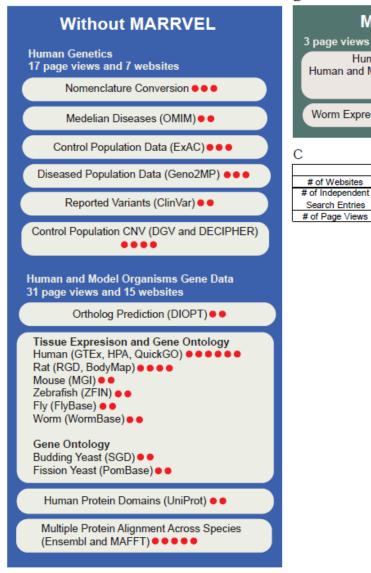
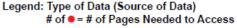
The American Journal of Human Genetics, Volume 100


Supplemental Data


MARRVEL: Integration of Human and Model Organism

Genetic Resources to Facilitate

Functional Annotation of the Human Genome

Julia Wang, Rami Al-Ouran, Yanhui Hu, Seon-Young Kim, Ying-Wooi Wan, Michael F. Wangler, Shinya Yamamoto, Hsiao-Tuan Chao, Aram Comjean, Stephanie E. Mohr, UDN, Norbert Perrimon, Zhandong Liu, and Hugo J. Bellen

B ARRVEL 3 page views and 2 websites Human Genetics and Human and Model Organism Gene Data O Worm Expression Data (WormBase) C C MARRVEL Without MARRVEL # of Websites 2 22

1


3

22

48

A) Multiple databases contain useful data for gene and variant analysis. However, obtaining each piece of data requires navigation throughout multiple websites. **B and C)** MARRVEL aggregates useful data from public databases for variant and gene analysis. Aggregation of information across multiple databases greatly facilitates data analysis and provides a platform for integrating the accumulated knowledge in human genetics and model organism research.

OMIM, Online Mendelian Inheritance in Man; ExAC, The Exome Aggregation Consortium; Geno2MP, Genotype to Mendelian Phenotype; DGV, Database of Genomic Variants; DECIPHER, DatabasE of genomiC variation and Phenotype in Humans using Ensembl Resources; DIOPT, DRSC Integrative Ortholog Prediction Tool; SGD, Saccharomyces Genome Database; MGI, Mouse Genome Informatics; HPA, Human Protein Atlas

Figure S2: Overall navigation and multiple protein alignments on MARRVEL

A: The navigation menu on the left allows for a quick jump to a dataset of interest

B: The feedback function is built into each output page to encourage users to submit bug reports and/or suggestions for future updates.

C: The highlight function for the multiple protein alignment allows for quick assessment of the conservation of an amino acid or functional domain of interest

D: Predicted functional domains are highlighted in pink.

Predicted Or	rthologs						X
FBXL4							FiyAtlas Anatomical Expression Data
Show only bes	st DIOPT v5.5	score gene					FlyAllas Organ/Tissue Expression, iarval vs. aduit
	Homolog	DIOPT Score	Expression	Molecular function	Cellular component	Biological process	Adult Lawar Hood SEE W
Human	FBXL4		Coming scon	 ubiquitin-protein transferase activity 	nucleoplasm mitochondrial intermembrane space	No term based on exp	Eye too a
Mouse	FDXI4	11	No data available Open on MGI	No term based on experiment	No term based on experiment	No term based on exp	I Norsean-Adstorment Elsergton III (* 14 Crop III) (III) Midgue IIII (III)
Zebrafish	fbxi4	8	whole organism Open on ZFIN	No ferm based on experiment	No ferm based on experiment	No ferm based on exp	llindgut wa viv Mabghan lububs Ma №2 FatBody R27 113
Drosophila	Fbxl4	10	Head Eye Brain Thoracic Abdominal Gangion Ovary Show all (25)	No lerm based on experiment	No term based on experiment	deactivation of rhoe	Salvary Gand az ev Iber 2 Carlass 4 Carlass 4 Tests 4 Vegen Fernálszer Szermáltasa 4 Resemináció Parla Szermáltasa 4 Megen Fernálszer Szermáltasa 4 Me
Budding Yeast	RAD7	1	Open on SCD	 damaged DNA binding ubiquitin-protein transferase activity DNA-dependent ATPase activity 	nucleotide excision repair factor 4 complex Cul3-RING ubiquitin ligase complex	 nucleotide-excision cellular protein loca protein ubiquitinatio 	Note Accessory Cland RK (K) Central Hervous System (k) av Trachese (k) XX
	GRR1	1	Open on SGD	ubiquitin-protein transferase activity protein binding, bridging	cellular bud neck contractle ring nucleus cytoplasm SCF ubiquitn ligase complex	protein polyubiquitir mitotic cell cycle arr cellular response to protein ubiquitination SCF-dependent pro Show 1 more	DNA damage stimulus
	AMN1	1	Open on SGD	protein binding	 nucleus cytoplasm cellular bud 	negative regulation mitotic cell cycle che	

