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profiling and qPCR recovered a nonuniform distribution of 
microRNAs (Fig. 2a); we observed up to four orders of magnitude dif-
ference between the most and least frequently detected microRNAs. 
Only 61% (SREK-SOLiD) and 52% (modban-Solexa) of the 
microRNAs varied within a single order of magnitude (Fig. 2a). 
These results showed the inherent quantification biases of both DGE 
profiling and qPCR based on microRNA sequence, complicating 
comparison of microRNA amounts in a sample.

Correction of the biological dataset with the frequency bias 
obtained using the synthetic RNA pool did not improve the 
correlation between the library-preparation methods (data 
not shown). We therefore used the synthetic small RNA dataset 
to explore the potential basis of systematic biases. Although we 
found clear effects of certain terminal mono- and dinucleotides 
(Supplementary Fig. 4), we could not identify a satisfactory  
correction model based on primary (RNA sequence) and secondary 
(for example, folding characteristics) parameters (Supplementary 
Fig. 5 and Supplementary Note). This might be explained by our 
observation that even single nucleotide differences influenced the 
read frequencies (Supplementary Fig. 6). RNA ligase preferences7 
may contribute to the observed different terminal nucleotides over 
the read frequency spectrum. In addition, the reverse-transcriptase 
reaction as well as the PCR could be a contributor to the bias8.

To determine whether DGE profiling allows for differential 
expression analysis, we sequenced small RNA libraries from rat 
spleen and liver (SREK-SOLiD). In parallel, we analyzed the input 
RNA by qPCR. Similar to our previous results, qPCR data differed 
substantially from the read frequencies within a sample (Fig. 2b). 
However, differential expression results between samples obtained 
by qPCR and DGE profiling were strongly correlated (Fig. 2b), 
showing that the systematic biases do not prohibit the comparison 
of relative microRNA amounts between samples.

Despite the limitations described here, small RNA profiling 
by DGE is the method of choice for studying small RNA expres-
sion. In contrast to most other existing methods, DGE profiling is 
hybridization-independent, accurate in discriminating microRNA 
family members that differ by only a single nucleotide, capable of 
detecting 5′ and 3′ end variability (for example, isoMirs), and as 
the approach does not require a priori information, it can be used 
to simultaneously detect known and discover new biomolecules.

Note: Supplementary information is available on the Nature Methods website.
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RNAiCut: automated detection of 
significant genes from functional 
genomic screens

To the Editor: RNA interference (RNAi) is a popular functional 
genomic technology for identifying genes involved in a biological 
process. Although higher scores for genes in an RNAi screen suggest 
more central roles in the pathway, estimating the score threshold 
separating pathway- or process-relevant hits from noise remains dif-
ficult (Supplementary Table 1) and is typically done manually.

To overcome this subjective approach, we built a fully auto-
mated system, RNAiCut, that objectively and robustly identifies 
score thresholds from functional genomic data by introducing  
the use of the connectivity of subgraphs of protein-protein interac-
tion (PPI) networks1,2. Unlike some previous work3, our method 
does not overlap RNAi and PPI data to find interacting regulators. 
Instead, its guiding hypothesis is that true positive hits in an RNAi 
experiment are densely interconnected in the PPI network. For the 
k highest-scoring genes (k = 1, 2, 3…), RNAiCut computes the edge 
count of the induced subgraph and estimates the P-value of finding 
a PPI subgraph of at least this size that is induced by k randomly cho-
sen nodes that have the same degrees as these genes (Supplementary 
Methods and Supplementary Results). The plot of these P-values 
as a function of k is typically V-shaped, and we take the global min-
imum as the score threshold (Fig. 1). We used RNAiCut to com-
pute thresholds for several Drosophila melanogaster RNAi screens4 
(Supplementary Figs. 1–10 and Supplementary Tables 2–3).

