

Supplementary Figure 2

Supplementary Figure 4

В

gstD	TGCCCGGTCATGCTGA			
rpn1(S2)	CGCGCGGTCACACTGC			
		gstD	TGCCCGGTCATGCTGA	
alpha-2	TGCTGTGTCATTTTTG			
alpha-5	CCGCAAGTCATTTCAG	rpt1	TGTTCAGTCATTCTCG	
alpha-6	CTACTTGTCATCATTG	rpt3	TGACGAGTCATTTTGG	
beta-1	AAGCCAGTCATTTCGT	rpt5	TTACAA <mark>GTCAT</mark> CGACA	
beta-2	TTGTTTGTCATCGCGC	rpt6	GCATGTGTCATCTCGA	
beta-3	CAAAAAGTCATCTTCC	rpn5	TGCCTCGTCATATCGG	
beta-4	TTGCTTGTCATCGCAT	rpn9	GAATGAGTCATCGAGT	
beta-5	TTGTTTGTCATCGGCA	rpn8	CTGCTTGTCATTTTGG	
beta-7	GTGCCCGTCATTCTCC	rpn11	CAAATCGTCATCTCCT	
examples 20S proteasome		examples	examples 19S regulator complex	

<u>Species, class</u>	<u>Accession</u>
Aedes aegypti CnC	XP 001650316
Apis mellifera CnC	XP 001120971
Tribolium castaneum CnC	XP 968642
Pediculus humanus corporis hypothetical	XP 002431112
Anopheles gambiae str. PEST	XP 309091
Mus musculus Nrf1	NP 001123925
Gallus gallus Nrf1	NP 001025927
Monodelphis domestica MA1 1	XP 001366904
Homo sapiens Nrf1	NP 003195
laeniopygia guttata Nrf1	XP 002193524
Canis familiaris Nrf1	XP 864626
	XP 001603983
Ornitherbyreebye exeting NEE21	NP 004280 VD 004512064
Venerus leguis hypothetical	XP 001513004
Conio familiaria Nrf2	NP 001000013
Bos taurus Nrf3	NP 001071367
Acyrthosinhon nisum CnC	XP 001942705
Mus musculus Nrf2	NP 035032
Danio rerio Nrf1	XP 001920265
Ornithorhynchus anatinus Nrf3	XP 001509998
Homo sapiens Nrf2	NP 001138885
Mus musculus Nrf3	NP 035033
Canis familiaris Nrf2	XP 862205
Bos taurus Nrf2	NP 001011678
Monodelphis domestica hypothetical	XP 001377155
Gallus gallus Nrf2	NP 990448
Branchiostoma floridae hypothetical	XP 002612697
Bos taurus Nrf	NP 001014923
Homo sapiens Nrf	NP 006154
Rattus norvegicus Nrf	NP 001012224
Canis familiaris P45	XP 543621
Mus musculus Nrf	NP 032711
laeniopygia guttata Nrf2	XP 002199433
Xenopus Silurana tropicalis hypothetical	NP 001135645
Danio rerio Nrt2	NP 878309
Rattus norvegicus NIT3	XP 001058195
Salma salar Nrf2	NP 001000307
Taenionygia guttata Nrf3	XP 0021021/3
Yenonus laevis Nrf?	NP 002192143
Ornithorbynchus anatinus Nrf2	XP 001515289
Strongylocentrotus purpuratus Nrf	NP 001123278
Danio rerio Nrf3	NP 998396
Rattus norvegicus Nrf1	NP 001101763
Danio rerio Nrf	NP 778208
Ciona intestinalis TF	NP 001071770
Xenopus Silurana tropicalis Nrf	NP 001123389
Xenopus laevis hypothetical	NP 001088660
Monodelphis domestica hypothetical	XP 001368299
Nemastolella vectensis predicted	XP 001626072
Trichoplax adhaerens predicted	XP 002116568
Caenorhabditis elegans SKiNhead	NP 741406
Caenorhabditis elegans SKiNhead	NP 741404
Caenorhabditis briggsae CBR SKN 1	XP 002633846

Supplementary Figure 1. Complete list of *Drosophila* genes that showed apparent stabilization of the proteasome substrate reporter. Ranking for stabilizing the proteasome reporter Ub^{G76V}GFP from a RNAi genomic wide screening of *Drosophila* transcription factors. The positive hits were ranked in a heat map and grouped into three categories based on the number of days that Ub^{G76V}GFP was observed to be stabilized. Group I represents targets that showed consistent stabilization for all three screening periods. Group II genes stabilized Ub^{G76V}GFP for two consecutive days and group III one day.

Supplementary Figure 2. A, Triplicate RNAi knockdowns on proposed *Drosophila* proteasome transcription factors. Relative fluorescent intensity of Ub^{G76V}GFP stabilization is ranked from highest to lowest. As positive controls, proteasome subunits were also knocked down with double stranded RNAi. B. Representative fluorescence micrograph showing stabilization of Ub^{G76V}-RFP reporter after RNAi depletion of Cnc-C.

Supplementary Figure 3. Quantitative PCR measurements on *Drosophila* S2 cells that have been RNAi treated with dsRNA to the Keap1 gene. Three independent RNAi treatments were carried out and for each treatment triplicate qPCR measurements were carried out. Modest depletion of Keap1 are sufficient to increase the levels of mRNA for the known ARE regulated glutathione S transferase, gstD, Student's *t*-test value (p < 0.022) for Keap1 mRNAs and for gstD (p < 0.0019). The Keap1 depleted cells did not show increased mRNA levels for a proteasome gene mRNA alpha 7.

Supplementary Figure 4. A. Antioxidant response elements (ARE) are enhancer sequences that allow Nrf transcription factors to bind at the promoter region of regulated genes. For *Drosophila* Cnc-C an ARE enhancer element has been identified for oxidative stress regulation and Cnc-C binding upstream of the glutathione S transferase gene, gstD. This *Drosophila* gstD regulatory sequence (TCAgcATGACcggGCAaaaa) shows clear similarity with the extended consensus of the mammalian ARE sequence motif. B. The gstD regulatory domain is shown as the reverse complement sequence and aligned with Drosophila Rpn1 transcription start region. For the proteasome genes the transcriptional start regions may contain ARE-like sequences centered within previously mapped locations essential for induced transcription after proteasome inhibition (29). However, these sequences are directly after the transcription start site, are centered in highly conserved UTR regions and are present on the bottom strand of the DNA.

Supplementary Table 1. List of accession numbers and species used in the phylogenetic analysis.