared to 

OreR controls (Fig. S4g), suggesting that forced expression of Xbp1 disallows both PMlate and 

LM lineages. To further validate our findings from the qRT-PCR data pertaining to the role of 

these two TFs in regulating the LM lineage, we performed confocal imaging of blood cells in 

respective genotypes. We identified that knockdown of CG3328 and Xbp1 led to an increase in 

the fraction of LMs compared to their respective controls (see Fig. 2l; S4d,e,h,i). Lastly, besides 

the LM lineage, we also tested the role of E(spl)mbeta in the PMearly → PMlate lineage, as 

predicted by Haystack (Fig. 2i, S4j). qRT-PCR analysis shows that overexpression of this TF 

decreased the expression levels of NimC1 (Fig. S4k), while the cell type compositions (of PMs 

and CCs) remain unchanged with no detection of Atilla+ LMs (Fig. S4l). Altogether, these 

results indicate the predictive power of Haystack in shortlisting biologically relevant TFs for 

downstream lineage analyses.  

 

 

Using Haystack to predict source-target TF pairings 

 

Towards identifying signaling cascades of TFs, we next used Haystack to identify TFs localized 

to the end-points of trajectories (i.e., target TFs) in Drosophila gut differentiation. Using the 

cisTarget database, we limited our analysis of TFs that were putative transcriptional targets of 

the 8 source TFs described previously. We identified a total of 54 that satisfied this criterion and 

further narrowed them down to 13 TFs that localized to cells at the three endpoints. Although 

not all target TFs were downstream of each of the 8 source TFs, we measured the levels of all 

13 target TFs under the 12 “source” perturbations (7 overexpression; 5 knockdown) to assess 

the validity of our putative predictions; we also measured all 8 source genes to confirm the 

perturbations. This amounted to a total of 252 observations. Among the 24 perturbations tested 

for putative source-target pairings, 14 (58%) were correct (Fig. S3). That is, down regulating a 

source TF led to a decrease in a putative target TF or vice versa for overexpression. One of the 

novel source-target pairs was peb>Myc. Peb-i resulted in a decrease in Myc levels, whilst peb-

OE increased the levels of Myc. This is consistent with previous studies of Myc function in the 
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midgut where the overexpression of Myc increases nuclei size and knockdown of Myc reduces 

ISC numbers42,43.  
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Supplementary Figures and Tables 

Fig. S1 
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Fig. S1. Benchmarking Haystack with other gene network inference methods.  

These plots accompany Fig 1h and show an extended comparison between Haystack and 

existing GRN methods. In all tabular plots, the yellow–green color gradient in each row is scaled 

to ensure a uniform maximum (yellow) across all rows.  

a-b. The tabular plot presents the precision of the top-10 (a) and top-30 (b) predictions of 

Haystack (All: source and target TFs, Sc: source-only TFs), PIDC, SCODE and SINGE on a 

variety of mouse and human cell types (Supplementary Note 2 for details on cell types). The 

ground-truth gene sets are sourced from ChIP-seq data, with an asterisk indicating evaluation 

against non-cell-type specific ChIP-seq. The precision results for top-20 predictions are shown 

in Fig 1h. 

c-f. For top-20 predictions, these tabular plots show the performance of Haystack over a variety 

of choices for the hyperparameter (“param-cutoff”) that controls the number of well-localized 

TFs selected after the initial optimal transport analysis: 0.1 (c), 0.33 (d), 0.5 (e), and 0.66 (f). 

For the results in Fig 1h, the parameter setting is 0.2. 
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Fig. S2 

 

 

 

 

Fig. S2. Analysis of the Drosophila midgut using qRT-PCR and confocal microscopy. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2022. ; https://doi.org/10.1101/2022.06.27.497786doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497786
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

a. UMAP plots representing the expression of intestinal cell marker genes for progenitors (Dtg, 

N, LanB1), aEC (CG6295, Npc2f), pEC (LManVI, Mur29B) or EE (AstC, IA-2) 

b. Bar graphs represent marker gene expression pertaining to the gut lineage validated by qRT-

PCR of Drosophila gut mRNAs upon knockdown (KD) or overexpression (OE) of various source 

TFs such as peb, Psi, FoxK, drm, tet, Mondo, and cnc. The y-axis represents fold change 

compared to control normalized to RpL32. 

c-f. Quantification of confocal micrographs after peb perturbation. (c,d) peb knockdown and 

(e,f) peb overexpression in intestinal progenitors. Parametric t-tests were used to calculate 

statistics for nuclei area. Non-parametric t-tests were used to calculate the statistics where *, **, 

***, **** represent p values <0.05, 0.01, 0.001, 0.0001, respectively. 
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Fig. S3 
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Fig. S3. Marker gene expression and Source - Target validation by qRT-PCR. 