Figure S3: Demonstration of the model organism data section of MARRVEL

A summary of human and model organism gene function information is displayed in a table. The human protein domains are also listed, along with a protein alignment of the human gene with putative orthologs in model organisms. An example of tissue expression data for an ortholog of a human gene in *Drosophila* is shown.

A: DIOPT score indicates the number of individual ortholog prediction tools that report a given ortholog pair. The maximum score depends on the number of ortholog prediction tools that include that species in analysis.

B: A display of gene expression levels will appear by clicking on "show all," as exemplified here for *Drosophila*.

Table S1:

able ST:		-		· · · · · · · · · · · · · · · · · · ·	
1. Database Name and URL	2. Version/ Date Accessed	3. Method of Data Access	4. Data Extracted	5. Interpretation	6. Number of Entries
OMIM omim.org	On demand	API http://api.omim.org/ api/entry?mimNumb er={{omimNumber}}	Gene Description, Gene- Phenotype Relationship (Disease association), reported Allelic Variants	Gene-Phenotype Relationships report any known disease associations reported in the literature. If the individual of interest's phenotype matches the disease/phenotype described here, then the case is likely solved by this gene. The variant can be further analyzed to see if it was previously reported as benign/pathogenic.	15,553 gene descriptions. 8,377 phenotype associations
ExAC exac.broadinsti tute.org/	Release 0.3.1	VCF files ftp://ftp.broadinstitu te.org/pub/ExAC_rel ease/release0.3.1/	Homozygous/Hemizygou s count, Allele count, Total Allele number, Allele frequency	Homozygous/Hemizygous count of the variant of interest in a control population indicates how likely this gene can cause recessively inherited disease Allele frequency in ExAC is an estimate of how common this allele is in the control population.	10,195,872 entries
	On demand	Gene table http://exac.broadins titute.org/gene/{{en semblId}}	Expected vs. Observed no. of variants and Constraint Metrics (z- scores and pLI)	pLI scores indicate probability of Loss of Function intolerance and indicates the likelihood that this gene can cause dominantly inherited disease.	20,313 genes
ClinVar https://www.n cbi.nlm.nih.gov /clinvar/	Every two weeks	MARRVEL Crawler: Search ClinVar by HGNC identifier for human gene, every two weeks	Variant, Location, Condition(s), Frequency, Clinical Significance, and Review Status	Variants with interpretations reported by researchers and clinicians are valuable for analyzing how likely a variant is pathogenic.	426,009 records with interpretation
Geno2MP geno2mp.gs.w ashington.edu	October 10, 2016	Geno2MP.variants. vcf(http://geno2mp. gs.washington.edu/G eno2MP/#/terms)	Number of individuals homozygous or heterozygous for the variant of interest.	A summary of number of individuals with allele of interest. If the user searches gene-only, the MARRVEL displays the sum of all alleles (heterozygous or homozygous) found in Geno2MP.	20,313 genes, 392,583 entries
	October 15 15:46 UTC, 2016	Phenotype Information: MARRVEL Crawler	Human phenotype ontology (HPO) profiles of individuals containing variant of interest.	The HPO terms specify an individual's phenotype. The HPO profiles of individuals with the variants of interest are important clues to whether or not a variant is disease causing. If the individual in Geno2MP with the variant of interest displays phenotypes similar to the individual of interest, ie genotype and phenotype are consistent, then the variant of interests is more likely linked to the individual's disease.	5,012,286 entries
DGV (Database of Genomic Variants) dgv.tcag.ca/dg v/app/home	May 15, 2016	http://dgv.tcag.ca/d gv/docs/GRCh37_hg 19_variants_2016- 05-15.txt	Copy number variations in a control population that contains the gene of interest	The number of individuals with loss of copy number variations that contain the gene of interests may provide insight into how critical the gene is to normal function and whether or not haploinsuffciency may be a mechanism of disease. If there is a high number of individuals with deletions that contain the gene of interest, then it is less likely that haploinsufficiency is the disease mechanism.	392,583
DECIPHER Control Data decipher.sange r.ac.uk	Septemb er 7, 2016	Population Copy- Number Variation Frequencies: https://decipher.san ger.ac.uk/about#do wnloads/data	Copy number variations in a control population that contains the variant of interest	This dataset, similar to DGV, also contains copy number variations in non-disease cohorts.	58,146
Ensembl http://grch37.r est.ensembl.or g	Septemb er 7, 2016	Ensembl GRCh37 REST API http://grch37.rest.en sembl.org/	Ensembl ID	N/A	34,544
HGNC genenames.org	Septemb er 7, 2016	HGNC REST API http://www.genena mes.org/help/rest- web-service-help	Official HGNC gene name	N/A	26,307
Mutalyzer	On demand	API https://mutalyzer.nl/ json/numberConvers ion?build=hg19&vari ant={{variant}}	HGVS conversion to chromosome location and Name checker assists users to input correct nomenclature	N/A	N/A
PubMed https://www.n cbi.nlm.nih.gov /pubmed	On demand	PubMed search by "Links from Gene" https://www.ncbi.nl m.nih.gov/pubmed? LinkName=gene_pub med&from_uid={{En trezID}}	URL to the page	N/A	N/A

