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Abstract

Poxviruses include medically important human pathogens, yet little is known about the specific cellular factors essential for
their replication. To identify genes essential for poxvirus infection, we used high-throughput RNA interference to screen the
Drosophila kinome for factors required for vaccinia infection. We identified seven genes including the three subunits of
AMPK as promoting vaccinia infection. AMPK not only facilitated infection in insect cells, but also in mammalian cells.
Moreover, we found that AMPK is required for macropinocytosis, a major endocytic entry pathway for vaccinia.
Furthermore, we show that AMPK contributes to other virus-independent actin-dependent processes including lamellipodia
formation and wound healing, independent of the known AMPK activators LKB1 and CaMKK. Therefore, AMPK plays a highly
conserved role in poxvirus infection and actin dynamics independent of its role as an energy regulator.
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Introduction

In order to successfully infect cells, viruses must remodel the

cellular environment to allow for the reallocation of resources to

viral production. Poxviruses are large double stranded (ds) DNA

viruses that have a sophisticated lifecycle characterized by a

number of temporally regulated steps. Vaccinia virus is the

prototypical poxvirus, was used as the vaccine to eradicate

smallpox, and has been the most thoroughly characterized [1].

To initiate infection, vaccinia first binds, enters cells, uncoats, and

expresses early gene products. Next, genomic DNA replication

occurs, followed by intermediate and late gene expression.

Assembly, maturation, and virus release completes the cycle.

Although poxviruses encode a large number of genes (.200),

they remain obligate intracellular pathogens and require a

multitude of activities hijacked from their host cell. While many

viral factors required for various steps in the vaccinia lifecycle

have been described, the specific host factor contribution is less

clear.

In particular, an early step in the infection cycle involves cell

penetration. This step is critical for the initial establishment of

infection, and also presents a good target for anti-viral

therapeutics [2]. Different families of viruses have developed

diverse strategies for entering cells; some fuse at the plasma

membrane, while others co-opt one of the many cellular

endocytic routes [3]. Studies have demonstrated that macro-

pinocytosis is an important endocytic route of vaccinia entry [4].

Generally, macropinocytosis is a nonselective route for bulk fluid-

phase uptake and is not constitutively active, but is induced by

growth factors, and also by some pathogens including vaccinia [5]

[6]. This active endocytic process induces extensive actin

cytoskeletal rearrangement, leading to membrane ruffling,

lamellipodia formation, and the internalization of extracellular

fluid and membrane. Consistent with this, vaccinia entry is

dependent upon modulation of the actin cytoskeleton, and

initiates macropinocytosis by inducing dramatic actin-rich

microvilli protrusions followed by global myosin II-dependent

blebbing, thereby promoting virus uptake [4] [7]. Induction

triggers the activation of receptor tyrosine kinases (RTKs) which

activate complex signaling cascades leading to the induction of

these actin extensions which extend the plasma membrane

allowing fluid-phase capture. This process involves signaling

cascades that converge on members of the Ras superfamily of

GTPases in particular, Rab5 and Rac1 [6] [8]. Rac1 contributes

to a number of cellular processes that require extensive actin

dynamics, and its signaling is carefully regulated by several

guanine exchange factors as well as by crosstalk with other Rho

family GTPases [9] [10] [11]. Again, as for growth factor

dependent macropinocytosis, vaccinia-induced uptake is depen-

dent upon Rac1 [4] [7]. Additional kinases such as p21-activated

kinase (PAK1) are then activated along with actin-associated

proteins that lead to large-scale actin rearrangements, lipid

modifications, and ultimately macropinosome formation [4] [5].

While some specific kinase families have been implicated in

macropinocytosis (e.g., protein kinase C (PKC), serine/threonine

kinases, tyrosine kinases, and phosphatidylinositol kinases) [5],

many of the specific factors have not been identified, and in some

cases the specific role of factors such as PKC, is not well
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understood. Therefore, there are many additional cellular

signaling factors remaining to be identified for this complicated

uptake mechanism and thus, for vaccinia entry.

To take an unbiased systematic approach toward the identifi-

cation of these cellular factors, we developed a system using the

model organism Drosophila to perform a high-throughput RNA

interference (RNAi) screen for cellular kinases and phosphatases

required for early steps in vaccinia infection. The Drosophila system

is particularly amenable to this approach for a number of reasons

including: reduced redundancy in the genome, high conservation

with mammalian systems, efficient RNAi, and previous success

with this system to identify cellular factors required for viral

infection [12] [13]. This Drosophila system is permissive to early

steps in the vaccinia infection cycle allowing us to specifically

dissect the role of cellular factors involved in the infectious entry

process.

Using this system, we identified seven genes that contribute to

vaccinia infection, including the three subunits of the AMP-

activated kinase (AMPK) complex, the master energy sensor of the

cell. Importantly, the requirement for AMPK in vaccinia infection

is conserved in mammalian cells, and is specifically required for

vaccinia-induced macropinocytic entry. Further characterization

led to the discovery that AMPK controls a variety of virus-

independent actin-dependent processes including lamellipodia

formation and cell migration. Altogether, we found a new role

for AMPK in actin dynamics.

Results

Vaccinia infection in Drosophila cells
Since vaccinia infection of Drosophila cells has not been reported,

we first characterized the course of infection in Drosophila cells.

Using a reporter virus expressing Beta-galactosidase (B-gal) under

the control of an early/late promoter which is active during all

stages of vaccinia infection, we found that vaccinia infection is

dose-dependent with maximal expression at 48 hours post

infection (hpi) (Figure S1). Next, we infected Drosophila cells using

reporter viruses that express B-gal under the control of temporally

regulated vaccinia promoters that are active during different

phases of the virus replication cycle. We found that Drosophila cells

were efficiently infected as measured by the production of B-gal

from an early/late promoter (p 7.5) or by the production of E3L

protein, a vaccinia gene product expressed early in infection, while

there was very little expression of B-gal from either an

intermediate promoter (G8R), or a late promoter (p11)

(Figure 1A). Consistent with these findings, we have been unable

to detect vaccinia DNA replication (data not shown) suggesting a

block to infection following early protein synthesis. These findings

demonstrate that while vaccinia is unable to complete all stages of

the lifecycle in Drosophila cells, entry and early expression occur,

providing a model system to study the host factor requirements of

vaccinia entry.

Previous studies have shown that efficient vaccinia entry is

dependent upon the endocytic route of macropinocytosis [4]. In

order to assess whether host requirements for vaccinia entry were

conserved between Drosophila and mammalian cell lines, we tested

whether inhibition of macropinocytosis attenuated infection in

these disparate cell types. To this end, we treated cells with several

known inhibitors of macropinocytosis and vaccinia entry includ-

ing; an actin inhibitor Latrunculin A, phosphoinositide-3-kinase

(PI3K) inhibitor Wortmannin, Na/H antiporter inhibitor EIPA,

and PKC inhibitor Rottlerin [4] [7]. We found that each of these

drugs significantly inhibited vaccinia infection in both human and

Drosophila cells (Figure 1B–C, quantified in Figure S2). These data

show that at least early steps in the viral lifecycle are dependent

upon similar pathways in insect cells allowing us to use this model

to identify additional factors required for vaccinia infection in

mammalian cells.

RNAi screen of Drosophila kinome
In order to systematically probe the requirements for cellular

signaling factors in early vaccinia infection, we developed a

quantitative assay amenable to RNAi using virally encoded B-gal

expression as a measure of early infection. While a non-targeting

negative control dsRNA (GFP) had no effect on the percentage of

infected cells, knock-down of B-gal by RNAi reduced the

percentage of B-gal expressing cells 17-fold, indicating that

vaccinia infection can be quantitatively assayed using this system

(Figure 2A). Moreover, dsRNA targeting the cellular gene Rab5, a

small GTPase required for many endocytic processes including

macropinocytosis [8] also significantly decreased vaccinia infec-

tion, validating that we can identify cell-encoded factors required

for vaccinia infection using this approach (Figure 2A and 2D).

