
Drosophila research resources at the DRSC & TRiP

Stephanie Mohr, PhD

Director of DRSC/TRiP Functional Genomics Resources
Laboratory of Prof. Norbert Perrimon
Harvard Medical School
http://fgr.hms.harvard.edu/

the ideal molecular genetic toolbox:

- for any cell type or tissue
- in a targeted, gene-specific manner
- at high-throughput scale

DRSC & TRIP

- Cell-based RNAi screening and libraries since 2003
- TRiP RNAi fly stocks since 2008
- Now & New: CRISPR technologies
- Growing suite of bioinformatics tools (find, analyze, validate)
- Welcome on-site visitors
- All reagents also provided for offsite screens or small-scale studies

DRSC cell-based RNAi libraries

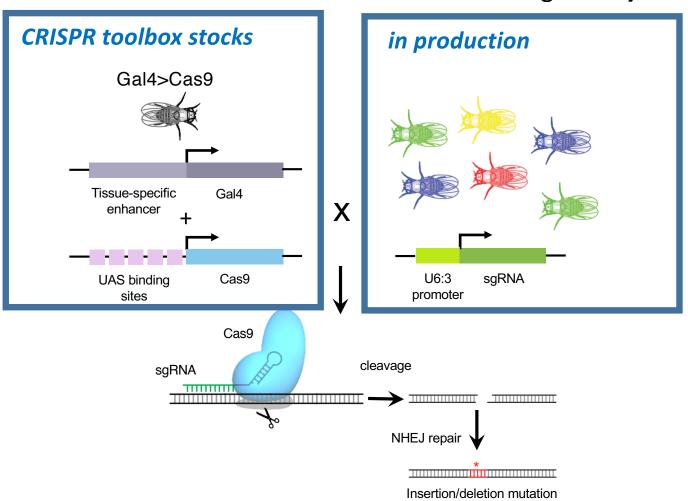
- genome-wide screening library
- genome-wide validation library (PCR templates)
- autophagy-related proteins
- GPCRs
- kinases & phosphatases
- membrane-bound organelle-related
- RNA-binding proteins
- transmembrane domain-containing
- transcription factors & DNA binding
- ubiquitin-related proteins
- custom libraries (96-well format)

cell-based screens

- arrayed RNAi screens
 - in CRISPR mutant backgrounds
 - interrogating synthetic interactions
 - high-content imaging
- pooled format screens
 - seeking collaborations, e.g. for selection-based pooled screens

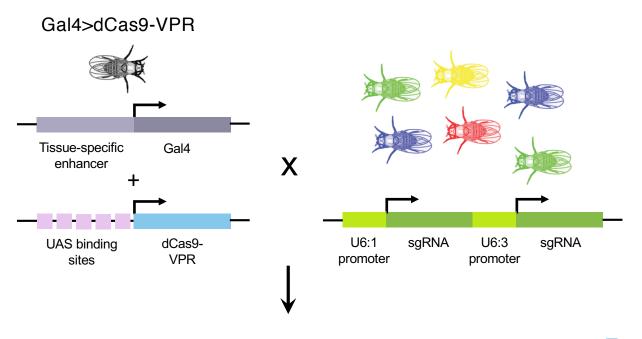
screen assays @ the DRSC

- Molecular Devices Spectramax
 Paradigm Fluorimeter &
 Luminometer ('plate reader')
- IN Cell 6000 automated confocal imaging system
 - slides, 6-well, 12-well, etc.
 - 96-well and 384-well
 - Kinedex plate handling robot


TRiP now and future

- ~10,000 UAS-RNAi fly stocks (Bloomington stock center)
- New: CRISPR stock production
 - knockout
 - activation
- CRIMIC project in collaboration with Hugo Bellen's lab (Baylor)
- CRISPR "toolbox" stocks

Jonathan Zirin



TRiP sgRNA fly stock collection for knockout

- A single gene is targeted by expression of one sgRNA from U6 promoter
- Stocks are made in the pCFD3 vector, developed by Fillip Port and colleagues
- Crossing sgRNA stocks to a Gal4 line expressing Cas9 induces Cas9, leading to mutation in many cells

TRiP sgRNA fly stock collection for transcriptional activation

Target gene expression

dCas9

sgRNA

типи

- A single gene is targeted by two sgRNAs
- Stocks are made in the pCFD4 vector, developed by Fillip Port and colleagues