Bar graphs represent putative TF target gene expression pertaining to the gut lineage validated 

by qRT-PCR of Drosophila gut mRNAs upon knockdown (KD) or overexpression (OE) of 

various source TFs such as peb (a, a’), Psi (b, b’), FoxK (c), drm (d), tet (e), Mondo (f-f’’), and 

cnc (g). Panels are bar graphs representing the source TF (black hexagon) - target TF (green 

hexagon) validations by qRT-PCR of the aforementioned TFs. The y-axis represents fold 

change compared to control normalized to RpL32. 
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Fig. S4: 
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Fig. S4: Haystack identifies known and novel TFs in Drosophila blood cell differentiation  

a. UMAP plots representing the expression of blood cell marker genes Hml, NimC1 (PM), PPO2 

(CC), and Atilla (LM). 

b-c. UMAP plot representing the expression of CG3328 (b). qRT-PCR analysis of hemocytes 

derived from control or CG3328-OE shows that overexpression of CG3328 has no substantial 

changes in the blood cell type composition based on the unchanged marker gene expression 

(c), N=3-6 biological replicates. Non-parametric multiple t tests were used to calculate the 

statistics where ** represents a p value <0.01. 

d-e. Confocal images of CG3328 knockdown (CG3328-i) shows production of Atilla+ LMs 

compared to luciferase RNAi (luci-i) controls (d, arrows). Bar graphs represent the cell counts 

which show an increase in the percentage of both PPO1+ CCs and Atilla+ LMs in CG3328-i (e). 

Note that total blood cell number (DAPI+ cells), Hml+ PMs, PPO1+, and Atilla+ LMs CCs are 

significantly increased upon CG3328 knockdown. Non-parametric multiple t tests were used to 

calculate the statistics where * and ** represent p values <0.05 and 0.01, respectively. N=6 

biological replicates. 

f-g. UMAP plot representing the expression of Xbp1 (f). qRT-PCR analysis shows that 

overexpression of Xbp1 in blood cells decreases the expression of both NimC1 and Atilla (g). 

N=4 biological replicates. Non-parametric multiple t tests were used to calculate the statistics 

where * represents a p value <0.05. 

h-i. Confocal images (h) of Xbp1-overexpression (Xbp1-OE) and knockdown (Xbp1-i) shows 

increased blood cell number (in Xbp1-OE) and increased fraction of of Atilla+ LMs (arrows in h) 

compared to OregonR (OreR) controls (i). Note that Xbp1-OE causes an increase in the total 

blood cell numbers (DAPI+ cells) and Hml+ cells. One-way ANOVA was used to calculate the 

statistics where **, ***, and **** represent p values <0.01, 0.001, and 0.0001, respectively. N=3-

4 biological replicates. 

j-l. UMAP plot representing the expression of E(spl)mbeta-HLH (j). qRT-PCR analysis shows 

that overexpression of E(spl)mbeta-HLH in blood cells decreases the expression of NimC1 (k, 

N=4 biological replicates), validating its role in the PMearly → PMlate lineage. Confocal images of 

OreR control and E(spl)mbeta-OE show no marked changes in cell type composition. Non-

parametric multiple t tests were used to calculate the statistics where * represents a p value 

<0.05. 
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Table S1. Haystack source TF predictions in the mouse gut 

Mouse gene Mammalian function in gut related cell-types PMID 

ezh2 

Enhances transcription of beta-catenin transcriptional complex at 

Wnt target promoters 24055345 

myc Required for the induction of crypt formation 

20708588; 

16107730 

e2f1 

Knockouts have increased p53 independent cell death of crypt 

intestinal cells 20016602 

NR3C1 Deletion protects intestine against inflammation 33684964 

egr1 

Targeting Egr1 attenuates radiation induced apoptosis in the 

mouse small intestines 26206332 

sox9 Required for Paneth cells differentiation 

17681175; 