Table S2:

1. Database Name and URL	2. Version/ Date Accessed	3. Method of Data Access	4. Data Extracted	5. Interpretation	6. Number of Entries
DIOPT (DRSC Integrative Ortholog Prediction Tool) http://www.flyrn ai.org/diopt	Version 6.0.1 (Jan 2017)	MARRVEL Crawler	DIOPT is an online tool that uses multiple ortholog prediction tools to provide a score of how many prediction tools report a gene as an ortholog of the gene of interest. MARRVEL selects and displays multiple protein alignment of DIOPT's Predicted Best Orthologs and human protein domains. Multiple protein alignment across organisms are generated via DIOPT by using MAFFT FFT-NS-2 (v7.305b) aligner.	Multiple protein alignment of orthologs across model organisms can be used to asses the conservation of the amino acid change of interest and the conservation of protein domains. Highly conserved amino acids and amino acid changes located in protein domains are more likely to cause disrupt protein function and cause disease.	45022 (mouse) 28118(fly) 11719(yeast) 5952(fissionYeast) 52195(worm) 36387(zebrafish)
SGD www.yeastgeno me.org/	Nov 18 22:11 UTC , 2016	MARRVEL Crawler: http://www.yeastgenome. org/locus/{{SGD ID}}/overview	S. cerevisiae GO terms: EXP/IDA/IEP/IGI/IMP/IPI Tissue Expression: Direct Link	Biological and Molecular function of orthologs of the gene of interest may inform the gene's likelihood to cause the phenotype	3818 distinct genes / 24195 human gene - homolog yeast gene pairs
PomBase https://www.po mbase.org/	Nov 18 23:04 UTC , 2016	MARRVEL crawler: http://www.pombase.org/s pombe/result/{{pombase id	S. pombe GO terms: EXP/IDA/IEP/IGI/IMP/IPI Tissue Expression: Direct Link	in an individual of interest. Tissue expression and subcellular localization data can be helpful to draw parallels between human	2992 / 13959 human gene - homolog yeast gene pairs
WormBase www.wormbase. org	Nov 9 22:17 UTC , 2016	MARRVEL crawler WormBase REST API http://www.wormbase.org /about/userguide/for_deve lopers/API- REST/Go_term#010	C. elegans GO terms: EXP/IDA/IEP/IGI/IMP/IPI Expressions from REST API Tissue Expression: Direct Link	disease and model organism phenotypes.	3793 genes 15189 human gene - homolog worm gene pairs
FlyBase flybase.org	Oct 26 20:01 UTC, 2016 Nov 7 18:52, 2016	MARRVEL Crawler: http://flybase.org/reports/{ {flybase id}}.html:	D. melanogaster GO Terms: "Terms Based on Experimental Evidence." TSV: Only when "Back-to-back Scales" or "Heatmap" is available.		4718 genes 34126 human gene – homolog fly gene pairs
ZFIN zfin.org	Nov 18 21:56 UTC , 2016	MARRVEL Crawler: http://zfin.org/action/mark er/marker-go-view/{{ZFIN ID}}) (http://zfin.org/downloads) , "Expression data for wildtype fish"	D. rerio GO terms: EXP/IDA/IEP/IGI/IMP/IPI Tissue Expression: Expression data for wildtype fish		3650 genes 12739 human gene - homolog fish gene pairs
MGI www.informatics .jax.org	Nov 8 22:17 UTC, 2016	MARRVEL Crawler: http://www.informatics.jax .org/marker/gograph/{{MG I ID}}	M. musculus GO terms: EXP/IDA/IEP/IGI/IMP/IPI Tissue Expression: Expression data for wild-type		10280 / 68070 human gene - homolog mouse gene pairs
RGD rgd.mcw.edu	Mar 3, 2017	GOterms: ftp://ftp.rgd.mc w.edu/pub/ontology/annot ated_rgd_objects_by_ontol ogy/rattus_genes_go Expression:http://www.ebi. ac.uk/gxa/experiments/E- GEOD-53960?ref=aebrowse	R. norvegicus GO terms: EXP/IDA/IEP/IGI/IMP/IPI Tissue expression: All expression data from rat BodyMap		67650 human gene - homolog rat gene pairs 44914 gene - GO pairs
Protein Atlas www.proteinatla s.org	Dec 14 17:18 UTC, 2016	ProteinAtlas API http://www.proteinatlas.or g/{{ensembIID}}.xml	H. sapiens Tissue Expression	Human tissue expression of a gene can help increase or decrease the likelihood that the gene is causative of a set of phenotypes in	12901 distinct human genes 580545 gene-organ expression level pairs
GTEX	V6	http://www.gtexportal.org/ static/datasets/gtex_analys is_v6p/rna_seq_data/GTEx _Analysis_v6p_RNA- seq_RNA- SeQCv1.1.8_gene_median_ rpkm.gct.gz	H. sapiens Median RPKM by tissue type	an individual.	1768504 gene - tissue pairs
EMBL-EBI QuickGO https://www.ebi. ac.uk/QuickGO/	Nov 28, 2016, 9:35:00 AM	ftp://ftp.ebi.ac.uk/pub/dat abases/GO/goa/HUMAN/g oa_human.gaf.gz	H. sapiens Gene Ontology terms EXP/IDA/IEP/IGI/IMP/IPI	GO terms can provide potential disease mechanisms and consistency with model organism GO terms can assist in deciding which model organism can be used for further study.	13350 distinct human genes 86263 gene-GO pairs