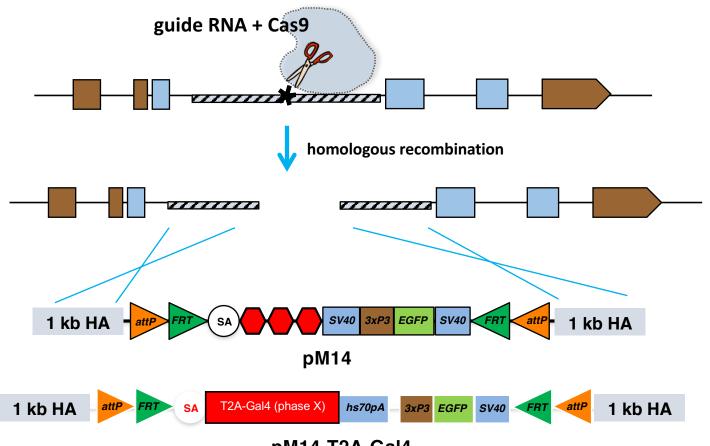
TRiP-CRISPR Toolbox stocks

dCas9-activator stocks (20 different Gal4 drivers)

- GAL4/UAS expression of Cas9 proteins with dead nuclease activity (dCas9), fused to VPR transcriptional activator (dCas9-a)
- used for gene activation in cells expressing gRNAs targeting the region upstream of the transcriptional start site (e.g. TEX lines)

dCas9-activator with tubGal80[ts] stocks (15 different Gal4 drivers)

- GAL4/UAS combined with temperature-sensitive Gal80 (tubGal80[ts])
- allows greater control of spatial and temporal dCas9-a expression


Stocks for mosaic knock-outs (17 different Gal4 drivers)

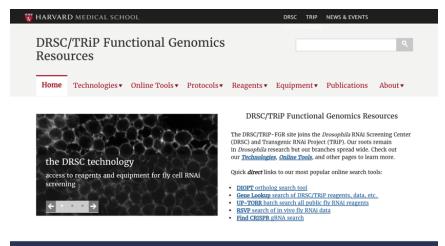
- GAL4/UAS expression of wild type Cas9
- used for generating mutant mosaics in the soma in cells expressing sgRNAs targeting the coding region (e.g. TKO lines)

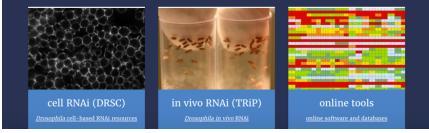
Stocks for germline mutants

- germline-specific nanos-GAL4/UAS expression of wild type Cas9
- used for generating small deletions and modifications in the germline in cells expressing sgRNAs targeting the coding region

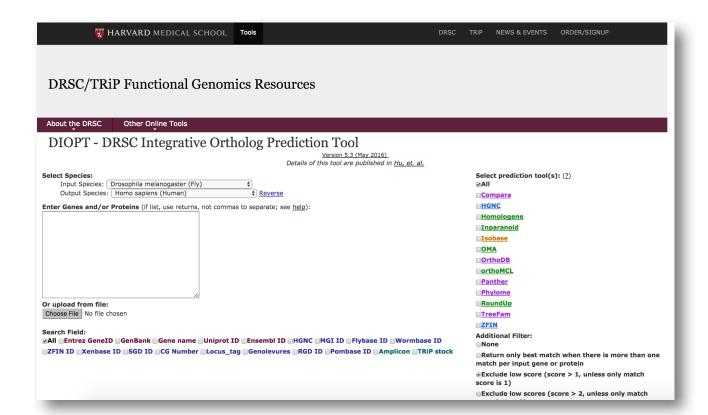
CRISPR targeted MiMIC

pM14-T2A-Gal4


CRISPR MiMIC Integration Cassettes (CRIMICs)


- With CRISPR it is feasible to integrate SICs in user-defined locations rather than at random as is done with TEs
- Project to target genes that have the greatest utility for the fly community and human disease orthologs
- CRIMIC gene traps now contain T2A-Gal4, expressed under the control of endogenous gene regulatory elements
- As with MiMIC, CRIMIC permit protein tagging by RMCE
- CRiMIC/MIMIC gene and protein traps are available from the Gene Disruption Project (Bellen) and the BDSC