RNAiCut chose successful thresholds, as measured by Gene 
Ontology (GO)5 enrichment: the gene lists with above-threshold 
scores were enriched for functions relevant to the screen, compared 
to the rest (Supplementary Table 4). When the manual screener’s 
threshold was later in the ranked list of hits than the RNAiCut 
threshold, choosing RNAiCut’s threshold may reduce the poten-
tially high number of false positives. When RNAiCut’s threshold 
was later, the GO enrichment for RNAiCut’s cutoff was at least as 
good as for the manually determined cutoff, revealing additional 
pathway-relevant genes (Supplementary Results). Although some 
of the additional hits identified by RNAiCut may be false positives, 
analyzing them may be useful given their apparent connectivity to 
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Enabling IMAC purification of low 
abundance recombinant proteins from 
E. coli lysates

To the Editor: Currently, the most widely used method for purify-
ing recombinant proteins for biochemical and especially structural 
studies is immobilized metal affinity chromatography (IMAC), in 
which a metal-binding polyhistidine tag (His tag) serves as a small 
purification handle on the target protein. IMAC is a powerful and 
generic purification method, with high recovery yields and low costs. 
Additionally, the His tag is compatible with most downstream appli-
cations because it is small and relatively inert1,2. Escherichia coli is by 
far the most popular expression host owing to its supremacy regard-
ing cost, biomass production and technical simplicity3,4. However, a 
serious drawback of IMAC is the often-experienced failure to purify 
low-abundance His-tagged proteins from E. coli lysates; increasing 
the culture size and thereby increasing the amount of available His-
tagged protein does not result in increased yield. We examined this 
issue and propose that it is tightly linked to metal-ion leakage from 
the columns induced by the E. coli lysate.

We used His-tagged GFP (His6-GFP) to examine the effect of 
E. coli lysate on the protein binding capacity of IMAC columns. 
Application of the soluble fraction of E. coli lysate lacking recom-
binant protein expression to a 1 ml HiTrap Chelating HP column 
(GE Healthcare) partly loaded with His6-GFP, caused extensive 
migration of His6-GFP whereas application of wash buffer did not 
(Supplementary Fig. 1a).We confirmed this using different column 
materials and concluded that E. coli lysate severely reduces the bind-
ing capacity of the column (data not shown). By separating a lysate 
into high- and low-molecular-weight components we found that 
the reduced binding capacity was brought about by low-molecular-
weight components, and not high-molecular-weight components 
(Supplementary Fig. 1b), implying that the underlying cause for 
the reduced target protein binding is not the result of native E. coli 
proteins competing with the His-tagged protein for the immobilized 
nickel-ion binding sites. We determined the amount of nickel pres-
ent on the different columns before and after sample load and found 
that the decrease in binding capacity correlated with loss of immobi-
lized nickel ions from the column (Supplementary Fig. 1c).

IMAC is very sensitive to the presence of metal chelators1, and 
the E. coli lysate contains many unspecific weak chelators such as 
dicarboxylic acids from the citric acid cycle. Under stress condi-
tions, E. coli can also produce highly specific metal chelators, met-
allophores5. We speculated that such metallophores, if produced, 
would be mainly associated with the periplasmic space of E. coli 
but not with the cytosol. We therefore hypothesized that removing 
the periplasmic material before cell lysis could improve His-tagged 
recombinant protein purification yields. We subjected E. coli cells to 
osmotic shock to remove the periplasmic material before cell lysis 
(Supplementary Methods). His6-GFP did not migrate substan-
tially on IMAC columns treated with lysate devoid of periplasmic 

the core signaling pathway. RNAiCut was robust to Z-score noise 
generated by randomly scrambling close Z scores (Supplementary 
Fig. 11 and Supplementary Table 5).

We offer an online server (http://rnaicut.csail.mit.edu) for inter-
preting functional genomic experiments. Although we developed 
RNAiCut using a fly PPI network, RNAiCut can also be run on non-
fly and non-PPI networks (Supplementary Fig. 12). This tool will 
help functional genomics research by enabling hit-list gene selection 
using orthogonal datasets.

Note: Supplementary information is available on the Nature Methods website.
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Figure 1 | RNAiCut results for insulin-triggered MAPK pathway screen 
in D. melanogaster4. Genes with positive (top) and negative (bottom) Z 
scores in the screen are ordered on the x axes from left to right based on 
the decreasing magnitude of Z scores. The y axis denotes the P-value, as a 
function of k, of finding a random PPI subnetwork as well connected as the 
one containing the k highest-scoring genes from the RNAi screen. 
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