Table S1: Description of core human genetics databases

MARRVEL selects information from six human genetics databases (OMIM, ExAC, ClinVar, Geno2MP, DGV, and DECIPHER) and displays data that are important for analyzing human genes and variants. Ensembl and HGNC are resources used to link the databases based on each gene's Ensembl ID and official HGNC gene name. Mutalyzer is used to provide more flexibility for variant input. PubMed links are provided to connect users to all relevant publications. Column 1 describes the name and URL (web addresses) of each database. Columns 2 and 3 describe when and how the data from each database is accessed. Columns 4 and 5 detail what specific data are extracted from each database and displayed on MARRVEL and how these data can be used to analyze variants and genes of interest. Column 6 documents the number of entries that are extracted from each database.

Table S2: Description of model organism and human gene function databases

MARRVEL displays a summary of gene functions of human genes and their model organism homologs. For each gene, when available, expression of protein and mRNA in specific tissues and Gene Ontology (GO) terms are obtained from the databases listed in column 1. Columns 2 and 3 describe when and how the data are obtained. Column 4 describes the type of data obtained from each database. Column 5 discusses how data extracted from each database can be used to analyze candidate genes. Column 6 documents the number of entries that are extracted from each database.

Inferred from Experiment (EXP)/Inferred from Direct Assay (IDA)/Inferred from Expression Pattern (IEP)/Inferred from Genetic Interaction (IGI)/Inferred from Mutant Phenotype (IMP)/Inferred from Physical Interaction (IPI)