bioinformatics

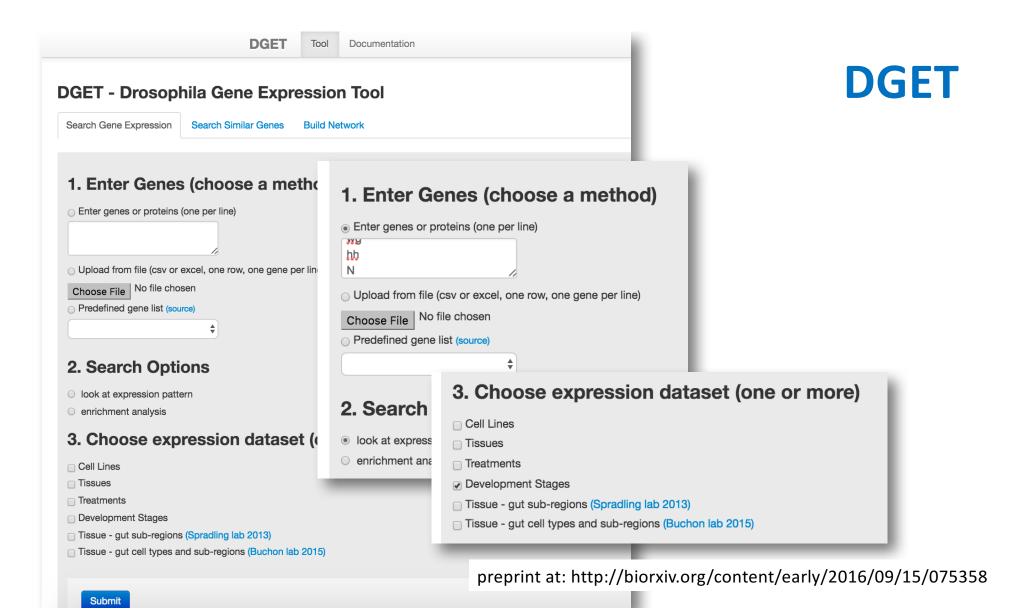

- DIOPT ortholog prediction
- UP-TORR identify RNAi reagents
 - Cell reagents DRSC, DKFZ
 - In vivo fly stocks VDRC, NIG-Japan, TRiP
- RSVP view RNAi fly stock phenotypes
- FlyPrimerBank qPCR primer designs
- Find CRISPRs genome browse view of gRNA designs
- DGET mine modENCODE and other RNA-seq data
- and more!

