Research report

2005
Sara Cherry, Tammy Doukas, Susan Armknecht, Sean Whelan, Hui Wang, Peter Sarnow, and Norbert Perrimon. 2005. “Genome-wide RNAi screen reveals a specific sensitivity of IRES-containing RNA viruses to host translation inhibition.” Genes Dev, 19, 4, Pp. 445-52.Abstract

The widespread class of RNA viruses that utilize internal ribosome entry sites (IRESs) for translation include poliovirus and Hepatitis C virus. To identify host factors required for IRES-dependent translation and viral replication, we performed a genome-wide RNAi screen in Drosophila cells infected with Drosophila C virus (DCV). We identified 66 ribosomal proteins that, when depleted, specifically inhibit DCV growth, but not a non-IRES-containing RNA virus. Moreover, treatment of flies with a translation inhibitor is protective in vivo. Finally, this increased sensitivity to ribosome levels also holds true for poliovirus infection of human cells, demonstrating the generality of these findings.

2005_Genes Dev_Cherry.pdf Supplement.pdf
2004
Michael Boutros, Amy A Kiger, Susan Armknecht, Kim Kerr, Marc Hild, Britta Koch, Stefan A Haas, Renato Paro, Norbert Perrimon, and Norbert Perrimon. 2004. “Genome-wide RNAi analysis of growth and viability in Drosophila cells.” Science, 303, 5659, Pp. 832-5.Abstract

A crucial aim upon completion of whole genome sequences is the functional analysis of all predicted genes. We have applied a high-throughput RNA-interference (RNAi) screen of 19,470 double-stranded (ds) RNAs in cultured cells to characterize the function of nearly all (91%) predicted Drosophila genes in cell growth and viability. We found 438 dsRNAs that identified essential genes, among which 80% lacked mutant alleles. A quantitative assay of cell number was applied to identify genes of known and uncharacterized functions. In particular, we demonstrate a role for the homolog of a mammalian acute myeloid leukemia gene (AML1) in cell survival. Such a systematic screen for cell phenotypes, such as cell viability, can thus be effective in characterizing functionally related genes on a genome-wide scale.

2004_Science_Boutros.pdf
2003
AA Kiger, B Baum, S Jones, MR Jones, A Coulson, C Echeverri, and N Perrimon. 2003. “A functional genomic analysis of cell morphology using RNA interference.” J Biol, 2, 4, Pp. 27.Abstract

BACKGROUND: The diversity of metazoan cell shapes is influenced by the dynamic cytoskeletal network. With the advent of RNA-interference (RNAi) technology, it is now possible to screen systematically for genes controlling specific cell-biological processes, including those required to generate distinct morphologies. RESULTS: We adapted existing RNAi technology in Drosophila cell culture for use in high-throughput screens to enable a comprehensive genetic dissection of cell morphogenesis. To identify genes responsible for the characteristic shape of two morphologically distinct cell lines, we performed RNAi screens in each line with a set of double-stranded RNAs (dsRNAs) targeting 994 predicted cell shape regulators. Using automated fluorescence microscopy to visualize actin filaments, microtubules and DNA, we detected morphological phenotypes for 160 genes, one-third of which have not been previously characterized in vivo. Genes with similar phenotypes corresponded to known components of pathways controlling cytoskeletal organization and cell shape, leading us to propose similar functions for previously uncharacterized genes. Furthermore, we were able to uncover genes acting within a specific pathway using a co-RNAi screen to identify dsRNA suppressors of a cell shape change induced by Pten dsRNA. CONCLUSIONS: Using RNAi, we identified genes that influence cytoskeletal organization and morphology in two distinct cell types. Some genes exhibited similar RNAi phenotypes in both cell types, while others appeared to have cell-type-specific functions, in part reflecting the different mechanisms used to generate a round or a flat cell morphology.

2003_J Biol_Kiger.pdf Supplemental Files.zip

Pages