Gene Name	Variant	MARRVEL Output Summary			
OGDHL	10:50946295_G>A	No OMIM phenotype association. Microtubule and Mitochondrion associated protein. High expressed in human cerebellum. Highly conserved amino acid from yeast to human and locat the enzymatic domain			
KIAA1632 (EPG5)	18:43496517_G>C	Vici Syndrome – Partial phenotypic match. Involved in autophagy and endosomes. Poorly conserved, Q in mouse and zebrafish.			
CCT8	21:30428834_T>G	No OMIM phenotype association. Regulates telomerase, protein binding, cell-cell adhesion. Widely expressed in mouse. Highly expressed in human bronchus, hippocampus, stomach. Poorly conserved. Located outside of protein domain (TCP-1).			
TIAM1	21:32624256_C>T	No OMIM phenotype association. 64 DGV loss alleles. Involved in Actin cytoskeleton organization regulation of GTPase, cell migration, neuron projection development. Poorly conserved. Located outside of protein domains.			
WASL	7:123329207_T>A	No OMIM phenotype association. Involved in cytoskeleton, spindle localization, cell migration, actin organization. Highly expressed in most human tissues. Outside of coding region			
ARAP1	11:72437677_C>T	No OMIM phenotype association. Involved in cell migration, regulate GTPase. Highly expressed in human cerebellum, nasopharynx, placenta, and thyroid gland. Poorly conserved. Located outside of protein domains and in alignment gaps.			
ATP8B1	18:55315737_G>A	Cholestasis – No phenotypic match. Transmembrane transport, sterol metabolic process, inner ear development. Widely expressed in human tissue. Poorly conserved. Located outside of protein domains and in alignment gaps.			
ARL13B	3:93769712_C>G	Joubert Syndrome – No phenotypic match. 4 homozygous individuals in ExAC. Reported Benig by ClinVar. Involved in heart looping, left/right symmetry, dorsal/ventral patterning, cilium. High expressed in human adrenal gland, colon, endometrium, gallbladder. Intermediately conserved from zebrafish to humans. Located outside of protein domains.			
		Compound het variants unique in proband in OGDHL family			
12010	11:984758_C>G	No OMIM phenotype association, 477 deletions found in DGV. Involved in dorsal/ventral patterning, protein binding and transportation, endocytosis, neurogenesis. Expressed in mice nervous system. Highly expressed widely in human tissue.			
AP2A2	11:988619_A>G	Variant 1: amino acid Outside of coding region. Variant 2: 3 homozygotes found in ExAC, 42 het / 20 HPO in DGV. Amino acid Highly conserved from yeast to human and located in the (adaptin) domain.			
LAMA2	6:129786384_A>G	Muscular dystrophy – No phenotypic match. 774 Deletions found in DGV. Both alleles seen in ClinVar. Involved in axon guidance, cholinergic synaptic transmission, muscle development, localized to basement membrane. Expressed in human cerebral cortex and heart muscle.			
	6:129601231_C>T	Variant 1: 1 het / 2 HPO (Integument and head/neck abnormality) in Geno2MP Variant 2: 3 homozygotes in ExAC, 39 het / 19 HPO in Geno2MP.			
	1:228456440_G>A	No OMIM phenotype association, 82 DGV deletions. Involved in muscle development, localized to			
OBSCN	1:228461966_C>T	M band of sarcomere, Rho GTPase binding. Widely expressed in human tissue, highly expressed in skeletal muscle.			
VWA3A	16:22142902_G>A	No OMIM phenotype association, 5 deletions found in DECIPHER, Expressed in mouse nervous system. Variant 1: Amino acid Outside of coding region.			
	16:22157653_T>A	Variant 2: Amino acid Conserved from zebrafish to humans. Located outside of protein domain.			
De Novo variants unique in proband in OGDHL family					
PTCHD2 (DISP3)	1:11575517_G>T	No OMIM phenotype association, pLI score of 0, involved in regulation of neuron differentiation, cell migration,lipid metabolism.Conserved from zebrafish to humans but is F in worms and flies.			

Table S3: 13 candidate genes and variants from a case study

From a case study in Yoon et al. 2017¹³, 13 candidate variants were reported and subsequently filtered to identify a single variant in *OGDHL* prioritized for further study in *Drosophila*. We reanalyzed these variants with output from MARRVEL. Light blue font indicates key pieces of information that were interpreted as decreasing the likelihood that a variant is pathogenic.

Acknowledgements

The authors would like to thank the Exome Aggregation Consortium and the groups that provided exome variant data for comparison. A full list of contributing groups can be found at http://exac.broadinstitute.org/about.

The authors would like to thank the University of Washington Center for Mendelian Genomics and all contributors to Geno2MP for use of data included in Geno2MP.

This study makes use of data generated by the DECIPHER community. A full list of centres who contributed to the generation of the data is available from http://decipher.sanger.ac.uk and via email from decipher@sanger.ac.uk. Funding for the project was provided by the Wellcome Trust.