Claire Hu

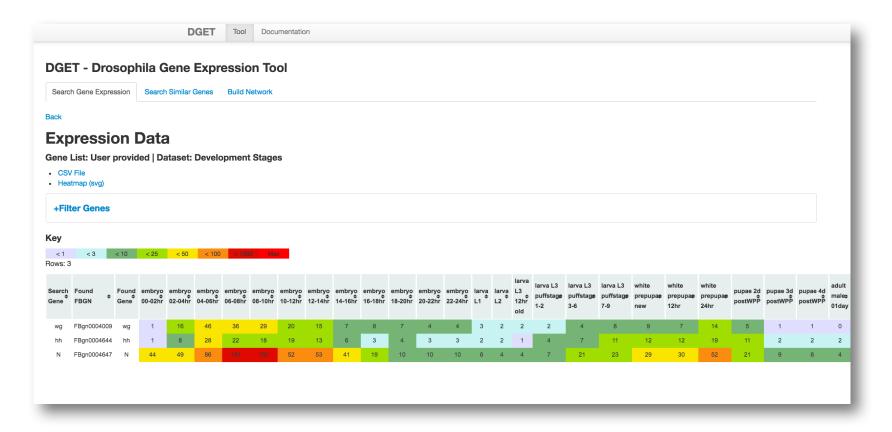
DIOPT

"all" search

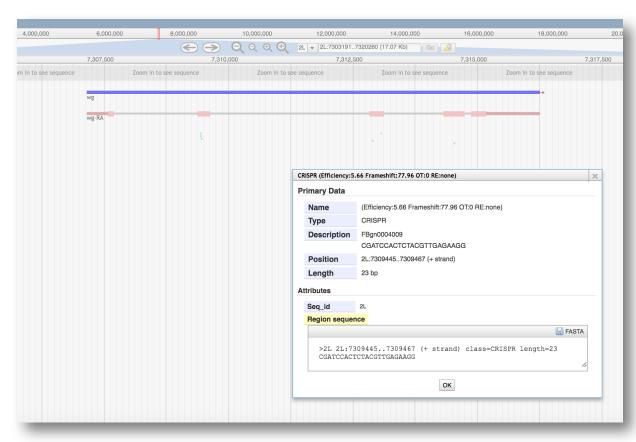
DIOPT


						Show Summary of	Best Scores			7 3	—			
Search Term	Fission yeast Gene ID	PomBase	Fissio yeast Symbo	Species 2	Species 2 Gene ID	Species 2 Spe Gene I Li	Species 2 ene Name	Score	Weighted Score	Rank	Best Score?	Score Reverse Search?	Prediction Derived From	Alignmen & Scores
ers1	2538690	SPCC1393.05	ers1					0	0.0	-		None		
wtf13	2538692	SPCC162.04c	wtf13					0	0.0	-		None		
emp24	2539350	SPCC24B10.17	emp2	Human	10959			8	7.888	High	Yes	Yes	Homologene, Inparanoid, OMA, orthoMCL, Phylome, RoundUp, TreeFam, Panther	View
emp24	2539350	SPCC24B10.17	emp2	Mouse	56334		2	6	5.973	High	Yes	Yes	Homologene, OMA, orthoMCL, RoundUp, TreeFam, Panther	View
emp24	2539350	SPCC24B10.17	emp2	Mouse	00042343		98	4	3.918	Moderate	No	Yes	Inparanoid, OMA, orthoMCL, RoundUp	
emp24	2539350	SPCC24B10.17	emp2	Rat	<u>65165</u>		2	6	5.975	High	Yes	Yes	Homologene, Inparanoid, OMA, orthoMCL, TreeFam, Panther	View
emp24	2539350	SPCC24B10.17	emp2	Zebrafish	321550	ZDB-GENE- 030131-269	tmed2	6	5.973	High	Yes	Yes	Homologene, OMA, orthoMCL, RoundUp, TreeFam, Panther	View
emp24	2539350	SPCC24B10.17	emp2	Western clawed frog	734103	XB-GENE-986353	tmed2	5	4.978	High	Yes	Yes	Homologene, Inparanoid, OMA, RoundUp, TreeFam	View
emp24	2539350	SPCC24B10.17	emp2	Fly	31382	FBqn0029709	CHOp24	7	6.878	High	Yes	Yes	Homologene, Inparanoid, orthoMCL, Phylome, RoundUp, TreeFam, Panther	View
emp24	2539350	SPCC24B10.17	emp2	Fly	37507	FBqn0034681	CG9308	5	4.875	Moderate	No	Yes	Inparanoid, orthoMCL, Phylome, TreeFam, Panther	View
emp24	2539350	SPCC24B10.17	emp2	Worm	179213	WBGene00004766	sel-9	6	6.018	High	Yes	Yes	Homologene, Inparanoid, OMA, orthoMCL, RoundUp, Panther	View
emp24	2539350	SPCC24B10.17	emp2	Yeast	<u>852675</u>	S000003168	EMP24	8	7.888	High	Yes	Yes	Homologene, Inparanoid, OMA, orthoMCL, Phylome, RoundUp, TreeFam, Panther	View
ubc12	2539416	SPCC777.10c	ubc12	Human	9040	12491	UBE2M	7	6.928	High	Yes	Yes	Homologene, Inparanoid, OMA, orthoMCL, Phylome, RoundUp, Panther	View

Search with human genes


genes									
Search Term	Fission yeast	Budding yeast	Worm	Fly	Zebrafish	Frog	Rat	Mouse	Human
AGPAT2	slc1 (7 of 8)	SLC1 (7 of 10)	acl-2 (7 of 11)	CG3812 (7 of 11)	agpat2 (6 of 11)	agpat2 (4 of 8)	Agpat2 (6 of 8)	Agpat2 (10 of 12)	NA
DECR1	SPAC8E11.10,SPCC1739.08c (2 of 8)	SPS19 (3 of 10)	F53C11.3 (10 of 11)	CG18814,Pdh,CG4842 (2 of 11)	decr1 (10 of 11)	decr1 (5 of 8)	Decr1 (8 of 8)	Decr1 (12 of 12)	NA
DHCR24			F52H2.6 (11 of 11)		dhcr24 (8 of 11)	dhcr24 (5 of 8)	Dhcr24 (4 of 8)	Dhcr24 (11 of 12)	NA
<u>BPGM</u>	gpm1 (5 of 8)	GPM1 (6 of 10)		CG7059 (5 of 11)	bpgm (11 of 11)	bpgm (7 of 8)	Bpgm (6 of 8)	Bpgm (11 of 12)	NA
OAS1							Oas1a (6 of 8)	Oas1a (9 of 12)	NA