We used this assay to perform an RNAi screen against the

Drosophila kinome to identify novel signaling factors that promote

vaccinia infection (Schematic diagram Figure 2B). This screen

consisted of approximately 440 unique genes (,200 kinases, ,90

phosphatases, and ,150 regulator factors) arrayed onto 384 well

plates (Table S1). Additionally, negative control wells were

included containing either no dsRNA (15 wells) or dsRNA

targeting GFP (28 wells), which is not expressed in this system.

Lastly, 21 positive control wells with dsRNA targeting lacZ were

included (Figure 2B light blue). Drosophila cells were seeded in these

pre-arrayed 384 well plates, incubated for three days to allow

knock down of each targeted gene, and then infected with vaccinia

virus for 48 hours. For the screen, a baseline infection of 10% was

within the linear range and was achieved at a multiplicity of

infection (MOI) of 1.25 (Figure S1C). The plates were fixed and

processed for immunofluorescence using B-gal expression as a

measure of infection, and counter-stained to monitor cell number.

Automated microscopy and image analysis were used to quantify

the percent infection (B-gal+/Total Nuclei) that was transformed

into Robust Z scores for each plate, and the Robust Z scores of the

2 replicates were plotted against each other (Figure 2B). Positive

candidates were defined as having a Robust Z score of ,22 in

Author Summary

Entry is a vital step in establishing viral infection, providing
a potential therapeutic target. Many viruses co-op one of
the various cellular endocytic routes for entry, making the
host factors that contribute to these processes essential for
efficient infection. In particular, vaccinia, the prototypical
poxvirus, takes advantage of macropinocytosis for efficient
uptake. To identify the signaling factors required for entry
of vaccinia virus we performed an RNAi screen of the
Drosophila kinome for those kinases and phosphatases
that facilitate infection. We identified seven genes
including the three subunits of AMPK as promoting
infection, and found that AMPK was also required in
mammalian cells for vaccinia infection. Furthermore, we
found that AMPK facilitates vaccinia entry thru its ability to
modulate the actin cytoskeleton and macropinocytosis. In
addition to promoting vaccinia uptake, we found that
AMPK also contributes to other virus-independent but
actin-dependent processes including lamellipodia forma-
tion and cellular motility, indicating a broad cellular role in
regulating actin dynamics.

AMPK Regulates Actin Dynamics and Vaccinia Entry
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duplicate screens (p,0.05). Using these metrics, we identified 8

genes (2%, orange and pink Figure 2B). In addition to these 8

factors, we identified 20 out of 21 (95%) of the positive control lacZ

dsRNAs (Figure 2B light blue and Table S1) and none of the 43

negative controls (non-targeting dsRNA and empty wells). We also

monitored the toxicity of the dsRNA treatments and found that

none of the 8 genes that inhibited infection were cytotoxic (,25%

decrease in cell number, Table 1). In contrast, we found that while

17 wells reduced cell number by .25% in duplicate screens, none

of these genes also inhibited infection. Therefore, our screen

revealed host factors required for robust infection that are not

required for cell viability. Notably all 8 genes have human

homologs (Table 1), including all 3 subunits of the AMP-activated

kinase (AMPK) complex (SNF1A (AMPKa), SNF4Agamma

(AMPKc) and alicorn (AMPKb)) (Figure 2B pink), a heterotri-

meric complex involved in maintaining cellular energy homeosta-

sis. RNAi resulted in ,3-fold reduction in vaccinia infection when

AMPK was depleted (Figure 2C).

Non-overlapping secondary dsRNAs were generated for each of

the 8 genes and were tested to confirm the role of each of these

genes in vaccinia infection. Seven of the genes validated (88%).

Importantly, among the genes that validated were those encoding

the three subunits of the AMPK complex (Figure 2D, Figure S3

and Table 1). Moreover, RT-PCR confirmed that AMPKa was

depleted by dsRNA treatment against AMPKa (Figure S4A).

Furthermore, we found that loss of AMPKa or AMPKc also led to

a defect in early viral mRNA accumulation compared to control

(Figure 2E), suggesting that AMPK is required upstream of viral

mRNA production in Drosophila, perhaps at the stage of entry.

AMPK promotes vaccinia infection in mammalian cells
AMPK is an important sensor of intracellular energy that is

conserved in eukaryotes ranging from yeast to humans [14]. While

Drosophila encodes only one copy of each AMPK subunit,

mammals have multiple isoforms of each subunit encoded by

several distinct genes (a1, a2, b1, b2, c1, c2, c3) which can

Figure 1. Vaccinia virus undergoes entry in Drosophila cells. A. Drosophila cells were infected with three different recombinant vaccinia viruses
expressing B-gal driven by an early/late (p7.5), intermediate (G8R), or late (p11) vaccinia promoter. Each virus expresses E3L protein from an
endogenous early promoter. After 48 hours, infection levels were assessed using B-gal or E3L-specific antibodies. B–C. Vaccinia infection is
dependent upon known mediators of macropinocytosis. B. Human U2OS cells were pretreated with: Latrunculin A, Wortmannin, and Rottlerin at
5 mM; EIPA at 12.5 mM for 1 hour and challenged with vaccinia (MOI = 10) for 8 hours. C. Drosophila DL1 cells were treated with: Latrunculin A,
Wortmannin, and Rottlerin at 5 mM; EIPA at 50 mM for 1 hour and challenged with vaccinia (MOI = 20) for 24 hours. Cells were fixed and processed for
immunofluorescence using E3L expression (green) as a marker for infection, and Hoescht 33342 (blue) to visualize nuclei. Percent infection is the
average of four images in a representative of three experiments.
doi:10.1371/journal.ppat.1000954.g001

AMPK Regulates Actin Dynamics and Vaccinia Entry
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produce at least 12 possible heterotrimeric combinations [15]. The

lack of redundancy in Drosophila allowed our identification of

AMPK by single gene RNAi. We used this Drosophila system as a

tool to identify novel host factors that contribute to vaccinia

infection, but since Drosophila is not a natural host, we were

interested in determining the role of AMPK in a more biologically

relevant context.

To investigate the role of AMPK in vaccinia virus infection of

mammalian cells, we took advantage of mouse embryonic fibroblasts

(MEFs) that are genetically altered and null for both AMPKa
subunits, AMPKa1 and AMPKa2 (AMPKa1/AMPKa2 2/2)

and verified the lack of these proteins by immunoblot analyses

(Figure S5) [16] [17] [18]. These cell lines divide and grow

indistinguishably from their sibling control AMPKa1/AMPKa2 +/+

cells (wild type) (data not shown). We challenged either the

AMPKa1/AMPKa22/2 cells or their sibling control wild type cells

with vaccinia virus and measured infection using a plaque assay.