26170137 

nr1h4/fxr 

FXR deficiency promotes cell proliferation, inflammation and 

tumorigenesis in the intestine 18981289 

sox4 

Sox4 promotes intestinal secretory differentiation toward tuft and 

enteroendocrine fates 30055169 

fos Expressed in villus epithelial cells, but not in crypt cells 11572941 

nfic - - 

pax6 Controls proglucagon gene expression in EE cells 10478839 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2022. ; https://doi.org/10.1101/2022.06.27.497786doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497786
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

lhx1 -  - 

ascl2 

A Wnt target. OE induces hyperplasia. Deletion leads to loss of 

Lgr5 stem cells 19269367 

jun Required for intestinal cancer development in Apc{min}/+ mice 16007074 

foxa2 Control the differentiation of goblet and EE L- and D- cells 19737569 

sp5 - - 

creb3l4 - - 

pou2f3 Pou2f3 null mice lack intestinal tuft cells 26762460 

atf3 

Loss of ATF3 decreases crypt numbers and shortens colon length 

during DSS-induced colitis 30455690 

e2f8 

Human E2F8 suppresses cell proliferation in colon cancer cells by 

modulating the NFkB pathway 31471336 

mybl2 

Knockdown induces the accumulation of cells in G2M with a 

concomitant decrease in G1 in Caco-2 cells 20857481 

hoxb6 - - 

spi1 - - 
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Table S2. HACKSTACK source TF predictions in human leukemia 

Human gene Mammalian function in blood related cell-types PMID 

etv6 

TEL function is essential for the establishment of hematopoiesis of all 

lineages in the bone marrow 9694803 

gabpb1 

Necessary for stem/progenitor cell maintenance and myeloid 

differentiation 27100840 

hdac2 Hdac1 and hdac2 are required for early hematopoiesis 24763403 

kdm5b Required for HSC self-renewal 25655602 

taf7 - - 

erg 

Promotes and required for HSC maintenance and restricts their 

differentiation 

26385962; 

21673349 

polr2a - - 

maz Regulates erythroid differentiation program 34351390 

kdm5a Promotes NK cell activation by regulating interferon-gamma production 27050510 

ybx1 Required for maintaining myeloid leukemia cell survival 33763698 
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spi1 

Promotes B cell and macrophage differentiation at low and high 

concentrations respectively 

10827957; 

8896458; 

8079170 

smarca4 Required for leukemia cell expansion 24285714 

xbp1 Required for plasma cell differentiation 

12846805; 

12969976 

runx2 Ensures the expression of pDC-signature genes in leukemic cells 30971697 

stat5a 

Activation of STAT5A in HSCs results in their enhanced self-renewal 

and promotes differentiation toward erythroid lineage 15353555 

gata2 

Regulates dendritic cell differentiation; Mutations in Gata2 impair 

definitive hematopoiesis in CML 

27259979; 

34078881 

tfdp1 - - 

foxp1 

Represses human plasma cell differentiation; Negative regulator of 

Follicular Helper T cell differentiation. 

26289642; 

24859450 

irf5 

Regulates the plasma cell commitment factor Blimp-1 and B-cell 

terminal differentiation in mice 20176957 

nfatc2 Control both T and B cell activation and differentiation 11163226 

smad1 

Depletion limits hematopoietic potential because of a block in mesoderm 

development 21515822 
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znf76 - - 

myc c-Myc−/− mice develop severe thrombocytosis-anemia-leukopenia 19372257 

tfec 

Controls hematopoietic stem cell vascular niche during zebrafish 

embryogenesis 27402973 

klf7 

Increased expression inhibits myeloid cell proliferation in lymphoid 

leukemia 22936656 
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Table S3. Primers used for qRT-PCR 

  

