In vivo fly RNAi

Jian-Quan Ni, Michele Markstein, Richard Binari, Barret Pfeiffer, Lu-Ping Liu, Christians Villalta, Matthew Booker, Lizabeth Perkins, and Norbert Perrimon. 2008. “Vector and parameters for targeted transgenic RNA interference in Drosophila melanogaster.” Nat Methods, 5, 1, Pp. 49-51.Abstract

The conditional expression of hairpin constructs in Drosophila melanogaster has emerged in recent years as a method of choice in functional genomic studies. To date, upstream activating site-driven RNA interference constructs have been inserted into the genome randomly using P-element-mediated transformation, which can result in false negatives due to variable expression. To avoid this problem, we have developed a transgenic RNA interference vector based on the phiC31 site-specific integration method.

2008_Nat Meth_Ni.pdf Supplement.pdf
Meghana M Kulkarni, Matthew Booker, Serena J Silver, Adam Friedman, Pengyu Hong, Norbert Perrimon, and Bernard Mathey-Prevot. 2006. “Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays.” Nat Methods, 3, 10, Pp. 833-8.Abstract

To evaluate the specificity of long dsRNAs used in high-throughput RNA interference (RNAi) screens performed at the Drosophila RNAi Screening Center (DRSC), we performed a global analysis of their activity in 30 genome-wide screens completed at our facility. Notably, our analysis predicts that dsRNAs containing > or = 19-nucleotide perfect matches identified in silico to unintended targets may contribute to a significant false positive error rate arising from off-target effects. We confirmed experimentally that such sequences in dsRNAs lead to false positives and to efficient knockdown of a cross-hybridizing transcript, raising a cautionary note about interpreting results based on the use of a single dsRNA per gene. Although a full appreciation of all causes of false positive errors remains to be determined, we suggest simple guidelines to help ensure high-quality information from RNAi high-throughput screens.

2006_Nat Meth_Kulkarni.pdf Supplemental
Ian Flockhart, Matthew Booker, Amy Kiger, Michael Boutros, Susan Armknecht, Nadire Ramadan, Kris Richardson, Andrew Xu, Norbert Perrimon, and Bernard Mathey-Prevot. 2006. “FlyRNAi: the Drosophila RNAi screening center database.” Nucleic Acids Res, 34, Database issue, Pp. D489-94.Abstract

RNA interference (RNAi) has become a powerful tool for genetic screening in Drosophila. At the Drosophila RNAi Screening Center (DRSC), we are using a library of over 21,000 double-stranded RNAs targeting known and predicted genes in Drosophila. This library is available for the use of visiting scientists wishing to perform full-genome RNAi screens. The data generated from these screens are collected in the DRSC database ( in a flexible format for the convenience of the scientist and for archiving data. The long-term goal of this database is to provide annotations for as many of the uncharacterized genes in Drosophila as possible. Data from published screens are available to the public through a highly configurable interface that allows detailed examination of the data and provides access to a number of other databases and bioinformatics tools.

2006_Nucl Acids Res_Flockhart.pdf