This revealed a 20-fold decrease in plaque number and a 15-fold

Figure 2. High-content RNAi screen identifies cellular factors required for vaccinia infection. A. Cells were pre-treated with the indicated
dsRNAs and infected with E/L (p7.5) B-gal vaccinia at MOI of 1.25 for 48 hours. Percentage of infected cells is calculated from ((B-gal+, green)/(nuclei,
blue)). B. Schematic of high-throughput RNAi screening. Cells were plated in 384 well plates arrayed with gene-specific dsRNA targeted against the
Drosophila kinome. After three days, the cells were infected with E/L B-gal vaccinia at MOI = 1.25 for two days and then processed for
immunofluorescence. Automated image analysis was used to determine the percentage of infected cells and used to identify the positive candidates
(Z,22 in duplicate). Candidates in light blue represent the B-gal-depleted positive controls, and those in pink represent the three subunits of the
heterotrimeric AMPK complex. Other candidates are indicated in orange. C. Examples of primary screen data including AMPK components that when
depleted resulted in a significant decrease in the percentage of B-gal-positive cells. D. Independent dsRNAs against each of the three AMPK subunits:
AMPKa (SNF1A), AMPKb (alicorn) and AMPKc (SNF4Agamma). RNAi was performed and cells were infected at an MOI = 5. Percent infection was
measured and the mean +SD is shown; * indicates p,0.05 compared to control in three independent experiments. E. Northern blot analysis was
performed on RNA extracted from cell lysates pretreated with dsRNA targeting the indicated genes and probed for B-gal, and a loading control RpS6.
doi:10.1371/journal.ppat.1000954.g002

AMPK Regulates Actin Dynamics and Vaccinia Entry
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decrease in plaque area in AMPKa1/AMPKa2 2/2 compared to

wild type cells (Figure 3A–C). The requirement for AMPK was

also observed for the closely related poxvirus, cowpox virus

(Figure 3D, quantified in Figure S6). These decreases in infectivity

were specific for poxviruses and not simply due to a decrease in

overall cell health since several unrelated RNA viruses, including

Vesicular Stomatitis virus (VSV) grew as well in the AMPK

deficient MEFs compared to wild type (Figure S7 and data not

shown). This suggests that AMPK deficient cells are capable of

supporting all stages of virus infection; including at least some

forms of endocytosis and endosomal trafficking since VSV enters

cells through clathrin-mediated endocytosis [19]. Therefore, we

identified a specific requirement for AMPK in poxvirus infection

but not for viral infection generally. In addition to plaque assays

we also monitored vaccinia infection by immunofluorescence,

immunoblot, and Northern blot and found that there was a

significant decrease in vaccinia virus replication in AMPKa1/

AMPKa2 2/2 cells in each assay (Figure S8A–C). This suggests

that AMPK promotes early steps of the vaccinia lifecycle in

mammalian cells as well as Drosophila. Finally, to verify that the

requirement for AMPK was not MEF-specific we tested whether

inhibition of AMPK in the human osteosarcoma cell line U2OS

attenuated vaccinia infection using two approaches. First, we pre-

treated U2OS cells with the AMPK inhibitor Compound C or

vehicle and challenged these cells with vaccinia [20]. Again, we

found that inhibition of AMPK attenuated infection (Figure 4A,

B). Next, we depleted AMPKa1, AMPKa2, or both AMPKa1

and AMPKa2 using siRNAs and observed a decrease in vaccinia

infection (Figure S9A, B, Text S1). We confirmed knock-down by

immunoblot (Figure S9C). Together, these data show that

vaccinia infection is dependent upon AMPK for infection across

disparate cell types including Drosophila, human and mouse.

Vaccinia infection activates AMPK
AMPK is activated through phosphorylation of a threonine

residue on the catalytic a subunit, which can be triggered by a

variety of stimuli including an increase in the cellular ratio of

AMP/ATP [21] [22] [23] [24] [25] [26]. Since AMPK promotes

vaccinia infection, we tested whether infection activates AMPK.

We used a phospho-specific antibody against AMPKa to measure

AMPK activation. Treatment with 2-deoxyglucose (2DG), a

known activator of AMPK, led to an increase in AMPK

phosphorylation, while little phosphorylation was detected in

untreated controls (Figure 4C). Moreover, we observed an increase

in phospho-AMPKa within 10 minutes of vaccinia infection

(Figure 4C). This increase was not due to changes in total AMPK

levels, and suggests that AMPK becomes activated very early in

vaccinia infection.

Known upstream activators of AMPK are not required for
vaccinia infection

Several upstream kinases have been implicated in AMPK

activation under different conditions. The classic activator of

AMPK is the tumor suppressor LKB1, which activates AMPK in

response to energy deprivation [27] [28]. In Drosophila, LKB1 is

the only described upstream kinase required for AMPK activation

and lkb1 mutants phenocopy ampk mutants [29] [30]. In contrast,

in mammalian systems, LKB1 is the upstream kinase in response

to energy deprivation, while additional upstream kinases, such as

calcium/calmodulin-dependent protein kinase kinase beta

(CaMKKb) have been implicated in AMPK activation under

other conditions [31] [32]. We tested whether LKB1 was required

for vaccinia infection using cells that are null for LKB1 [33] and

complemented with either vector alone (LKB12/2; Vec), or an

LKB1 cDNA (LKB12/2; LKB1) (Figure S10) and found that loss

of LKB1 had no effect on vaccinia infection in mammalian cells

(Figure 4D). Likewise, using RNAi to deplete LKB1 in Drosophila

cells, we found that it was dispensable for infection by

immunofluorescence (Figure 4E) and Northern blot (Figure 4F).

RT-PCR analysis validated that LKB1 was indeed knocked down

in Drosophila cells (Figure S4B). We also tested whether CaMKK,

the other well-established AMPK activator in mammalian systems,

was required for vaccinia infection. To this end, we pre-treated

U2OS cells with the CaMKK inhibitor STO609 prior to

infection, and found no effect on vaccinia infection with doses

up to 5 mg/ml (Figure 4A, B). Taken together, these data show

that vaccinia infection is AMPK-dependent but LKB1 and

CaMKK-independent.

AMPK promotes vaccinia entry
Given that loss of AMPK led to a decrease in both viral mRNA

and protein production (Figure 2, Figure S8), we tested whether

AMPK was required for efficient virus entry. We monitored viral

entry into wild type or AMPKa1/AMPKa2 2/2 MEFs using a

fluorescence-based assay. We prebound virus to the cells, and then

allowed infection to proceed for one hour. Incoming virus particles

Table 1. Candidate genes identified and validated.

% infection Robust Z score Nuclei fold change Validated?

Drosophila Gene Human Gene Screen #1 Screen #2 Screen #1 Screen #2 Screen #1 Screen #2

median 3.9 7 1 1

B-gal 0.9 1.2 217.5 210.8 1 1

SNF1A PRKAA2 1.7 2.8 24.5 25.4 0.8 1 Yes

SNF4Agamma PRKAG2 1.1 1.9 23.9 27 1 0.9 Yes

alicorn PRKAB1 0.3 4.2 23.9 23.4 1 1.1 Yes

Fab1 PIKfyve 3.4 4.5 22.3 22.2 1 1 Yes

Pi3K68D PIK3C2A 2.4 3.3 23.8 23.9 1.1 1.1 Yes

Stam STAM 3.3 4.5 22.1 22.5 1 1.1 Yes

CG9311 PTPN23 3.1 2.5 23.8 25.7 1 0.9 Yes

Strn-Mlck MYLK 0.6 4.8 22.5 22.8 1 1.1 No

doi:10.1371/journal.ppat.1000954.t001
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were visualized using an antibody against L1R, a membrane-

bound viral surface protein (Figure 5A). Deconvolution of Z stacks

was used to visualize vaccinia inside of cells (Figure 5A, XZ view).

Quantification revealed a ,3-fold reduction in the number of

AMPK mutant cells that internalized virus (Figure 5B). These data

show that AMPK promotes infection at the stage of entry,

although we have not ruled out that virus binding could also be

affected by lack of AMPK.

We were also interested in whether AMPK played a role in

vaccinia infection downstream of entry. First, we monitored both

early and late gene expression and found that while the percentage

of cells expressing an early protein (E3L) or a late protein (L1R)

was reduced in AMPKa1/AMPKa2 2/2 MEFs compared to wild

type, 100% of the cells that expressed early genes also expressed

late genes, indicating no further block to replication (Figure S11A).

We also measured the infectivity of virus produced from

AMPKa1/AMPKa2 2/2 MEFs. We found a ,3-fold decrease

in virus titer produced from AMPKa1/AMPKa2 2/2 MEFs

compared to wild type (Figure S11B) which is similar to the

decrease in viral entry (Figure 5B). These data suggest that while

fewer AMPK deficient cells produce virus, the vaccinia released

from these cells is as infectious as virus produced from wild type

cells. Therefore, while AMPK is important for entry, it is

dispensable for later steps in the viral lifecycle.

