C. elegans (worm)

Yanhui Hu, Charles Roesel, Ian Flockhart, Lizabeth Perkins, Norbert Perrimon, and Stephanie E Mohr. 2013. “UP-TORR: online tool for accurate and Up-to-Date annotation of RNAi Reagents.” Genetics, 195, 1, Pp. 37-45.Abstract

RNA interference (RNAi) is a widely adopted tool for loss-of-function studies but RNAi results only have biological relevance if the reagents are appropriately mapped to genes. Several groups have designed and generated RNAi reagent libraries for studies in cells or in vivo for Drosophila and other species. At first glance, matching RNAi reagents to genes appears to be a simple problem, as each reagent is typically designed to target a single gene. In practice, however, the reagent-gene relationship is complex. Although the sequences of oligonucleotides used to generate most types of RNAi reagents are static, the reference genome and gene annotations are regularly updated. Thus, at the time a researcher chooses an RNAi reagent or analyzes RNAi data, the most current interpretation of the RNAi reagent-gene relationship, as well as related information regarding specificity (e.g., predicted off-target effects), can be different from the original interpretation. Here, we describe a set of strategies and an accompanying online tool, UP-TORR (for Updated Targets of RNAi Reagents; www.flyrnai.org/up-torr), useful for accurate and up-to-date annotation of cell-based and in vivo RNAi reagents. Importantly, UP-TORR automatically synchronizes with gene annotations daily, retrieving the most current information available, and for Drosophila, also synchronizes with the major reagent collections. Thus, UP-TORR allows users to choose the most appropriate RNAi reagents at the onset of a study, as well as to perform the most appropriate analyses of results of RNAi-based studies.

Norbert Perrimon, Jian-Quan Ni, and Lizabeth Perkins. 2010. “In vivo RNAi: today and tomorrow.” Cold Spring Harb Perspect Biol, 2, 8, Pp. a003640.Abstract

RNA interference (RNAi) provides a powerful reverse genetics approach to analyze gene functions both in tissue culture and in vivo. Because of its widespread applicability and effectiveness it has become an essential part of the tool box kits of model organisms such as Caenorhabditis elegans, Drosophila, and the mouse. In addition, the use of RNAi in animals in which genetic tools are either poorly developed or nonexistent enables a myriad of fundamental questions to be asked. Here, we review the methods and applications of in vivo RNAi to characterize gene functions in model organisms and discuss their impact to the study of developmental as well as evolutionary questions. Further, we discuss the applications of RNAi technologies to crop improvement, pest control and RNAi therapeutics, thus providing an appreciation of the potential for phenomenal applications of RNAi to agriculture and medicine.

Stephanie E Mohr and Norbert Perrimon. 2012. “RNAi screening: new approaches, understandings, and organisms.” Wiley Interdiscip Rev RNA, 3, 2, Pp. 145-58.Abstract

RNA interference (RNAi) leads to sequence-specific knockdown of gene function. The approach can be used in large-scale screens to interrogate function in various model organisms and an increasing number of other species. Genome-scale RNAi screens are routinely performed in cultured or primary cells or in vivo in organisms such as C. elegans. High-throughput RNAi screening is benefitting from the development of sophisticated new instrumentation and software tools for collecting and analyzing data, including high-content image data. The results of large-scale RNAi screens have already proved useful, leading to new understandings of gene function relevant to topics such as infection, cancer, obesity, and aging. Nevertheless, important caveats apply and should be taken into consideration when developing or interpreting RNAi screens. Some level of false discovery is inherent to high-throughput approaches and specific to RNAi screens, false discovery due to off-target effects (OTEs) of RNAi reagents remains a problem. The need to improve our ability to use RNAi to elucidate gene function at large scale and in additional systems continues to be addressed through improved RNAi library design, development of innovative computational and analysis tools and other approaches.