Gene 

FlyPrimer bank 

ID / PMID Forward Primer Reverse Primer 

aef1 PP29256 CACCTGACCACGCATAGTCC GTGCTTAGCTGTCGAAAGCGA 

AstC PD44956 CTCACCCTGTTCTTTGCCCT GGTCCTGTTTCGGCACCC 

Cad PP34104 AGCCGCCATACTTCGACTG TTATCCTTGGTGCGGGTTTTG 

CG6295 PP22809 CAACGTCCTGAACCCCGTC GACCAGCCGTGGATAGTGA 

clk PP20992 GCCTCGGAAAGTATTACCTCCC CCATCTCATAGGCCAGGTCATA 

cnc PA60393 CTGCATCGTCATGTCTTCCAGT AGCAAGTAGACGGAGCCAT 

crp PP11311 GGTTGCCATCAAAACGGAGGA TCGATGTGATAGTTCTCACCCC 

CycT PP22301 CCGGCCCGTCTGAAGTCTA CCTTGCTGTTAGCTGTCCGAT 

drm PD44490 CACCAAGCCGTACAACCTGA ACACCTCGCACGAATAGGTG 

e2f2 PP6884 AGCGCAAAACCGCGAGTAT GCCGAATCCACCTTCATCATC 

esg PP35234 ATACCCGAAATATCCCTGGAACA CCCTGCTGATTGATGGTCCTG 

foxk PP30383 CGGATGCCGTGACAGTAATC CGCGACACAAGGTTGTTCTC 
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h PB60086 GCGTAACAGCAGCCAACAT CATGATGGGCTTGTTCGAC 

ham PP25145 GGATGGCTAGAGCCCACAGA TCGCCTATACAATCGTCCTGAA 

IA-2 PP20886 GCACTCCGAGGTCTGCTAC GTCTTCTCAATGTCCTCAACGTC 

irp-1a PP232 CCAGGAGTCATTCACCCAGGA CACATGAAAGTTGTCACAGTTGC 

LManVi PP11567 ATGCCCCAAAACCAAGACGAA CAGCTCAGCGATTACGGTATC 

mondo PP22673 TTTATACAGCCCAGTCTTGGTCC CAAGCGTGTGGTTGGAATCAA 

Myc PP29594 TCGCAGACGACAGATAACACC GACAGACCGTGTAGTCCAGAT 

peb PP19111 ATTTCGTCTGAATCGCTCGG TGCTACTGTTACCCAGATAGCC 

psi PP10665 GTGCCAGTATTACTCAGGCAAT ATCTGCTCCTCACAGCTTGTT 

rel PD70444 GGTGATAGTGCCCTGCATGT CCATACCCAGCAAAGGTCGT 

sd PP22380 TACGGTCGCAACGAGCTAATC AACTGACTTGCTTCCTGGTTC 

TET PP21254 ATCCCAACTACGGTAGGTCG CATCGTCTTATTGAGGTCCGC 

trx PD70008 AATGCGGCGCGTTTCATTAA GTCGTAGGTAAGCTCCTCGC 

vnd PP35690 TCCCCAGTTACCTCGGAAGTG AGCTCTTGTAATCGCCGGAAA 

vnd PP35690 TCCCCAGTTACCTCGGAAGTG AGCTCTTGTAATCGCCGGAAA 
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RpL32 (gut)  PD41810 AGCATACAGGCCCAAGATCG TGTTGTCGATACCCTTGGGC 

RpL32 (blood)  PMID:24240319 
ATCGGTTACGGATCGAACAA GACAATCTCCTTGCGCTTCT 

Hml PP16200 TGGTTATGGCGGGATAAAGACG GTTGCCCTGACTTCCCTGG 

NimC1  PP27067  TGCCCAACGGTATGTGGAAAA  GGAGAAGTTCGTTTGTAGCCAT 

PPO1  PP22066  TTGGAACTGCCCGATTCCTTC  TTCAGATCCACGTCCTTAGAGAA 

PPO2  PP20802  GCCTGGATCTGCCATCCTTC  CACCACAAAAGACTCCTCCCG 

Atilla PD42354 CAGTGCAAATCCCTCACGGA CGCGGATGTTAGAGGCAGAA 

CG3328 PP30800 CAGACGGATCTGGGCCAGTA GTTGCTCGGGTTGATGATGAG 

Xbp1 PD70455 CTCGAGTTCGGGATACGCAT CCAGGTTAGATGGTCCAGGC 

E(spl)mbeta-HLH PP8427 CGCCGTGCCAGGATTAACA GGAAACTCTCAGCGATGCTAAG 
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