AMPK is required for vaccinia induced macropinocytosis
Previous studies established that a major entry route for vaccinia

is macropinocytosis, which is required for and induced by vaccinia

infection [4]. Since we observed a defect in viral entry in the

AMPK mutant cells (Figure 5), and that inhibitors of macro-

pinocytosis attenuated vaccinia infection (Figure 1), we tested

whether AMPK plays a role in vaccinia-induced macropinocy-

tosis. Macropinocytosis can be directly monitored by fluorescently

labeled dextran uptake [34]. Neither wild type nor AMPKa1/

AMPKa2 2/2 MEFs efficiently endocytosed dextran under

resting conditions (Figure 6A). However, upon vaccinia infection,

macropinocytosis was dramatically induced in wild type MEFs as

measured by an increase in dextran uptake into the cell. In

contrast to the large number of dextran punctae observed in the

infected wild type MEFs, AMPKa1/AMPKa2 2/2 MEFs did not

efficiently take up the dextran in the presence of virus (Figure 6A).

We quantified the level of vaccinia-induced macropinocytosis in

the wild type versus AMPK deficient cells and found an

approximately five-fold reduction in the percentage of cells

undergoing macropinocytosis (Figure 6B).

Furthermore, we found a decrease in vaccinia-induced dextran

uptake in human U2OS cells pretreated with Compound C

compared to vehicle control (Figure 6C). Quantification revealed

an approximately five-fold decrease in the percentage of U2OS

cells undergoing vaccinia-induced macropinocytosis when AMPK

is inhibited (Figure 6D). Together, these data show that virus-

induced macropinocytosis is dependent upon AMPK in disparate

cell types and hosts.

In contrast to this dependence of macropinocytosis on AMPK,

there was no defect in transferrin uptake in AMPKa1/AMPKa2 2/2

MEFs (Figure S12, Text S1), indicating that receptor-mediated

endocytosis is not controlled by AMPK. This is consistent

with our observation that VSV infection is not attenuated

in AMPKa1/AMPKa2 2/2 MEFs as VSV enters cells

by receptor-mediated endocytosis and not macropinocytosis

(Figure S7).

AMPK promotes lamellipodia formation
One of the early steps in macropinocytosis involves extensive

actin remodeling characterized by membrane ruffling and

lamellipodia formation. We were interested in determining

whether AMPK was required for this early step in the

macropinocytic pathway, and whether the requirement for AMPK

in macropinocytosis was vaccinia-dependent or if AMPK was

required more generally for actin remodeling. Therefore, to test

whether AMPK controlled actin-dependent remodeling indepen-

dent of viral infection, we treated cells with phorbol myristic acid

(PMA), which induces cells to undergo high levels of actin-

mediated ruffling and lamellipodia formation; this is dependent on

Rac1, a small Rho family GTPase that is also required for

macropinocytosis and vaccinia infection [7] [35] [36] [37].

Dramatic lamellipodia formation, seen as thick bands of actin at

the cell periphery, were observed in wild type MEFs stimulated

with PMA, but abrogated in AMPK-deficient cells (Figure 7A,

arrows). We also monitored PMA-induced ruffling using live cell

Figure 3. AMPKa promotes poxvirus infection in mammalian
cells. A. Vaccinia virus plaque assays were performed with wild type or
AMPKa1/AMPKa2 2/2 MEFs. Representative data from the1025 dilution
of virus is shown. B. Quantification of plaques from A. presented as the
normalized mean +SD of wild type plaques from four experiments;
* indicates p,0.05. C. The diameter of 30 representative plaques in
each duplicate well from A. was used to calculate the average plaque
area, which is displayed as the normalized mean +SD in triplicate
experiments; * indicates p,0.05. D. Cowpox virus plaque assays were
performed with wild type or AMPKa1/AMPKa2 2/2 MEFs. Representa-
tive data from the1025 dilution of virus is shown.
doi:10.1371/journal.ppat.1000954.g003
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imaging and observed a significant defect in the AMPK mutant

MEFs (Videos S1, S2, Text S1).

In addition, we monitored the localization of Rac1 during

PMA-induced lamellipodia formation in the wild type and AMPK

deficient cells and found that both Rac1 re-localization and actin

mobilization are defective in AMPK deficient cells (Figure 7B)

suggesting that the defect is upstream of or parallel to Rac1

activation.

While our studies identified AMPK as a critical kinase required

for vaccinia infection and actin dynamics, we found that LKB1

was dispensable for infection. This led us to test whether actin-

dependent lamellipodia formation and ruffling was also LKB1-

independent. We found that there was no defect in PMA-induced

lamellipodia and ruffling in LKB1-deficient cells (Figure 7C,

arrows). This was not unexpected since HeLa cells, a cell type

routinely used for studies on actin dynamics, are mutant for LKB1,

and can still undergo lamellipodia formation, and macropinocy-

tosis [4] [38] [39] [40]. Therefore, we found that the actin

remodeling activity of AMPK is independent of LKB1.

AMPK promotes cellular motility
Since extensive actin remodeling and Rac1 membrane

localization are required for lamellipodia formation, macropino-

Figure 4. Vaccinia infection induces AMPK activation, and is independent of LKB1 and CaMKK. A. Human U2OS cells were pre-treated
with vehicle, Compound C (1–5 mM), or STO609 (1–5 mg/mL) and then infected with vaccinia (MOI = 10) for 8 hours (E3L, green; nuclei, blue). A
representative of 3 experiments is shown. B. Percent infection of A was measured and the mean +SD is shown; * indicates p,0.05 compared to
control in three independent experiments. C. Cells were pretreated with vaccinia virus (MOI = 20) at 16uC for 1 hour, and then infected at 37uC or
treated with 2DG, a known inducer of AMPK phosphorylation. Lysates were collected at the indicated time points post treatment and assayed by
immunoblot for phospho-AMPK. A representative of 3 experiments is shown. D. LKB12/2 MEFs were complemented with a vector control (LKB12/2;
Vec) or FLAG-LKB1 cDNA (LKB12/2; LKB1) and subsequently infected with vaccinia at the indicated MOI for 8 hours, and processed for
immunofluorescence. Percent infection was quantified using automated image analysis. A representative of two experiments is shown. E. RNAi
against LKB1 in Drosophila cells had no effect on infectivity compared to RNAi against negative control luciferase as measured by
immunofluorescence. F. LKB1 knock down in Drosophila has no effect on vaccinia early mRNA levels as measured by Northern blot. Cells were
pretreated with dsRNAs against negative control luciferase, positive controls E3L (viral) and Rab5 (cellular), as well as AMPKa and LKB1 and probed as
indicated.
doi:10.1371/journal.ppat.1000954.g004
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cytosis, and vaccinia infection [7] [35] [36] [37], we tested

whether AMPK was required for another Rac1-dependent actin-

dependent process namely in vitro wound healing [41]. For these

studies, we created wounds in a confluent monolayer of either

wild type or AMPKa1/AMPKa22/2 MEFs by scratching the

surface, and monitored wound closure over time. Using this assay

we found that there was a significant delay in the migration of

AMPK-deficient MEFs into the wound compared to wild type

cells (Figure 7D, E). While the wound was completely healed

24 hours after wounding in wild type cells, a sizable gap in the

monolayer was still present in AMPK deficient cells, indicating a

delay in wound healing and reduced motility. During this motile

state, cells undergo a dramatic change in shape, with lamellipodia

forming at the leading edge directing cell migration to close the

wound. We observed the formation of lamellipodia in the WT

MEFs at the edge of the wound while AMPK mutant MEFs did

not polarize (Figure S13). Consistent with our observations that

the role for AMPK in actin dynamics is LKB1-independent, we

found that wound healing is unaffected by the loss of LKB1

(Figure S14).