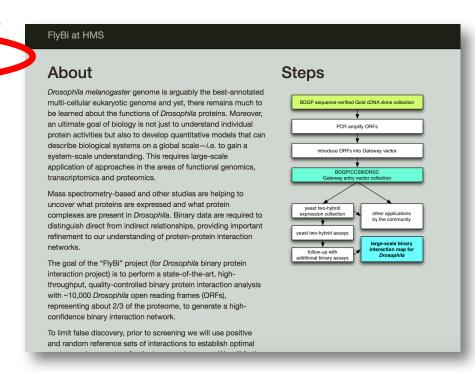
Search with fission yeast genes


Search Term	Fission yeast	Budding yeast	Worm	Fly	Zebrafish	Frog	Rat	Mouse	Human
vps32	NA	SNF7 (8 of 8)	vps-32.2 (6 of 7)	shrb (8 of 8)	chmp4bb (6 of 7)	chmp4b (5 of 5)	Chmp4bl1 (6 of 6)	Chmp4b (7 of 7)	CHMP4B (8 of 8)
gtr2	NA	GTR2 (7 of 8)	ragc-1 (7 of 7)	RagC-D (8 of 8)	rragcb (6 of 7)	rragc (5 of 5)	Rragc (6 of 6)	Rragc (7 of 7)	RRAGC (8 of 8)
rps1602	NA	RPS16A (8 of 8)	rps-16 (6 of 7)	RpS16 (8 of 8)	rps16 (7 of 7)	rps16 (5 of 5)	Rps16 (6 of 6)	Rps16 (6 of 7)	RPS16 (8 of 8)
fma1	NA	MAP1 (8 of 8)	map-1 (7 of 7)	CG13630 (8 of 8)	metap1 (7 of 7)	metap1 (5 of 5)	Metap1 (6 of 6)	Metap1 (7 of 7)	METAP1 (8 of 8)
emp24	NA	EMP24 (8 of 8)	sel-9 (6 of 7)	CHOp24 (7 of 8)	tmed2 (6 of 7)	tmed2 (5 of 5)	Tmed2 (6 of 6)	Tmed2 (6 of 7)	TMED2 (8 of 8)
sec61	NA	SEC61 (8 of 8)	sec-61 (6 of 7)	Sec61alpha (7 of 8)	sec61a1l,sec61a1 (7 of 7)	sec61a1 (4 of 5)	Sec61a1 (6 of 6)	Sec61a1 (7 of 7)	SEC61A: (8 of 8)
coq9	NA	COQ9 (7 of 8)		CG30493 (7 of 8)	coq9 (4 of 7)	coq9 (4 of 5)	Coq9 (5 of 6)	Coq9 (6 of 7)	COQ9 (7 of 8)
ubc11	NA	UBC11 (8 of 8)		vih (8 of 8)	ube2c (4 of 7)	ube2c (3 of 5)	Ube2c (5 of 6)	Ube2c (6 of 7)	UBE2C (7 of 8)
ubc12	NA	UBC12 (8 of 8)	ubc-12 (3 of 7)	Ubc12 (8 of 8)	ube2f (3 of 7)	ube2m (4 of 5)	Ube2m (4 of 6)	Ube2m (6 of 7)	UBE2M (7 of 8)
set11	NA	RKM2 (5 of 8)	set-29 (5 of 7)	CG33230 (5 of 8)	setd4 (4 of 7)	setd4 (2 of 5)	Setd4 (4 of 6)	Setd4 (6 of 7)	SETD4 (7 of 8)
glt1	NA	GLT1 (8 of 8)	W07E11.1 (7 of 7)	CG9674 (8 of 8)					
mtf1	NA	MTF1 (7 of 8)							TFB1M (2 of 8)
ers1	NA								
wtf13	NA								

DGET

preprint at: http://biorxiv.org/content/early/2016/09/15/075358

Find CRISPRs


fgr.hms.harvard.edu

Drosophila Binary Interaction Project: "FlyBi"

- Collaboration with the Celniker and Vidal labs
- Resource of ~10,000 Gateway ORF clones
- available now from
 - DF/HCC DNA Resource Core (Boston, MA)
 - DNASU (Phoenix, AZ)
 - Drosophila Genome Resource Center (Bloomington, IN)

http://flybi.hms.harvard.edu/

acknowledgements

Norbert Perrimon

Claire Yanhui Hu Jonathan Zirin Liz Perkins

Ben Ewen-Campen Ben Housden Ram Viswanatha

Gabriel Amador
Ryan Colbeth
Aram Comjean
Luping Liu
Mike Pyle
Kasia Sierzputowska
Rong Tao
Donghui Yang-Zhou

Collaborators

Shu Kondo (NIG-Japan)
J. Ni (Tsinghua University)
Hugo Bellen (Baylor College of Medicine)
Sue Celniker (Lawrence Berkeley Labs)
Marc Vidal (Dana Farber Cancer Institute)

Funding

NIH NIGMS, National Cancer Institute, HHMI

Contact

http://fgr.hms.harvard.edu/

flydiseasemodels.blogspot.com flyrnai.blogspot.com

stephanie_mohr@hms.harvard.edu @smohrfly