Discussion

Cell penetration is a critically important step in viral infection,

and one that is generally driven by cellular factors and signaling

pathways. First, viruses must attach to the cell surface and bind to

the viral entry receptor, which often initiates signaling within the

cell. Next, viruses must fuse or penetrate the cellular membrane

either at the cell surface, or in many cases, within intracellular

compartments by taking advantage of the endogenous endocytic

machinery. Since there is an array of different endocytic

mechanisms, there is great diversity in the strategies used by

viruses for entry. Therefore, studying virus entry has increased our

understanding not only of viral infection, but also of the normal

cellular processes of endocytosis [6].

To further dissect the cellular signaling requirements of vaccinia

entry, we developed an unbiased loss-of-function screening

platform in Drosophila cells, and identified seven cellular factors

required for vaccinia infection. Amongst the genes were all three

subunits of AMPK, implicating the entire complex in vaccinia

infection. Further studies showed that in addition to its role in

Drosophila, AMPK is also required in murine and human cells for

poxvirus infection at the stage of entry. Moreover, AMPK

becomes rapidly activated upon infection with vaccinia, suggesting

that virus-induced signals converge on this complex to facilitate

entry.

Studies indicate that vaccinia virus can enter cells through

multiple routes via as of yet unidentified receptor(s). Studies

suggest that virus particles can fuse either at the plasma membrane

or from within endosomal compartments, dependent on cell type

and virus strain [42] [43] [44] [45] [46]. Importantly, a major

endocytic pathway for vaccinia entry has recently been described

as macropinocytosis [4] [47]. Our data as well as previous reports

support the idea that vaccinia uses macropinocytosis for entry, but

not exclusively. We and others have shown partial inhibition of

vaccinia infection using a variety of drugs that are well-established

inhibitors of macropinocytosis [4] [7]. However, in no case was

vaccinia entry completely dependent upon macropinocytosis for

infection, demonstrating that the virus can use alternative routes

for entry. Nevertheless, macropinocytosis is required for efficient

entry across broad cell types suggesting that inhibition of this

pathway may attenuate infection sufficiently to allow for immune-

mediated clearance of the infection.

The process of macropinocytosis drives non-specific uptake of

extracellular fluid, large portions of the plasma membrane, as well

as large particles. Macropinosomes, unlike coated vesicles, are

Figure 5. AMPK promotes vaccinia entry. A. Wild type or AMPKa1/AMPKa2 2/2 MEFs were either infected or mock-infected with vaccinia, and
the L1R membrane protein (red) was monitored to visualize incoming virus. Nuclei (blue) and actin (phalloidin (green)) were also stained. Images are
presented as max projection along with XZ insets. Representative images of triplicate experiments are shown. B. The percentage of cells undergoing
vaccinia entry was quantified (n.30 for each condition).
doi:10.1371/journal.ppat.1000954.g005

AMPK Regulates Actin Dynamics and Vaccinia Entry

PLoS Pathogens | www.plospathogens.org 8 June 2010 | Volume 6 | Issue 6 | e1000954



morphologically heterogeneous, and can vary greatly in size from

0.2–10 mm in diameter, sufficient to accommodate the large size of

vaccinia virus particles (,0.3 mm) [5] [48]. Classic induction of

macropinocytosis by growth factor receptor signaling stimulates

ruffles, or sheet-like extensions of the plasma membrane, formed

by assembly of actin filaments beneath the plasma membrane that

form cups that contract and close to form macropinosomes [5].

This process is driven by signaling events initiated at the plasma

membrane and are thought to involve a number of kinase families

including phosphatidylinositol 5-kinases (PI5K), PI3K, PKC,

serine/threonine kinases, and receptor tyrosine kinases. In

addition, as many different inducers of macropinocytosis have

been identified, there are likely multiple pathways that converge

on the activation of macropinocytosis, adding to the complexity of

this cell biological pathway [5]. While several specific kinases, such

as PAK1, and LIM kinase have well described roles in

macropinocytosis [49] [50], there is much that remains unclear.

Here, we have found a role for an additional kinase, AMPK, in

promoting vaccinia entry through its role in macropinocytosis. We

have found that AMPK deficiency attenuates vaccinia infection,

concomitant with reduced entry and fluid-phase uptake, support-

ing an important role for AMPK in vaccinia-induced macro-

pinocytic entry.

The process of macropinocytosis involves several steps including

extensive actin-mediated membrane ruffling, cup formation, and

finally cup closure, which requires the fusion of plasma

membranes to close off the macropinosome, followed by fission

to separate the macropinosome from the plasma membrane [5].

We discovered that AMPK is required for the formation of

lamellipodia and affects the recruitment of Rac1 to the cell

periphery, suggesting that the role of AMPK in macropinocytosis

lies in the initial rearrangement and reorganization of the actin

cytoskeleton.

While we have shown that AMPK contributes to actin

remodeling during vaccinia-induced macropinocytosis, we also

found that AMPK plays a role in other virus-independent

remodeling processes including cell migration. During this process,

forward movement is driven by the extension of a leading edge

protrusion or lamellipodium, followed by contraction at the rear.

This protrusive force is generated by localized polymerization of

actin mediated by Rac1 [51]. In addition to its role in controlling

ruffling upstream of macropinocytosis, we found AMPK also has

Figure 6. AMPK is required for vaccinia-induced macropinocytosis. Fluid phase dextran uptake assays were performed in the presence or
absence of virus. A. Wild type and AMPKa1/AMPKa2 2/2 MEFs were either infected or mock-infected and treated with FITC-dextran (red), processed
for microscopy, and stained to visualize actin (phalloidin (green)) and nuclei (Hoescht 33342 (blue)). Representative images from triplicate
experiments are shown. B. The percentage of MEFs with dextran punctae was quantified from three independent experiments with the mean + SD
shown; * p,0.05. C. U2OS cells were treated or mock-treated with the AMPK inhibitor Compound C (10 mM) 1 hour prior to addition of vaccinia.
Texas Red-dextran (red) was added and processed as above. D. The percentage of U2OS cells with dextran punctae was quantified from three
independent experiments with the mean +/2 SD shown; *p,0.05.
doi:10.1371/journal.ppat.1000954.g006
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an essential role in cellular motility and wound healing,

demonstrating a broad role in Rac1-dependent actin modulation.

Previously, Rac1 has been implicated in nitric oxide production

and glucose uptake downstream of AMPK [52] [53]. This role for

AMPK and Rac1 in glucose uptake via the translocation of the

major insulin-responsive glucose transporter GLUT-4 is quite

interesting because this may provide a direct link between

AMPK’s role in energy homeostasis and the cytoskeleton [54]

[55] [56].

While the best understood role of AMPK is its role in

metabolism, recent evidence suggests this kinase also has a crucial

role in regulating cell structure and polarity through engagement

with the actin cytoskeleton. In Drosophila, loss of AMPK leads to

defects in mitotic division and epithelial cell polarity accompanied

by disruption of the actin cytoskeleton [29]. In some mammalian

epithelial cell lines, AMPK activation leads to polarization

characterized by the formation of an actin brush-border or tight

junction assembly [29] [57] [58]. Additionally, AMPK activation

can induce astrocyte stellation, and actin stress fiber disassembly

[59]. Finally, studies using Compound C and AMPK activators

linked AMPK to macropinocytic uptake of albumin in murine

macrophages [60]. Taken together with our new data, this

accumulating evidence suggests a broad and conserved role for

AMPK in a variety of cellular processes that require actin

cytoskeletal rearrangements.

The precise signaling events that lead to these AMPK-

dependent cytoskeletal changes remain unclear. Several upstream

kinases have been shown to activate AMPK under different

stimuli. The best studied of these is the tumor suppressor LKB1

which activates AMPK in response to changes in cellular energy

levels [27] [28]. Additionally, AMPK can be activated in response

to changes in intracellular calcium levels by CaMKKb, and

further evidence suggests that TGFb-activating kinase (TAK1)

may serve as a third upstream activator [31] [32] [61]. Previous

studies demonstrated that LKB1 is an important mediator of cell

polarity at least in part through signaling to AMPK, and has been

shown to drive actin brush border formation, and the translocation

of apical and basal markers during the establishment of polarity

[29] [30] [57] [58] [62]. We found that at least some AMPK-

dependent cytoskeletal changes are independent of LKB1 and

CaMKK including lamellipodia formation, macropinocytosis and

wound healing. These different actin-dependent outcomes could

be controlled by the unique downstream Rho GTPase family

members that may become activated by AMPK depending on the

Figure 7. AMPK is required for actin-dependent membrane ruffling and wound healing independent of LKB1. A. Cells were treated
with vehicle or PMA and stained with phalloidin (actin, green) and Hoescht 33342 (nuclei, blue). Arrows indicate lamellipodia. Representative images
from triplicate experiments are shown. B. Cells were treated with PMA and stained with phalloidin (actin, green), anti-Rac1 (red) and Hoescht 33342
(nuclei, blue). Representative images from triplicate experiments are shown. C. MEFs null for LKB1 (LKB2/2; Vec) or rescued (LKB12/2; LKB1) were
treated with PMA or vehicle and stained as in A. Arrows indicate lamellipodia. Representative images from triplicate experiments are shown. D. A
scratch was made in a confluent monolayer of wild type or AMPKa1/AMPKa2 2/2 MEFs, and monitored over time for closure. Representative images
from triplicate experiments are shown immediately after wounding (T = 0) and after 20 hours (T = 20). E. Reduction in wound width is quantified over
time. Data are normalized to initial would width at T = 0, and presented as means of three independent experiments with four wounds per set;
* indicates p,0.05 in each experiment. Moreover, the rate of wound healing is reduced in AMPK mutants by ANOVA (p,0.001).
doi:10.1371/journal.ppat.1000954.g007
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stimulus and upstream kinase (such as Rac1, which is associated

with lamellipodia formation and macropinocytosis) [10] [11].

Study of the Rho family GTPases activated by AMPK under

different stimuli may resolve some of these issues.

In addition to the three subunits of AMPK discovered through

screening the kinome, we identified four other genes that promote

vaccinia infection: Pi3K68D, Fab1, Stam, and CG9311, all of

which have human homologs. Pi3K68D, Fab1, and Stam are

kinases while CG9311 is the only phosphatase identified in the

screen. As kinases are druggable targets, and many known factors

involved in macropinocytosis are kinases, we are particularly

interested in the role of these kinases in vaccinia infection. Both

Pi3K68D (PIK2C2A) and Fab1 (PIP5K3/PIKfyve) have roles in

metabolism of phosphatidylinositol (PtdIns), an important compo-

nent of membrane trafficking, cytoskeletal rearrangements, and

macropinocytosis. In particular, Pi3K68D is a member of the class

II family of PI3Ks that produce PtdIns(3)P downstream of growth

factor stimulation, and can modulate the activity of Rho GTPases

such as Rac1 and Cdc42. Class II PI3Ks have a critical role in

lamellipodia formation and in cell migration, localizing to the

leading edge of migrating cells [63] [64]. Interestingly, class I

PI3K have also been implicated in vaccinia infection, during virus

entry, and also later stages of infection [4] [65] [66]. Fab1, the

PtdIns(3)P 5-kinase that converts PtdIns(3)P into PtdIns(3,5)P2, has

been implicated in fluid-phase uptake, transport, and endosomal

acidification [67] [68]. The third kinase, Stam (STAM, STAM2) is

activated by cytokine and growth factor stimulation, and localizes

to early endosomes, where it is involved in endosomal sorting [69]

[70]. Since these kinases have roles either in trafficking to or from

the plasma membrane, or in cytoskeletal rearrangements, and

have been implicated in processes related to macropinocytosis, it is

quite possible that they also play a direct role vaccinia entry.

Perhaps Pi3K68D is involved in promoting cytoskeletal rear-

rangements that lead to macropinocytosis, while Fab1 and Stam

could be involved sequentially in later entry steps leading to

membrane fusion once a macropinosome has been internalized.

Rearrangements in the actin cytoskeleton are crucial not only

for vaccinia infection, but also for many essential cellular processes

including: cell division, establishment and maintenance of polarity,

cellular motility, and uptake of extracellular fluids, each of which

must be carefully regulated. While these various processes have

different outcomes for the cell, they share several important

signaling components, with AMPK as a central mediator. Further

characterization of AMPK as well as these additional new factors

is required to determine their precise role in vaccinia infection and

whether they interact with AMPK, macropinocytosis, or other

actin-dependent processes. How AMPK activation in response to

different signals leads to these disparate changes in the actin

cytoskeleton, and how these processes fit into the larger network of

AMPK-dependent pathways will drive future studies. Lastly, the

development of more selective AMPK inhibitors or other

inhibitors of macropinocytosis may be useful against poxviruses,

and other viruses that hijack this endocytic route for their entry

mechanism.

Materials and Methods

Cells, antibodies, reagents, and viruses
Drosophila DL1 cells were grown and maintained at 25uC in

Schneiders Drosophila media supplemented with 10% FBS (JRH)

as described [71]. MEFs, BSC-1 and U2OS cells were

maintained at 37uC in DMEM supplemented with 10% FBS

(Sigma) and 10 mM Hepes. HeLa S3 suspension cells were

maintained in MEM supplemented with 10% FBS and 0.05%

Pluronic. BSC-1 cells were maintained in MEM supplemented

with 10% cosmic calf serum (Hyclone). All media were

additionally supplemented with 100 mg/ml penicillin/streptomy-

cin and 2 mM L-glutamine. LKB12/2 MEFs were complement-

ed with MIGR (Vector) or FLAG-LKB1-MIGR (LKB1 cDNA)

and maintained as above. Vaccinia strains vPRA13, vSC8, and

vP30CP77, were grown in HeLa S3 suspension cells supplement-

ed with 2.5% FBS, and tittered on BSC-1 cells as described [72]

[73] [74] [75]. Cowpox Brighton Red and Vesicular Stomatitis

virus (Indiana) were used. Antibodies were obtained from the

following sources: anti-Bgal (Promega and Cappel), anti-E3L (gift

from S. Isaacs) [76], anti-L1R (R180 gift from G. Cohen and R.

Eisenberg), anti-Rac1 (Millipore),and anti-AMPK (Cell Signaling

Technology). Fluorescently labeled secondary antibodies along

with anti-sheep HRP were obtained from Jackson Immunochem-

icals or Invitrogen. All other HRP-conjugated antibodies were

obtained from Amersham. AlexaFluor 488 and 594 phalloidin,

FITC-conjugated dextran, and 594-conjugated Transferrin were

purchased from Invitrogen. Compound C [20] and STO-609

[77] were obtained from Calbiochem. Additional chemicals were

obtained from Sigma.

RNAi and infections
A mini library of dsRNAs generated against Drosophila kinase

and phosphatase genes was obtained from N. Perrimon, and

aliquoted onto 384 well plates at 250 ng dsRNA/384 well [78].

Secondary amplicons and control dsRNA were designed using

SnapDragon and DRSC resources (www.flyrnai.org), and gener-

ated as described [79]. For 384 well assays, 16,000 DL1 cells were

seeded onto 250 ng dsRNA in 10 ml serum free media. One hour

later 20 ml complete media was added, and cells were incubated in

a humid chamber for 3 days. For other experiments, 2,000,000

cells were seeded onto 4 mg of dsRNA/6 well in 1 mL serum free

media. One hour later 2 mL complete media was added. For viral

infections, vaccinia was tittered on BSC-1 cells, and MOIs added

to all cell types are based on pfu/ml measured on BSC-1 cells.

Media was removed and virus was added in 2% serum medium

and incubated at 25uC for Drosophila cells, and 37uC for

mammalian cells. Viral innocula used was adjusted to achieve

,10% infection of Drosophila cells in the primary screen, and

,20% infection in secondary analysis. Level of infection of

mammalian cells varied depending on the assay format. Cells were

processed at the indicated time point post infection.

Viral immunofluorescence
Cells were fixed and processed for immunofluorescence as

previously described at 48 hours post infection for Drosophila cells

and 8 hours post infection in mammalian cells [12]. Briefly, cells

were fixed in 4% formaldehyde/phosphate buffered saline (PBS),

washed twice in PBS/0.1% TritonX-100 (PBST), and blocked in

2% BSA/PBST. Anti-E3L and anti-B-gal primary antibodies were

diluted in block, added to cells, and incubated overnight at 4uC.

Cells were washed three times in PBST, and incubated in

secondary antibody for one hour at room temperature. Cells were

counterstained with Hoescht33342 (Sigma). Plates were imaged at

20X for Drosophila cells and 10X for mammalian cells, capturing

three images per well per wavelength using an automated

microscope (ImageXpress Micro), and quantification was per-

formed using MetaXpress image analysis software. Significance

was determined using a Student T-test.

Screen analysis
Image analysis was used to generate metrics from the

captured images including the number of nuclei and the
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number of infected cells per site. The percent infection was

calculated for each site, log-transformed, and the interquartile

range (IQR) was used to calculate a robust Z score for each site

using the following equation: log10 [(%infection-median)/

(IQR*0.74)] [80]. Candidates were identified as positive if the

average robust Z score of all sites in a well was ,22 in two

independent replicates.

Immunoblotting, Northern blotting, and RT-PCR
For protein analysis, MEFs were prechilled to 16uC for 10

minutes and then treated with vaccinia (MOI 20) for 1 hour at

16uC to synchronize infection. Cells were incubated at 37uC for 10

or 30 minutes or treated with 10 mM 2DG for 30 minutes. Cells

were then washed briefly in cold PBS and lysed in NP40 lysis

buffer supplemented with protease (Boehringer) and phosphatase

(Sigma) inhibitor cocktails. Samples were separated by SDS-PAGE

and blotted as described [81]. HRP-conjugated secondary

antibodies and Western Lightening Chemiluminescence Reagent

were used for visualization.

For RNA analysis, cells were lysed in Trizol buffer, and RNA

was purified and blotted as previously described with the indicated

probes [12]. RT-PCR was performed using M-MLV reverse

transcriptase on random primed total RNA (Invitrogen). One mL

of the cDNA or a 1:10 dilution was used for PCR amplification.

Plaque assays
Viruses were plaqued on MEF or BSC-1 cells as indicated.

Confluent monolayers were treated with serial dilutions of virus for

two hours, after which the cells were overlayed with agarose

followed by crystal violet staining. Plaque number was determined

manually, and plaque diameter was measured using MetaXpress

software and used to calculate areas.

Vaccinia entry assay
MEFs plated on cover slips were chilled to 16uC for 10 minutes

and then treated with vaccinia (MOI 100) at 16uC for 1 hour.

Unbound virus was removed, and cells were incubated at 37uC for

1 hour, washed three times in cold PBS, and fixed. Cells were

washed in ammonium chloride (50 mM) and PBST and were

stained with anti-L1R and then washed and incubated with

secondary antibody, Hoescht 33342, and phalloidin 488. Cover

slips were mounted and imaged using a 63X objective with a Leica

DMI 4000 B fluorescent microscope. Images were taken as 0.2 um

Z-stacks that were deconvolved using AutoQuant X2 software

using Adaptive PSF with 20 iterations. Images are displayed as

max projections. To quantify, images were randomized and

blindly quantified for virus entry (n.30 for each condition).

Fluid-phase dextran uptake assay
MEFs grown on glass cover slips were chilled to 16uC for 10

minutes and then treated with vaccinia (MOI 200) at 16uC for

1 hour. Unbound virus was removed, and FITC-dextran (70 kD,

lysine fixable) was added at 0.5 mg/ml. Cells were incubated at

37uC for 20 minutes, washed twice in PBS, and once in pH 5.5

buffer (0.1 M sodium acetate, 0.05 M NaCl) for 5 minutes. Cells

were fixed and stained with Hoescht 33342 and phalloidin 594.

Cover slips were mounted and imaged using a 63X objective with

a Leica DMI 4000 B fluorescent microscope. Images were

randomized and blindly quantified for the percentage of cells

undergoing macropinocytosis as defined by .20 punctae per cell.

U2OS cells grown on glass cover slips were pretreated with

10 mM Compound C or vehicle for 1 hour and then assayed as

above.

Actin ruffling assay
Cells were grown on glass cover slips and treated with vehicle or

1 mM PMA for 3 hours. For Rac1 localization experiments, cells

were blocked in 8% BSA/PBST for 1 hour. Anti-Rac1 (Millipore)

was added in 1% BSA/PBST overnight at 4uC. Cells were washed

3 times in PBST, and secondary antibodies were added for 1 hour

at room temperature. For all experiments, cells were stained with

Hoescht 33342 and phalloidin 488. Cover slips were mounted and

imaged using a 63X objective with a Leica DMI 4000 B

fluorescent microscope.

Transferrin uptake assay
Cells grown on glass cover slips were chilled to 16uC for 10

minutes and then treated with vaccinia (MOI 100) at 16uC for

1 hour. Unbound virus was removed, and 594-transferrin was

added at 20 mg/ml. Cells were incubated at 37uC for 20 minutes,

washed twice in PBS, and once in 0.1 M sodium acetate, 0.05 M

NaCl, pH 5.5 buffer for 5 minutes. Cells were fixed and stained

with Hoescht 33342 and phalloidin 488. Cover slips were

mounted and imaged using a 63X objective with a Leica DMI

4000 B fluorescent microscope.

Wound healing assay
Cells were grown to 100% confluence overnight, then scratched

with a pipet tip to wound. Several marks were made along the

length of the wound, and were imaged over time, using these

marks as guides. Images were analyzed for wound length at the

same position over time using MetaXpress software.

Supporting Information

Text S1 Supplemental experimental procedures.

Found at: doi:10.1371/journal.ppat.1000954.s001 (0.09 MB PDF)

Figure S1 Vaccinia infection in Drosophila cells. A. Drosophila

DL1 cells were infected with vaccinia virus expressing B-gal driven

by an early/late promoter (p7.5) for indicated time, and stained for

X-gal production. A representative of 2 experiments is shown. B.
Titration of vaccinia infection in Drosophila cells seeded in 384 well

plates. Cells were fixed and processed 48 hpi and stained for early

B-gal expression (green) and nuclei (blue). C. Quantification of B.

Percent infection is the average of 6 wells, with 3 images per well

in duplicate experiments. Bars represent average percent infection

for each experiment.

Found at: doi:10.1371/journal.ppat.1000954.s002 (2.10 MB TIF)

Figure S2 Inhibitors of macropinocytosis inhibit vaccinia

infection in mammalian and Drosophila cells. A. Human U2OS

cells were pretreated with: Latrunculin A (Lat A, 5 mM),

Wortmannin (Wort, 5 mM), Rottlerin (10 mM), or EIPA

(12.5 mM) for 1 hour, challenged with vaccinia (MOI = 10) for

8 hours, and quantified for percent infection. B. Drosophila DL1

cells were treated with: Latrunculin A (Lat A, 5 mM), Wortmannin

(Wort, 5 mM), and Rottlerin (5 mM), or EIPA (50 mM) for 1 hour

and challenged with vaccinia (MOI = 20) for 24 hours. Cells were

fixed and processed for immunofluorescence using E3L expression

as a marker for infection, and Hoescht 33342 to visualize nuclei.

Mean percent infection + SD in triplicate experiments is shown; *

indicates p,0.05 compared to control in three independent

experiments.

Found at: doi:10.1371/journal.ppat.1000954.s003 (0.13 MB TIF)

Figure S3 Validation of eight candidates that promote vaccinia

infection identified in RNAi screen of Drosophila kinases and

phosphatases. Independent dsRNA targeting different sequences

of each candidate gene were tested, and percent infection was
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determined by immunofluorescence measuring B-gal expressing

cells. Luciferase was used as a nontargeting negative control. B-gal

and Rab5 were added as positive controls for decreased infection.

A representative of duplicate experiments is shown. Error bars

represent standard deviation of 12 different wells with 3 images

taken per well. * indicate p-value of ,0.001 in both experiments.

Found at: doi:10.1371/journal.ppat.1000954.s004 (0.16 MB TIF)

Figure S4 dsRNA against AMPKa or LKB1 leads to depletion

of the cognate mRNA in Drosophila cells. RNAi was performed

against luciferase (luc) or AMPKa (A) or LKB1 (B) in Drosophila

cells. RNA was collected from lysates and RT-PCR was performed

to measure mRNA levels. A 1:10 dilution of control cDNA (luc)

was included to demonstrate that the depletion was greater than

10-fold. Clathrin heavy chain (chc) was used as a loading control.

Found at: doi:10.1371/journal.ppat.1000954.s005 (1.75 MB TIF)

Figure S5 AMPKa1/AMPKa2 2/2 MEFs do not express

AMPKa. Wild type or AMPKa1/AMPKa2 2/2 MEF protein

lysates were collected and probed by immunoblot for total-

AMPKa and tubulin.

Found at: doi:10.1371/journal.ppat.1000954.s006 (0.26 MB TIF)

Figure S6 AMPK promotes efficient cowpox virus infection.

Plaque assays were performed on wild type or AMPKa1/

AMPKa2 2/2 MEFs and quantified in duplicate experiments.

Error bars show the individual values; * p,0.05 in each replicate.

Found at: doi:10.1371/journal.ppat.1000954.s007 (0.26 MB TIF)

Figure S7 AMPK is not required for Vesicular Stomatitis Virus

infection. Plaque assays were performed on wild type or

AMPKa1/AMPKa2 2/2 MEFs. There was no decrease in

plaque number observed in the mutant cells. A representative

experiment of three is shown.

Found at: doi:10.1371/journal.ppat.1000954.s008 (1.01 MB TIF)

Figure S8 AMPK promotes early vaccinia infection in mam-

malian cells. A. Lack of AMPKa leads to decreased vaccinia

infectivity in MEFs. Wild type or AMPKa1/AMPKa2 2/2 MEFs

were infected with the indicated MOI for 8 hours and processed

for immunofluorescence. Data is displayed as average percentage

of infected cells for a representative experiment. B. Loss of

AMPKa leads to a decrease in viral mRNA production in

AMPKa1/AMPKa2 2/2 MEFs. Northern blot of viral mRNA

levels in WT or AMPKa1/AMPKa2 2/2 MEFs at indicated

times post infection (MOI = 10). Blots were probed for virally

encoded E3L or a ribosomal RNA loading control. C. Wild type

or AMPKa1/AMPKa2 2/2 cells were infected (MOI = 10) for the

indicated times and probed for E3L by immunoblot.

Found at: doi:10.1371/journal.ppat.1000954.s009 (0.51 MB TIF)

Figure S9 siRNA targeting AMPK inhibits vaccinia infection in

mammalian cells. A. U2OS cells were treated with non-targeting

siRNA (siCON) or siRNA targeting AMPKa1 or AMPKa2 and

infected with vaccinia virus (MOI 10), and stained for E3L

expression after 8 hours. B. Quantification of percent infection

from A. The average of duplicate experiments; error bars

represent mean of the percent infection for each experiment. C.
Western blot probing total AMPKa after siRNA treatment.

Found at: doi:10.1371/journal.ppat.1000954.s010 (1.69 MB TIF)

Figure S10 LKB1 cDNA rescues the LKB1 null cells. LKB1 2/2

MEFs were complemented with a vector control (Vec) or FLAG-

LKB1 (LKB1) cDNA and were mock treated, or treated with 2-

deoxyglucose (2DG) which leads to LKB1-dependent AMPK

phosphorylation for 30 min. Protein lysates were collected and

probed by immunoblot for FLAG, phospho- or total-AMPKa
expression.

Found at: doi:10.1371/journal.ppat.1000954.s011 (0.72 MB TIF)

Figure S11 Vaccinia produced in AMPK deficient cells is

infectious. A. AMPK is not required for late vaccina protein

expression. WT and AMPKa1/AMPKa2 2/2 MEFs infected

with vaccinia for 8 hours were stained for early (E3L, green) and

late (L1R, red) vaccinia protein expression. B. Infectious virus is

produced in AMPK deficient cells. Vaccinia grown for 12 hours in

WT and AMPKa1/AMPKa2 2/2 MEFs was titered in BSC-1

cells. Rifampicin (Rif) was added as a control for detecting

incoming virus. The relative pfu/ml in BSC-1 cells was graphed as

the mean + standard deviation of triplicate experiments. The

decrease in virus produced was similar to decrease in virus entry.

Found at: doi:10.1371/journal.ppat.1000954.s012 (1.53 MB TIF)

Figure S12 AMPK deficient cells undergo efficient receptor-

mediated endocytosis. Transferrin uptake assays were performed

in the presence or absence of virus. Wild type and AMPKa1/

AMPKa2 2/2 MEFs were either infected or mock-infected and

treated with 594-transferrin (red), processed for microscopy, and

stained tovisualize actin (phalloidin (green)) and nuclei (Hoescht

33342 (blue)). Representative images from triplicate experiments

are shown.

Found at: doi:10.1371/journal.ppat.1000954.s013 (3.74 MB TIF)

Figure S13 AMPK deficient cells are defective in lamellipodia

formation during wound healing. A scratch was made in a

confluent monolayer of wild type or AMPKa1/AMPKa2 2/2

MEFs, and monitored over time. Images were taken using a 20X

and 63X objective immediately after wounding (T = 0), and again

after 3 and 6 hours to determine the morphology of the cells at the

wound front. Polarized cells with lamellipodia are visible at the

wound front of wild type MEFs (arrows). Representative images

from triplicate experiments are shown.

Found at: doi:10.1371/journal.ppat.1000954.s014 (3.43 MB TIF)

Figure S14 Cellular motility is LKB1-independent. Scratches

were introduced into a confluent monolayer of LKB1 2/2, Vec or

LKB1 2/2; LKB1 cDNA MEFs, and monitored over time for

closure. Representative images from triplicate experiments are

shown immediately after wounding (T = 0) and after 12 or

24 hours. The reduction in wound width is quantified over time.

Data are normalized to initial would width at T = 0, and presented

as means of three independent experiments with four wounds per

set.

Found at: doi:10.1371/journal.ppat.1000954.s015 (3.01 MB TIF)

Table S1 Primary screen data.

Found at: doi:10.1371/journal.ppat.1000954.s016 (0.02 MB

TXT)

Video S1 Wild type MEFs were treated with 1 uM PMA and

imaged live at 10 second intervals for 30 minutes using DIC

microscopy. Extensive ruffling was observed at the cell periphery.

Found at: doi:10.1371/journal.ppat.1000954.s017 (12.77 MB

MOV)

Video S2 AMPKa1/AMPKa2 2/2 MEFs were treated with

1 uM PMA and imaged live at 10 second intervals for 30 minutes

using DIC microscopy. Cells remained quiescent and no ruffling

was observed.

Found at: doi:10.1371/journal.ppat.1000954.s018 (9.96 MB

MOV)
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